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Abstract— A general method is proposed to factor discrete
W transform (DWT) into lifting steps and additions. Then,
based on the relationships among various types of discrete
sinusoidal transforms, other types of transforms such as dis-
crete Fourier transform (DFT) and discrete cosine transform
(DCT) are factored into lifting steps and additions. After
approximating the lifting matrices, we get various types of
new integer discrete transforms such as IntDWT, IntDFT
and IntDCT which are floating-point multiplication free.
Transforms which map integer to integer are also proposed.
Fast algorithms are given for the new transforms and their
computational complexities are analyzed. Based on polyno-
mial transform and index mapping, multi-dimensional inte-
ger transforms are presented with especially low computa-
tional complexity.
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I. INTRODUCTION

Discrete sinusoidal transforms have a wide range of appli-
cations such as data compression, feature extraction, multi-
frame detection and filter bank [1], [7], [11], [12]. How-
ever, floating-point multiplications are inevitable for imple-
menting such transforms, which prevents them from being
widely used in areas such as mobile devices and lossless
compression. In mobile devices, the power consumption
used for computation, especially for floating-point multi-
plications, can not be neglected. Since there exists errors
for quantizing the transforming coefficients, it is impossible
to use them for lossless compression. Therefore it is not sur-
prising that lossless coding schemes are hardly based on the
discrete sinusoidal transforms. Generally speaking, inte-
ger transforms possess some features of their corresponding
floating-point transforms such as the de-correlation prop-
erty, while their computational cost is less. Since integer
transforms require only integer arithmetic (additions and
possibly multiplications), their implementation is greatly
simplified. Therefore, they have been applied for image
coding, filter bank and other areas [5], [8], [10], [14].

Lifting matrix is a major tool for constructing integer
wavelet and integer discrete transforms [3], [5], [13], [14].
We give its definition and some simple properties in the
following.

Definition 1: A lifting matrix is a matrix whose diago-
nal elements are 1’s and only one non-diagonal element is
nonzero [3], [13]. If the order of a lifting matrix is N, we
use the notation L; ;(s) (¢ # j) to denote the lifting ma-
trix whose only nonzero element is at the ith row and the
jth column (i, =0,1,---, N — 1) and whose non-diagonal
nonzero element is s. A lifting step is multiplying a lifting
matrix with a vector.

A distinguished feature of lifting matrix is that its inverse

is still a lifting matrix with the same shape. In fact, we have

L;]l(s) =L i(—s). (1.1)
So, if a matrix can be factored into products of lifting ma-
trices, its inverse is also products of lifting matrices. For a
lifting step, floating-point multiplication is needed if s is an
irrational number or even a rational number with unlimited
digits. In this case, we should approximate s by another
number. For easy realization, the number is desired to be
of the form 3/ 2>, where 3 and )\ are integers.

Definition 2: The notation RB(s) is used to denote a
number that is of the form 8/2* (dyadic rational number)
and approximates to the real number s.

When s is approximated by RB(s), the matrix L; ;(s) is
then approximated by L; ;(RB(s)) which is still invertible
and whose inverse is L; ;(—RB(s)). The transform y =
L; j(s)z is then approximated by § = L; ;(RB(s))z. Still
we can reconstruct z from § by z = L; j;(—RB(s))y. We
can also approximate it by a non-linear transform. For
example, it can be approximated by a transform defined
as:

9(i) = (i) + [sz(5) ], 9(k) = x(k), k #i. (1.2)

This transform is non-linear! Also it maps integer into in-
teger! The non-linear transform is invertible and its inverse
is as follows:

w(i) = 9(i) — [s9(3)], =(k) = 4(k), k #i. (1.3)

Therefore, when a transform is factored into lifting steps, it
is easy to approximate it by another transform which needs
no floating-point multiplications or even by an integer to
integer non-linear transform. Furthermore, the resultant
transform is invertible and its inverse needs no floating-
point multiplications as well.

Theoretically, any matrix with determinant 1 can be fac-
tored into products of some lifting matrices [3], [13]. How-
ever, for a given class of matrices, such as the transform
matrices, it is still very difficult to find a general factor-
ization of lifting matrices for them. In this paper, we will
propose a unified method that can give the factorization of
any discrete sinusoidal transform matrix with order N = 2¢.

II. THE FACTORIZATION OF DWT-IV

Let z(n) (n =10,1,---, N — 1) be a real input sequence.
We assume that N = 2° where ¢ > 0. The scaled DWT-IV
of z(n) [16] is defined as follows:

X(k) = Z x(n)cas%}vw

n=0

7k:0717"'7N_17

(2.1)



where functlon cas is defined by cas(u) = cos(u) + sin(u).
Let W1 be the transforming matrix of the DWT-IV, that
is,

w(2k +1)(2n + 1))
N k,n=0,1
A. The factorization of DWT-IV

In order to factor the transforming matrix, we first derive
a simple fast algorithm in the following. Let

Wi = (cas o N—1- (2.2)

H(k) = [X(2k)+X (2k+1)]/2, G(k) = [X (2k+1)—X (2k)]/2,
k=0,1,---,N/2—1.

Based on trigonometric formulae, we have

N-1
Hk) = ZO z(n) cos ”(22?1) casW(Z"HA),(%H)
S 2n+1 2n+1
= Z [z (n)cos%—l—m(%—l—n)sin%}
Casﬂ'(2n+1)(2k+l)
Gk) = i ) sin ”(Z’?l)cas[— ”(%ﬂ\),(%“)]
N/2
= [ (n )sini—wr 2ntl —alc(%—l—n)cosA—27T 2t
casn g2n+12g2k+12]
Let
_ m(2n+1) N . m(2n+1)
h(n) = z(n) cos 5N +a( 5 +n)sin SN (2.3)
_ . m(2n+1) N m(2n+1)
g(n) = —z(n) sin 5 + x( 3 + n) cos SN
(2.4)

Then H (k) is the DWT-IV of h(n) and G(§ — 1 —k) is the
DWT-IV of g(n). In fact, we have,

N/2-1
H) = Y h(n)mw, (2.5)

n=0
N e (2n + 1)(2k + 1)
m(2n
G(? —-1-k)= Z g(n)casT, (2.6)
n=0
k=0,1,---,N/2 1.

Therefore, a DWT-IV with length N is turned to 2 DWT-
IV’s with length N/2 in (2.5) and (2.6) at the cost of a pre-
processing stage in (2.3)-(2.4) and a post-processing stage
in the following:
X(2k) = H(k) —

Gk), X(2k+1) = H(k) + G(k), (2.7)

k=0,1,---,N/2— 1.

Based on the algorithm, we get a factorization of matrix
Wi in Lemma 1.

Lemma 1: The transforming matrix of DWT-IV can be
factored recursively as follows:

wiV = [1], (2.8)

I -1 I 0
wlv _p N/2 N/2 N2
N N [ Ins2 Ins2 0 Ins2
WN/2 0 ’
|: 0 WJ{]‘//2 PxyDn Py, (2.9)

where I/ is the identity matrix of order N/2, jN/Q is the
matrix by reversing the rows of Iy /2, Dy is a block diagonal
matrix defined by

N/2 — 1) are rotation matrices

(2.10)

where T'(n) (n = 0,1,---,
with order 2 defined by

m(2n+1) m(2n+41)
cos n
T(n)= 2N , 2.11
(”) _in 7r(2£V+1) cos 71'(22’)’;\?»1) ( )
Py is permutation matrices defined by

10 0 0 O 0

0 0 0 1 0 0

01 0 0 O 0
Pv=]10 0 0 0 1 0|, (2.12)

00 --- 10 0 --- 0

o0 --- 00 0 --- 1

Py is the transposition of Py, and WJ{,‘//Q is the transform-
ing matrix of the scaled DWT-IV with length N/2.

Floating-point multiplications are needed for the algo-
rithm when the matrix Dy is multiplied by a vector. In
order to avoid floating-point multiplications, we want to
turn this matrix into products of lifting matrices and then
approximate the elements of the lifting matrices by num-
bers which are of the form 3/ 2> where 8 and X are integers.
Dn can be easily turned into products of lifting matrices.
In fact, each block in Dy can be factored as:

_ | 1 tan<g¢ 1 0 1 tan<g
T(”)[o 1 H—sinan 1“0 1 ]

(2.13)

where o, = . Therefore, Dy is factored into ﬂ

lifting matrices. If the same method is used to factor the
matrix W]{,‘//2 recursively until the order is 2, we get the

complete factorization of W5V

7(2n+1)
2N

B. Integer DWT-IV and fast algorithm

By approximating every non-zero non-diagonal element
s of the lifting matrices in (2.13) by RB(s) defined in De-
finition 2, we get an approximation matrix T(n) for T'(n)
given in the following:

=+ _ | 1 RB(tan<g) 1 0
Tn) = [ 0 1 } [ —RB(sina,) 1 }

1 RB(tan<z)
X [ 0 1 . (2.14)
Then Dy is approximated by Dy given by
Dy = diag(T(0), T(1), T(N/2 - 1)). (2.15)



Approximating Dy by Dy, we finally get an approximation
matrix C& for CLV which defines a new transform with-
out floating-point multiplications. As in [5], [14], we call it
type-1V Integer Discrete W Transform (IntDWT-IV). How-
ever, this does not means that the transform IntDWT-IV
maps integer to integer. An integer to integer transform
will be introduced in the next subsection.

Definition 3: Assume that N = 2. The transform-
ing matrix of a type-IV Integer Discrete W Transform
(ItDWT-IV) W#¥ is defined recursively by :

WY =], (2.16)

WiV — py [ Inge  —Inge ] [ Ingo 0 }

Inje —Iny2 0 fN/2
VT/{V‘/’2 0 ] o
X — PxDnN Py, 2.17
[ 0 Wiy, |7V (2.17)

where the notations used are the same as those in Lemma
1.

The transform is not unique. Actually, any choice of
function RB determines a transform. Based on the defini-
tion, we get a fast algorithm for the IntDWT-IV as follows.

Algorithm 1: Fast algorithm for IntDWT-IV

Step 1. Compute

g(n) = —falz(n) + enx(F + )] + 2(F +n),
R(n) = o(n) + ena(L +n) + eng(n),
n=0,1,---,N/2 -1,

where e, = RB(tan %ﬂ) and f, = RB(sinay,).

Step 2. Compute the IntDWT-IV’s with length N/2 of
sequence h(n), g(n) and let the outputs be H(k) and G (k)
respectively. If N/2 > 1, the N/2-point IntDWT-IV is
decomposed into smaller ones until the length becomes 1.
The 1-point IntDWT-IV can be got directly.

Step 3. Compute

X(2k) = H(k) — G(

N
?_l_k)v

X(2k+1):H(k)+@(%—l—k)7 k:O,l,---7ﬁ—1.

Now we consider the computational complexity of Algo-
rithm 1. Step 1 needs % lifting steps. Step 3 needs N addi-
tions. Let LWV (N) and AW!V(N) represent the number
of lifting steps and additions for computing an IntDWT-IV
with length N. Then, we have

LW'V(N) = %Nlogz N, AW™V(N) = Nlog, N. (2.18)

The matrix WV is invertible and its inverse matrix can
also be factored as products of lifting matrices and sim-
ple matrices whose elements are 0, +1 or +1/2. There-
fore, we can get a fast algorithm for inverse IntDWT-IV
(reconstruction algorithm for IntDWT-IV) directly.
The number of operations for reconstruction is the same as
that for the forward transform. It should be noted that the
matrix Wi is not orthogonal in general. So, we can not
use (W) for reconstruction.

C. Integer to integer transform

From last subsection we know that the matrix of DWT-
IV is factored into products of lifting matrices and some
simple matrices whose elements are either +£1 or 0. In
section I, we have shown in (1.2) and (1.3) that a lifting
step can be approximated by a non-linear integer to inte-
ger transform. So, if all the lifting steps in the computa-
tions of DWT-IV are approximated by integer to integer
transforms, we finally get an integer to integer transform
that approximates to the DWT-IV. We use the notation
II-DWT-IV for the transform. Based on Lemma 1, a fast
algorithm is given for I-DWT-IV in the following.

Algorithm 2: Fast algorithm for II-DWT-IV

Step 1. Compute

ha(n) = 2(n) + [2(X + n) tan(an /2)),
gl(n) = m(% +n)7
ha(n) = hai(n),

g92(n) = —[h1(n) sin(an)] + g1(n),
h(n) = hz(n) + [g2(n) tan(an/2)],
) = g2(n)7
n=0,1,---,N/2—1.

Step 2. Compute the II-DWT-IV’s with length N/2 of
sequence h(n), g(n) and let the outputs be H(k) and G(k)
respectively. If N/2 > 1, the N/2-point II-DWT-1V is de-
composed into smaller ones until the length becomes 1. The
1-point II-DWT-IV can be got directly.

Step 3. Compute

X (2k) = H(k) — G(% 1—k),

N
X(2k+1) :H(k)—kG(? —1—k).
II-DWT-IV is invertible and its inverse is also an integer
to integer transform. By inverting the steps of Algorithm
2, we can get the reconstruction algorithm for II-DWT-IV
easily.

III. FACTORIZATION OF OTHER TYPES OF DWT

Using the relationships among discrete W transforms
which are stated in [6], [17], we can factor the DWT-I
(DHT), DWT-II and DWT-III into lifting steps and ad-
ditions. Based on the factorization, new integer DWT-I,
DWT-II and DWT-III are then obtained. Table I gives the
number of operations for IntDWT and DWT, where the
number of operations for DWT is based on the best known
algorithms for DWT in [6], [17].

Using the relationships among discrete sinusoidal trans-
forms [2], [6], we can also get other types of integer sinu-
soidal transforms such as integer discrete Fourier transform
(IntDFT) and integer discrete cosine transform (IntDCT).
Table II gives the comparison of number of operations for
IntDCT and DCT, where the number of operations for
DCT is based on the best known algorithms [2], [6].

IV. MULTI-DIMENSIONAL INTEGER TRANSFORM AND FAST
ALGORITHM

In general, an MD transform can be generated by simply
using the tensor products of the corresponding 1D trans-



TABLE I

NUMBER OF OPERATIONS FOR INTDWT AND DWT

TABLE III
THE COMPARISON OF THE NUMBER OF OPERATIONS FOR D INTEGER
DWT-II
method lifting steps and additions
proposed %N’" log, N —3N" + 3N 1

(r+1)N"log, N — 2N" + N"!

row-column

transform lifting steps additions

IntDWT-I SNlog, N —6N | Nlog, N — 4N
+3log, N + 6 +4log, N + 8

IntDWT-II | $Nlog, N —3N | Nlog, N — 2N
+3 +4

IntDWT-III | $Nlog, N —3N | Nlog, N — 2N
+3 +4

IntDWT-IV | SNlog, N Nlog, N
multiplications additions

DWT-I sNlog, N— 3N | £Nlog, N — 2N
+2 +6

DWT-II zNlogy N — 2N | 2Nlog, N — 2N

DWT-III 2Nlog, N— 2N | 2Nlog, N — N

DWT-1IV zNlog, N+ 2N | SNlog, N — N

TABLE II
NUMBER OF OPERATIONS FOR INTDCT

transform lifting steps additions
IntDCT-II | £Nlog, N —3N +6 [ Nlog, N —3N +4
IntDCT-III | £Nlog, N —3N +6 [ Nlog, N —3N +4
IntDCT-IV | 2N log, N Nlogo, N — N
multiplications additions
DCT-II INlog, N ZNlog, N—N+1
DCT-IIT 2N log, N 2Nlog, N — N +1
DCT-IV 2Nlog, N + N 2N log, N

form, that is, we process the MD input array by imple-
menting the one-dimensional transform along its dimen-
sions consecutively, which is also known as the row-column
method. This leads to an MD transform with separable ker-
nel. However, sometimes non-separable transform is more
useful. We can propose non-separable MD integer trans-
forms by combining the 1D integer transforms and the poly-
nomial transform [18], [19]. The proposed MD transform
not only has a non-separable kernel, but also needs a much
smaller number of operations than that of the row-column
MD transform. As an example, Table III gives the com-
parisons between the proposed integer rD-DWT-II and the
row-column integer rD-DWT-II of size N X N x --- x N.
The lifting steps for the proposed method is only 1/7 times
that of the row-column method. The number of additions
is also decreased greatly.

V. CONCLUSION

Methods are proposed to factor the discrete sinusoidal
transforms into lifting steps and additions. By approximat-
ing the lifting matrices, new integer discrete transforms are
obtained which are floating-point multiplication free. Also
integer to integer transforms are available. Fast algorithms
are given for the new transforms and their computational
complexities are analyzed. The proposed transforms can be
used in mobile computing, lossless image coding, multiplier-

SrN"logy N —3rN" +3rN" ',
2rN"log, N — £rN" + rN"!

less filter bank and other related fields.
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