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ABSTRACT

In this paper a novel methodis proposedor imageinter-
polation. It is assumedhat the pixel correlationbetween
local regionsacrossscaleswould remainsimilar. In addi-
tion, thisa priori similarity could be extractedfrom a setof
availableimagedatathathave thesamecontentout different
resolutions A simplearchitecturds devisedto estimatethe
correlationefficiently, which is thenusedto predictthe un-
known pixel valuesin a high-resolutionimage. Evaluation
shavs a promisingperformancef the proposedalgorithm.

1. INTRODUCTION

Imageinterpolationpenadesmary areas,suchassuneil-
lance, medicalimaging, automatictarget recognition,and
consumeelectronicq1, 2]. In multimediaapplicationsfor
instance,imagesof high resolutionrequire a large media
spaceor theirstoragepr alargebandwith/longdurationfor
their transmission.In addition, low-resolutionimagescan
oftenberetrieved by a userwith relative easefor browsing
scenesf interest. In orderto make imagebrowsing more
efficient, it is alsoimportantfor a userto be ableto per
ceive the availabledatawith their richestandvisually most
pleasingwvay. In this caseandothers effectiveinterpolation
techniquesarehighly desirable.

With ideallinear andstationarysystemsthe sinc func-
tion is an optimal meandfor interpolation. It permitsexact
reconstructiorof a bandlimitedsignal; however, it is im-
possibleto realizethis function physically Furthermore,
imagesin generalcontainsharpedgesand other detailed
featuresandthusthey arenot strictly bandlimited[2]. To
combatthese differentapproximationshave beendevised
for interpolation. Corventionally the amplitudeof an un-
known or missingpixel in a high-resolutionimageis es-
timated basedon its known neighborsavailable from the
low-resolutionversion. The well-known bilinear andbicu-
bic [1] interpolationmethodsare the simple formsin this
class.Thecommoncaseof imagemagnificatiorby aninte-
gerscalingfactorcanalsobe achievedthroughconvolution
of the zero-interleaed image pixels with a single kernel,
suchasthe pyramidandcubic B-splinekernels[1].

Due to the ill-posed natureof interpolationor super
resolutionproblem[2], additionalinformation apartfrom
the collecteddatais requiredin orderto obtaina desirable
solution. Usually, reasonablessumptionsboutthe char
acteristicsof a true imageare made,and one of the most
commonassumptionss smoothness.Recently interpola-
tion approachebasedna priori knowledgeof naturalim-
ageshave beenthe subjectof active researchimageinter
polationis dealtwith throughthe constrainedninimization
of afunctionin variationalscheme$3, 4]. Directionalap-
proachegb, 6] evaluatelocal edgeinformationin animage
and then conductinterpolationalong the edgeratherthan
acrosghe edge.POCS(projectiononto corvex sets)meth-
odssolve the problemusinga regularizediterative projec-
tion [7]. The multiresolutionmodelin [8] providesa solu-
tion to imagemagnificationby enhancinghe resultof the
bilinearinterpolationwith anadaptvefilter.

This paperproposes novel techniqueby assuminghat
the pixel correlationof local structures(or small regions)
would remainsimilar acrossdifferentscales. In addition,
this a priori informationcould be extractedfrom the avail-
ableor givenimagedatathathave the samescengcontent)
but differentresolutions. As such,the problemnow is to
devise aninterpolationschemewhichis ableto capturethe
pixel correlationacrossscales A simplearchitecturas for-
mulatedto fulfill this purposeefficiently. Interpolationis
thenachiered by predictingthe valuesof unknavn image
pixelswith the useof the estimatedcorrelation.

Theremaindeof thepaperis organizedasfollows. Sec-
tion 2 discusseshe new imageinterpolationschemeandits
implementationSimulationresultsarepresentedh Section
3. Finally, Section4 concludeghe paper

2. THE PROPOSED ALGORITHM

Let Z(41,i2) denotethe pixel valuesof imageZ, wherei;
andis arethe coordinatesn vertical and horizontaldirec-
tions, respectiely. Also, let H andW betheimageheight
andwidth, respectiely,i.e.,1 <i; < H andl < i < W.
Theproblemof imageinterpolationcanbeviewedasto ob-
tainahigh-resolutionmageZ;, of sizeS; H x SeW , where



S1 > 1 andS; > 1 denotethe scalingfactorsin vertical
andhorizontaldirections,respectiely. Integerscalingfac-
torsareconsideredn thiswork, i.e., 51,5 =2,3,---.

In orderto predictthe unknovn samplevaluesin im-
ageZ;, from thepixelsin Z usingthelocal pixel correlation
acrossscalesthepixel correlationof smallregionsbetween
alow-resolutionimageZ; andimageZ is estimatedirst. In
particulat the low-resolutionimageZ, is of size H/S; x
W/S,. Ideally, thelow-resolutionimagewould encompass
thesamesceneasin Z andhasbeenphysicallygeneratedby
hardwarewith aknown resolutionsetting.Sincesuchadata
collectionis notcommon thelow-resolutionversionof im-
ageZ is simulatedby decimationinstead. Theimageacqui-
sition modeldiscussedh [4] is takenhere.A neighborhood
is definedin imageZ asfollows, especiallycorresponding
to thepixel (i1, 42) in imageZ;:

Nigis = {(ul,uz)

Slil S U1 S Sl(il + 1) bt 1,
Sote Sug < So(ia+1)—1
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Then,thelow-resolutionversionis obtainedoy

. 1
Tin,i2) = g5 >
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Z(u1,u2). 2

In this case eachlow-resolutionpixel valueZ, (i, , i) corre-
spondgo the averageof the sampledocatedwithin neigh-
borhoodV;, ;, in its high-resolutiorversion,i.e.,imageZ.
With respecto the similarity of pixel correlationacross
scalesoverlappingR; x Rz regionsin the low-resolution
imagearefirst consideredHere,R; = 2r; + 1 andRy =
2ry + 1 (r1 andry arenon-zerointegers)both are odd for
the concernof symmetryin implementation Specifically a
local region is definedat eachposition (i1, 42) in the low-
resolutionimageas
Ris={@w)| ITREWSHT L @

Thesamplevectorobsenedvia this regionis givenby

Xiie = [TLi(iy —r1,i2 —r2),
TLi(iy — 11,02 — T2+ 1),
Ti(i1 — 11,82 +12), -,
Tiin + 71,02 +12) 17, (4)

wherethepixelsarerearrangeth alexicographicorder i.e.,
row by row. In theabove equationX;, ;, isap x 1 vector,
wherep = R; X Rs.

Further eachR; x R, regionin thelow-resolutionmage
7, is pairedup with its homologouq25; — 1) x (252 — 1)
regionin its high-resolutiorcounterparti.e.,imageZ. The

high-resolutiorregionin Z is describedspecificallyby

Ri1 o — { (u17 Ug)

S1i1 —S1+1<u; <S1i1+51 -1,
Soig — S22+ 1< up < Szig+ 52 —1

®)

Correspondinglythe samplevector of this region is ob-
tainedin asimilarway asin Eq.(4)andis denotedsYj, ;,,
whichisag x 1 vectorandg = (251 — 1) x (25, — 1).
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Figure 1: Local regions of different resolutionswhere B; =
R, = 3 andS; = S = 2. Theshadectirclesin thelarge square
denotethe pixelsof alow-resolutionregion, while thecrossecir-
clesin the smallsquarearethoseof a high-resolutiorregion.

The aforementionegbair of low andhigh resolutionre-
gionsare shown in Figure 1, wherethe shadedcirclesto-
getherdenotea low-resolutionimageandthe white circles
are subjectto interpolationto form a high-resolutionver
sion. In the caseasshawn in thefigure, the valuesof those
crossectirclesaroundthe centerof the high-resolutiorre-
gion (i.e., the smallsquare)areestimatedasedon the val-
uesof the shadedtirclesin the large squareavailablefrom
the low-resolutionimage. Thatis, eachgroupof R; x Rs
low-resolutioncircles (shaded)are usedto reconstructhe
(251 — 1) x (282 — 1) high-resolutioncircles (crossed)
aroundthe samecenter In this case the interpolatedpix-
elsthat overlapare subjectto be averagedo form a high-
resolutionimage.This averagingoperationmprovesthere-
liability of thefinal high-resolutiorsamplesFor thecenter
pixel (shadedandcrossed)pnecanchooseeitherto replace
it with a new valueor to leave it unaltered. Extensionto
otherscalingfactorsandregion sizeis straightforward.

The correlationbetweenthe two samplevectorsof the
low andhigh resolutionregionsis characterizedsfollows.

Yi1,i2 = Wxil 29 (6)

whereW is aweightingmatrix of sizeq x p. Theweight-
ing matrix canbe thoughtof asa corvolution kernelasin
the corventionalmethodg[1]. In otherwords,with anes-
tablishedestimationfunction, eachregion as definedpre-
viously in a givenimageis multiplied by W to generate
a high-resolutionregion. Thoseestimatedhigh-resolution



regions are then overlappedand averagedto reconstructa
high-resolutionmage. ThereconstructiorkernelW is ob-
tainedasfollows.

Considera practical scenariowhereimageZ is given
andis to be interpolatedto form a high-resolutionimage.
Basedonthedecimatiormodelin Eq.(2),its low-resolution
versionis obtainedasZ;. With this pair of imagesavail-
able, the corvolution kernelis optimizedby exploiting the
pixel correlationbetweerall the pairedup regionsobsened
from thetwo images.In this casethe givenimageZ canbe
viewedasthe high-resolutiorcounterparbf imageZ;.

Now, giventhesamplevector, X;, ;,, of alow-resolution
regionin Z;, its correspondindnigh-resolutiorregion is re-
constructear predictedby

~

Yi17i2 = WXilﬂé‘ (7)

The optimal weighting matrix is soughtto minimize the
mean-squaredrror (MSE), £, whichis givenasfollows.

& :E{[Yil@ _Yi1,i2:|2}a (8)

whereY;, ;, is the samplevector of the region available
from thegivenimageZ. Onecantake the partial derivative
of £ with respectio eachweighting coeficientin W, and
considertheinstantaneougradientof this partialderivative
atthecurrentlocation. Usingthe steepesgradientmethod,
theweightingmatrix canbederivedrecursvely viathewell-
known leastmeansquargLMS) algorithm[9]. Theupdat-
ing formulaof LMS recursionis thengivenby

W =W+ (Vs -You)Xh0

which is conductedat pixel location (i1,i2). Here, u de-
notesthe learningrate. Clearly, the updateat the next pixel
locationis conductedasecbn W’. Thesimplerasterscan-
ning acrosgheimageis assumedh thiswork.

3. SSIMULATION RESULTS

The performancef the proposedechniquehasbeenevalu-

atedfor imagemagnification.For comparisonthebilinear,

bicubicandcubicB-splineinterpolatorsarealsosimulated.
Interpolationperformancés quantitatvely measuredby the
peak signal-to-noise ratio (PSNR),whichis definedas

Z(im‘z) 2552

PSNR = 10log;,, _
Z(i17i2) [I(zh 7’2) - I(ila 7/2)] 2

dB,

whereZ andZ denotetheoriginalandtheinterpolatechigh-
resolutionimagesfespectiely.

In our experiments the scalingfactorsS; = S, = 2.
In otherwords, eachof the 512 x 512 testimagesis first
subsampledy decimationto a 256 x 256 low-resolution
version. Thenthe decimatedmageis interpolatedbackto
thesizeof 512 x 512.

Concerningthe derivation of weighting matrix in the
proposedalgorithm, threecasesare considerecdasfollows:
(i) theweightsemployedin interpolatinga 256 x 256 image
are derived with the useof theits original 512 x 512 ver
sion; (ii) the weightsare derived with the useof the given
256 x 256 imagethatis to beinterpolated{iii) theweights
derived usingthe 512 x 512 Lena imageare employedto
interpolatethe otherimages,andthe Lena imageis inter-
polatedusingthe weightsderivedfrom the 512 x 512 Man
image. Note that, the first caserepresentsan impractical
scenariowhile thelattertwo arepracticallyfeasible.

Tablel: Comparatie resultsin PNSR(dB).

- Images
Filters [ea | Man | Peppas
Bilinear 29.80 28.27 28.90
Bicubic 30.05 28.50 29.07
CubicB-spline 29.83 28.08 29.35
Proposedi) 32.17 30.39 30.40
Proposedii) 32.03 30.31 30.31
Proposediii) 32.16 30.34 30.33

The PSNRresultsof performancecomparisorare pre-
sentedn Tablel. It is apparenthatthe proposedechnique
yields noticeablegainsover the othermethods.The perfor
manceof the proposedapproachin caseg(ii) and (iii) has
notdegradedoo muchascomparedvith thatin case(i). Its
satishctory performancen case(ii) indicatesthatthe pro-
posedalgorithmis well ableto capturethe pixel correlation
betweenimageswith the samecontentacrossscales. The
goodresultsin case(iii) demonstrateéhe robustnesf the
new methodin interpolatingimagesotherthanthatusedin
deriving the weights. In addition, the proposedechnique
producesvisually more pleasingresult. Someof theresul-
tant Man imagesare shavn in Figure 2, wherethe image
interpolatedusing the new methodlooks sharperthanthe
resultsprovided by the othermethods.

4. CONCLUSIONS

A new imageinterpolatoris formulatedby assumingthat
similar pixel correlationof regions acrossscalescould be

extractedandpredicted.In addition,asimplearchitecturds

proposedo capturethis similarity whichis usedto estimate
the valuesof missingpixelsin a high-resolutiorimage.



(b)
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Figure2: Theenlagedportionsof (a) original Man image,andthe resultanimagesby (b) bilinear (28.27dB) (c) bicubic(28.50dB),and

(d) proposed30.31dB)interpolationalgorithms respectiely.

Promisingresultshave beenproducedthoughblurring
wasinevitably broughtin by the new methoddueto thelin-
earoperation.Local signalattributesareto beconsideredo
form anadaptve,location-\ariant,schemeFurtheranalysis
of thenew techniquds alsounderinvestigation.
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