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ABSTRACT

Speech synthesis systems basing on concatenation of natural
speech segments achieve a high quality in terms of naturalness
and intelligibility. However, in many applications such systems
are not easy to apply because of the huge demand for storage
capacity. Speech synthesis systems based on HMMs could be an
alternative to concatenative speech synthesis systems but do not
yet achieve the quality needed for use in applications.

In one of our research projects we investigate the possibility of
combining speech synthesis and speech recognition to a unified
system using the same databases and similar algorithms for
synthesis and recognition. In this context we are examining the
suitability of Stochastic Markov Graphs instead of HMMs to
improve the performance of such synthesis systems. This paper
describes the training procedure we used to train the SMGs,
explains the synthesis process and introduces an algorithm for
state selection and state duration modeling. We focus parti-
cularly on issues which arise using SMGs instead of HMMs.

1. MOTIVATION

Various speech synthesis systems based on Hidden Markov
Models have been developed in the past (see e.g.[1], [4], [6]).
This observation emphasizes the tendency that the methods and
databases of speech synthesizers obtain more and more
similarity with those of speech recognizers. This seems to offer
new possibilities in combining systems for speech synthesis and
speech recognition. Considering this fact, we introduced a
dialogue system with the synthesis and recognition components
using unified databases in [7].

Combining speech synthesis and speech recognition in a single
system allows “Analysis by Synthesis” to evaluate the
performance of the recognition process in detail. It allows an
inverse function of the recognizer which will enable us to
improve the performance of the system. In this paper we
investigated the suitability of Stochastic Markov Graphs (SMG)
instead of HMMs as models in a parametric speech synthesizer.
SMGs were first introduced in [5] for the recognition task. The
advantage of using SMGs lies in their enhanced capability of
modeling trajectories in the feature space. However, a powerful
prediction of feature trajectories is even more important for
synthesis. SMG based speech synthesizers require less resources
than concatenative synthesis systems and promise to improve
the limited quality of HMM based synthesizers.

In the following sections we will explain the procedure of
training the SMGs and we will describe our speech synthesis
algorithm. We focus particularly on issues which arise using
SMGs instead of HMM and introduce an adapted method for
state selection and state duration modeling.

2. STOCHASTIC MARKOV GRAPHS

In the following sections we describe a number of graph
processing algorithms. We will use the following symbols and
notations: y(U ,‘I’UU) denotes a directed graph with the state

set U:{u,,uz,...,uN} and the incidence relation

Wy UxU — {@]1}. We denote an edge between two states
u; and u, as (u,» - uk). We do not allow parallel edges, hence
the edge set is implicitly defined by the incidence relation. A

particular edge exists in the graph if, and only if, the incidence
relation is not empty for the ordered tuple (ui,uk), ie.

exist(ui —)uk)<:> Vuu, *© . The transition probability of an
edge (u,» —)uk), estimated by the graph training process, is
written as P(‘//u,-,uk ) A consecutive sequence of edges in a

graph is called a path g. We refer to the ith state of the path as
q(i). SMG graphs contain circles. We distinguish between
trivial circles and non-trivial circles. A trivial circle consists of
exactly one edge which starts and ends in the same state. A non-
trivial circle is a path with more than one edge.

3. TRAINING

Our training procedure mainly resembles the procedure
described in [5]. Figure 1 gives an overview of the training
procedure.

We use 20 MFC coefficients, their deltas and delta-deltas and
one energy value as acoustic features. After the feature
extraction we apply an eigenvector transformation and sort the
transformed features by their standard deviation. We split the
feature space into 24 most significant features (MSF) and 37
least significant features (LSF). We use the MSF for building
the acoustic models. The LSF are modeled by simpler statistics
(mean vectors and standard deviation) and will be used for the
acoustic synthesis. The SMQG training procedure also gathers
statistics on non-acoustic features:

e  per SMQG state:
— Number of non-trivial circles per sample occurring at
the state (re-entry statistic)
— Phone duration of samples using the state

e per SMG phone model:
— Path length used by samples, disregarding trivial circles

See section 4 for a detailed discussion of these non-acoustic
features.
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Figure 1: Overview of the SMG training procedure

We start the training with a conventional three-state forward
connected HMM structure. In the initialization stage, each state
is assigned to exactly one Gaussian distribution. We train this
model with the standard Viterbi algorithm. After the training,
each state of the model is split into two.

Y U =Uolu} 0]

u;elU

The resulting states inherit all transitions to the predecessors
and successors of the original state.
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Further they will be connected with each other by two
additional edges.

Y, =1 and Yl =1 3)

Together with the original states, we split the Gaussian
distributions along the axis of their greatest standard deviation.
After splitting, we cluster the Gaussian distributions with the k-
means algorithm. Then the entire SMG model is retrained.

In a last stage the SMG models are trimmed. By the term trim
we denote the process of removing improbable edges and paths
from an SMG. This procedure consists of two stages. In the first
stage, all edges whith transition probabilities less than a given

threshold p* are removed from the graph:

"
VUG//u,uk ;t@/\pu,-uk <p )‘//u,-uk =0 )

ujup €

Removing edges from a graph can produce dead paths. We call
a path dead if it is not part of a consecutive path from a start
state to an end state of the graph. Such dead paths are removed
from the graph in a second stage by iteratively applying the
following algorithm on the graph:

v H ‘//u,‘ukigv H ‘//ukuj;‘ﬁg :
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The procedure is repeated until the condition on the left hand
side of equation (5) is false for all u, .

We repeat the process of splitting, clustering, retraining and
trimming of the SMG states iteratively until

a) amaximum total number of states is reached or

b) the number of states which are trimmed in the last stage of

the iteration is greater than 0.3- 2! (where [ is the number
of state splits since the initialization).

4. SPEECH SYNTHESIS USING SMGs

The synthesis algorithm using SMGs introduces a different
algorithm for state selection and state duration modeling in
comparison to HMM speech synthesis (cf. [6]). It uses the
phoneme symbol sequence and target duration as input
information and includes the following processing steps:

e selecting a state sequence (path through the SMG)
according to a demanded sequence length (target phoneme
duration) and modeling the duration of each state in the
path

e assembling the feature vector sequence for the chosen path
by extracting the means of the corresponding Gaussians

e  generating the speech signal using the MLSA filter[3]

In comparison to HMMs, SMGs introduce a more complex
graph structure. In general an SMG contains parallel paths.
Thus during synthesis the choice for one of these paths is
necessary and crucial for the resulting speech quality. This state
selection has to find the optimal state sequence for a given



target phone duration. At the first glance this looks like a search
for the most probable path under the constraint of a given path
length. Since the SMGs are Markov models of first order the
probability of a trivial circle does not depend on how often this
circle has already been passed. A Viterbi search maximizing the
overall transition probability would not result in a typical state
sequence but would select the shortest path containing the most
probable trivial circle since the iteration in this circle collects
the highest scores.

Using higher order Markov models (see e.g. [8]) would solve
the problem but is not feasible because of the scarcity of
training data needed to train such models and the increasing
computational effort during state selection. To solve the
problem we additionally derived non-acoustic statistics for each
state of the SMG model (see below).

4.1 State Selection

As stated above, a simple Viterbi search on the SMG model is
not suitable to find a representative state sequence. In the
following two subsections we describe a two stage approach to
find an optimal state sequence for the acoustic synthesis which
bases on a transformed SMQG structure and additional statistic
data obtained during the SMG training.
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Figure 2: Example of an SMG model (phone /:/, trained
with approx. 1 hour read German speech of one male
speaker)

In a first stage we transform the trained SMGs y (Figure 2
shows an example) into an alternative representation »’ by the
transformation TE:

YU Wy ) =TE( (U Wy )) (6)

TE is basically a tree expansion. However, as SMGs contain
circles, we have to modify the tree expansion algorithm in the
following two points:

e disregard trivial circles
e limit the number of passes through non-trivial circles.

Disregarding the trivial circles does not introduce any problems
as we can easily re-insert these circles into y' . The limitation of
passes through non-trivial circles requires some information on
how often a particular state can occur in a non-trivial circle. We
gather this information by means of re-entry statistics during
the SMG training. These statistics describe, how often a
particular state occurs in a training sample disregarding

immediate repetitions (or trivial circles). Column zsy,,, of Table
1 shows an example of the re-entry statistic for the phone 4:/:

u My, [Frames] | oy, [Frames] |  tiven
S365 19,62 6,40 1.03
S228 16,59 6,33 1.02
S090 19,31 5,48 1.15
S504 18,25 6,87 1.01
S229 21,25 6,40 1.00
S506 19,24 7,18 1.01
S505 19,45 6,12 1.15
S367 23,16 11,23 1.00
S230 18,29 6,24 1.01
S093 20,80 7,43 1.01

Table 1: Example of non-acoustic per-state features
(model /i:/)

;upathlength[Frames] O-pathlength[Frames]

5.11 1.45

Table 2: Example of non-acoustic per-model features
(model /i:/)

The figures of yy,,, are representative for all states of all SMG
models. With zs,,, being the number of entries into a state, we
see, that the re-entry into a state using a non-trivial circle is a
very rare event. So for the transformation algorithm we simply
did not allow non-trivial circles.

Thus we apply the following transformation algorithm 7E:
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where

e  denotes the current tree depth and 7 denotes the
maximum tree depth. The value of T is obtained from a
per-model statistic gathered during the training. Table 2
shows this statistic for our example model 4:/.

! For better legibility we simplified the formula in two points: firstly on
the left hand side trivial circles should be excluded and secondly on the

right hand side duplicate instances of the transformed state u} should

be distinguished.



. A:U"— U describes the relation between the transformed

states u;’ and the original state u;

. ch,'»t) denotes a counter function for the re-occurrence of
the original state /'LQf,'»t) in a path ¢/ from state u(')o to

state u}' through the transformed SMG:
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)]
else :0

y' lists all potential paths through the SMG. To find the best
one, each path ¢’ is traversed and a score is calculated given
the demanded phone duration. This score consists of two parts.
The first part is the product of the transition probabilities of all
transitions in the path and the second part represents the
probability that a certain state q’(i) belonged to a training
sample of length 7. The parameters for this distribution have
been extracted in a separate statistic during training.

(@' 1 T.7") = Pyrans () Pstare(q'.T)

N-1 N 9)
= P(V’q'(i)q’(i+1))'HP(T’#q'(i)’Gq'(i))
i=0 i=1
The selected path g, is the one that maximizes:
(10)

q'res=argmaxs(q' | T,y") .
ql

4.2 State Duration Modeling

In a third step the duration (number of passes through the trivial
circles (ui - ui)) of each state of the selected path is

determined. Since the optimal sequence of states ¢,.,, is already
chosen in p', the duration modeling is limited to the

distribution of repetitions of all the states in the path until the
demanded phone length is reached. In our approach we use the
ratio between the loop probabilities to assign the appropriate
number of repetitions. In contrast to [2], we do not consider the
variability of the state durations. We compute relative length of
state ¢'(i) by relative duration values:

1
W:—_TT_*j
L=Plyg(i)q(i)

These duration values can be interpreted as the mean duration
in a state as observed in the training. Let g,,,be the optimal

)

path with N states and let D('Irm be the sum of all duration

values in that path, then under the constraint N < T the number
of repetitions to distribute L can be calculated as the difference
of the number of feature vectors to emit 7' and the number of
states existing in the selected path NV:

L'res=T—-N (12)

The factor

= (13)

’
res

is used to obtain the resulting repetition number for each state:

di

Li=lj Lipg == (T~ N) (14)
dres
Thus the optimal path can be written as:
e = a1 OF 5 Lz O], s (V]2 (s)

The final step of the synthesis process assembles the feature
vector sequence by extracting the means from the corresponding
Gaussian distributions according to gy, . This feature vector

sequence is finally feed into to the synthesis filter to generate
the speech signal.

5. CONCLUSION

Applying SMGs as acoustic models in a speech synthesis
system raises the task of finding the optimal state sequence
within a phoneme model in a given context. The proposed
algorithm uses additional statistics derived during the training
of the SMGs which model the probability of using and
remaining in a certain state depending on a demanded phone
duration. This approach reduces the computational complexity
in comparison to solutions using higher order Markov chains.
Future work will include extensive evaluation and optimization
of the algorithm.
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