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ABSTRACT

ECG recordings were obtained from 21 healthy subjects aged
between 13 and 65 years, over a range of heart rate extending
from 46 to 184 beatsmin (bpm). A wavelet transform method,
based on the Mexican Hat wavelet was then used to precisely
locate the positions of the onset, peak and termination of
individual components in the ECG signal. These times were
then classified according to the heart rate associated with the
cardiac cycle to which the component belonged. Second order
equations in the square root of the cardiac cycle time, Tgg of
the form A.VTgrg + B.Trr + C were fitted to the data obtained
for each component to characterize its timing variation.

1. INTRODUCTION

The components of the electrocardiogram are defined
in Fig.1. It isbroadly recognized that the durations of individual
components vary with heart rate in a non-linear manner. The
earliest attempt to quantify this relationship was made by
Bazett [1] and hisresults are till cited in many instances where
no other information is available. Bazett formulated equations
characterizing the duration of three of the ECG components as
afunction of the cardiac cycle time as follows:
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where Trr is the cardiac cycle time measured between peaks of
successive QRS complexes or R-waves. Later researchers,
including the authors, have questioned the accuracy of Bazett's
formulae, with most comment being concerned with the Q-T
interval because of its clinical importance [2,3]. Much work has
been done on providing reliable means of detecting the QRS
complexes in the ECG, primarily for triggering purposes, but
no comprehensive study examining the variation in the timing
of the individual components as a function of heart rate has
been carried out. This article reports such a study.
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Fig. 1 A typical ECG signal profile with timing of
components defined

2. WAVELET ANALYSIS

In order to locate individua waves in the ECG signa
accurately, a wavelet having a similar profile is required and
the Mexican Hat wavelet shown in Fig. 2 makes an ideal choice
in this regard. The basic Mexican Hat wavelet is described in
the continuous time domain as:
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A family of analyzing wavelets in the time-frequency domain is
obtained by applying a scaling factor a and a trandation factor
7 to the basic mother wavelet defined by eqn.4 to give:
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2.1. Wavelet Transform

When applied to a continuous-time signal s(t) the
Wavelet Transform is defined as:

W, @0)= [sOw.. 0 (©)

where a value of the transform is obtained for chosen values of
a and 7. The transform is calculated at discrete values of these
parameters in atwo dimensional grid (a,, , 7)) such that a,= a,"
and 1, = anl, = anT, where a, and 7, are base values of the
parameters and m and n are integers. A choice of an octave
dilation factor with a,=2, so that a,,=2" and a dyadic trangation
so that 7,=1 and 1, = 2™n gives an orthogonal set of wavelets
for the Mexican Hat family and the transform then becomes:

=M +oco

W, (m,n)=22 Is(t)lp(z-mt - n)dt (7

In the case of adigitized signal s(t,) where t,= KT and Tg = 1/f,,
the sampling rate, represented as the sequence of N samples
s(k), k=0,1,2....N-1, the Discrete-Time Wavelet Transform is
given as.

-m N -

W, (mn)=22 ;s(k)w(zmk -n) ®

where m=1,2,3,...... log, N so that the number of octaves of
scaling is limited to concur with the length of the sequence.
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Fig. 2 The Mexican Hat Wavelet



Grossman et al. [4] showed that better identification
of singular features in the signa could be obtained by the
decomposition of each scale into several sub-scales or voices
while maintaining octave scaling. This allows better frequency
resolution to be obtained from a tight-framed set of wavelets.
By choosing a, = 2Y™, where M is the number of voices per
octave, the wavelet transform applied to a digitized signal s(k)
becomes:
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When decomposed in this manner the time scales are referred to
aslevels where the level number is 2™,

2.2 M odulus M axima

The total energy contained in the continuous wavel et
transform at a scale factor ais given as:

E(a) = ﬂ

This can be taken as a measure of the variance of the transform
a scale factor a. The magnitude of the variance will reach its
maximum value when the wavelet and the signal are coherent
i.e. have similar frequency components present a similar
positions in time. Locating maxima in the wavelet variance
across scales therefore provides a means of determining the
scales and trandations at which the structure of the signal is
coherent with the wavel et shape.

The value of the signal s(t,) at timet = t, influences
the value of the wavelet transform within a domain of the form
\t _tu‘ <o,a where Gi is the variance of the analyzing wavel et

W, @1 dt (10)

function. This domain has a triangular shape in the time-scale
plane, which converges to t, as the scale factor a approaches
zero and is known as the cone of influence.

The concept of modulus maxima was first introduced
by Malat [5,6]. A point (a, , t,) in the time-scale plane is
referred to as a modulus maximum if:
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The modulus maxima can be thought of as points in the time-
scale plane at which both the signa and the analyzing wavelet
have loca maxima A line drawn across the scales which
connects maxima belonging to the same point in the signa is
cadled the modulus maxima line. Malat & Hwang [5] have
shown that asingular behavior in the signal s(t) at time t, means
that there exists a modulus maxima line which converges
towards the point t, on thetime axisasa — 0. If thereisno such
line, then the signal is regular or smooth in the vicinity of t = t,.
Hence, modulus maxima lines in the time-scale plane may be
used to identify singularities in the signal. Often the sgquare
modulus is used in place of its magnitude so that the modulus
maxima are evaluated as:
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The left-hand side of this expression can also be written as:

% W, (a,1)°= % [w, .a0]w; @1

+%[w;,5(a, W, .(a 1) 14)

whaew;s(aT)is the complex conjugate of W, (a1)- For

real valued signal and wavelet functions this becomes:

0 0o 0

—|w, 1)[?=2 W, .(a, D)W, (a1 15

srMes@ol' =257 W, @olw, @05 a9
After appropriate substitutions for both functions on the right
hand side of this expression and further simplification, it can be
shown that:
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Since the third function on the right hand side of this equation
is non-zero, the condition is satisfied when
either §(1) or $(1) is zero. Now$(T) =0at maxima or
minima in the signal while (1) = 0 at points of inflexion.
Hence the locations of the sguare modulus maxima of the

wavelet transform can be used directly to identify the maxima,
minima and points of inflexion in the signal being analyzed.

2.3. Wavelet Skeleton

A ridge vector for a given feature in the signal is formed when
modulus maxima belonging to the same point in the signal are
traced across increasing levels of analysis to the highest level
used. Although the precise locations in time of the modulus
maxima associated with a particular feature vary dightly across
levels, they are aways identified as the closest maxima points
in time as the level increases [5,6]. Modulus maxima in the
wavelet transform caused by noise occur sporadicaly, while
those due to singularities in the signa are sustained across
levels and this allows the two to be distinguished from each
other. In addition modulus maxima due to signal features
converge very definitively to afinal position in time as the level
is increased. A small amount of thresholding applied to the
modulus maxima in generating the ridge vectors will eradicate
those caused by noise at lower and middle levels of analysis so
that only those caused by features of the signa will contribute
to ridges. If chains are plotted on the time-scade plane
connecting the points of individual ridges together for the entire
signal awavelet transform skeleton of the signal is obtained.

The skeleton of a single cardiac cycle of an ECG
signa is shown in Fig. 3. At very low analysis levels where the
wavelet spans the entire time scale, significant modulus
maxima occur only at central pointsin the signal where most of
its energy is concentrated. Consequently, the features of the
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QRS complex emerge first but the onset and termination of this
component are not accurately located on the time scale. As the
level is increased and the wavelet contracts, other prominent
features of the signa occupying shorter periods of time
generate modulus maxima above the threshold. It can be seen
that the features of the P-wave and T-wave become established
around level 7. At higher levels the locations of the onset, peak
and termination points of these components approach their true
values while other less pronounced features of the signal begin
to generate ridges under the influence of the more compressed
wavelet. Finaly, a very high analysis levels even minor
variations in the morphology of the signa caused by
quantization and interference contribute to the skeleton, while
the ridges of the components in the signa of interest have
converged to their fina values. By tracing the paths of the
modulus maxima ridges established at lower analysis levels to
their final convergence, the precise positions of the onset, peak
and termination points for the QRS complex, the P-wave and
the T-wave can be determined. It can be seen that these values
have fully converged at level 22. From these positions on the
time scale, the duration of these components can be calculated
as well as the other segments and intervals of the signal defined
inFig. 1.

3. DATA ACQUISITION AND PREPROCESSING

Resting and exercise ECGs were recorded from 10
male and 11 female patients between 13 and 65 years referred
to ahospita stresstest unit. ECGs were recorded for a period of
3 minutes with the subject lying down resting. Following this,
exercise ECGs were recorded for a period of 12 minutes with
the subject on a treadmill, the speed and incline of which were
slowly increased until the subject’s heart-rate approached its
maximum value (estimated as 220 - age(yrs) beatsmin.). A
recovery recording was then made following the exercise, with
the subject lying down again until the heart rate returned to its
resting value.

ECGs were monitored using a Marquette Mac-12
recorder, which provided an analogue lead-I1 output signal that
was fed through a bandlimiting, anti-aliasing filter having a cut-
off frequency of 200Hz to an analogue-to-digital converter card
in a personal computer. Data was sampled at a rate of 1.64kHz
with 12-bit resolution and stored on the hard disk. The digitized
signals were then pre-processed by applying digital filtering
algorithms in succession to the data. A low-pass filter having a
cut-off frequency of 200Hz, a high-pass filter with a cut-off
frequency of 0.5Hz and a notch filter centered around 50Hz
were used to remove noise, baseline drift and mains
interference respectively. This also helped to eliminate out-of-
band movement artefact and muscle noise. Recordings were
then scanned both automatically and manualy to identify
premature, ectopic and irregular beats as well as any other
anomalies or artefact and offending recordings were discarded.

4. SIGNAL ANALYSIS

Data files of the ECG recordings were imported into
MathLab (MathWorks Inc.) where al computations were
carried out. Initially, long sequences of data were processed to
obtain the wavelet transform of the entire recording of each
subject up to level 12, i.e. 4 voices over the first 3 octaves of
scaling and the modulus maxima were established in each case.
Ridge vectors were traced up to level 12 to detect the peaks of
the QRS complexes exclusively, which allowed successive
cardiac cycles to be identified in the recordings. The
corresponding heart rate to the nearest beat/min. was then
determined for each cardiac cycle.

Following this, data files for individual subjects were
segmented into lengths of 1024 samples suitably positioned
around the QRS complex and were categorized according to
heart rate with a lbeat/min. resolution over the full range,
which extended from 46-184 beats/min. Sequences having the
same heart rate were aligned so that the positions of their QRS
complexes coincided in time.

Data sequences having the same heart rate were then
processed in cross ensembles of 5 in a parallel 5-stage median
filter, which removed any impulse-like interference present and
aso dgnificantly reduced the quantization noise associated
with the digitization process. The wavelet transform was then
computed for each resulting sequence using 4 voices over 10
octaves of scaling and the modulus maxima were evaluated in
each case. From this, skeletons of the transforms similar to that
shown in Fig. 3 were constructed. Ridges in the skeleton were
then traced for convergence to a fixed position in time, which
was usualy reached once the position of a ridge remained
unchanged over 4 consecutive levels. Having already identified
the position of the QRS complex, zones in the skeleton were
searched on either side of this to determine the precise locations
of the peaks of the P and T waves to within one sample time.
Subsequently, the onset and termination of the QRS complexes
and the associated P and T waves were determined with the
same precison. This alowed the values of al of the
components of the ECG signal defined in Fig. 1 to be
established for each individual data sequence. This resulted in
several values being obtained for each component, at each
value of heart rate in the range covered.

5. VERIFICATION

The accuracy of the wavelet based method of
identifying the timing of ECG components was verified by
applying the technique to a test ECG signal. This test signal
was obtained from the data file of a previoudly digitized ECG
recording, which had been manually modified to remove noise
and interference and to idealize the waveform structure. The
file was stored in a Read Only Memory (ROM) and could be
read out through a digital-to-analogue converter followed by a
low-pass filter to generate an output signal simulating an ECG.
From the addresses of samples in the data file the positions of
the peak, onset and termination points of the waves were
known exactly. The rate at which the contents of the ROM were
read out allowed the effective heart rate of this test signal to be
varied as desired.

This analogue signa was re-sampled, stored and
processed in the same manner as the clinical recordings. The
wavelet analysis method was applied to the test signal to
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determine the timing of its components at heart rates of 70, 80,
90, 110,120, 180 and 190 beats/min. The values obtained for all
timing measurements made at all heart rates were within +1ms
of the true values established from the data file with the
exception of a single error of —3ms. The convergence of the
values measured for atest signal at a heart rate of 70 beats/min.,
having a P-wave duration of 75ms, a T-wave duration of 186ms
and a QRS complex of 50msis shown in Fig. 4.

6. RESULTS

The data obtained from the subjects above were
processed to obtain a characteristic equation for each
component of the ECG signal which would describe the
variation in its duration as the cardiac cycle time atered
inversely with heart rate. The values of each component
measured at the same heart rate were averaged to give a single
value for each component. Averages were obtained as a
function of the cardiac cycle time for male and female subjects
separately and for al of the subjects combined. Second order
equations in the square root of the cardiac cycle time of the
form AVTrR + BTrr + C were then fitted to the data for each
component of the ECG using a least-mean-square error method.
The data obtained from the combined male and female subjects
for each of the constituent components are
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Fig. 5 Data obtained from combined subjects with 2"-
order curvesfitted

shown plotted in Fig. 5. As data points were obtained with a
1beat/min resolution in heart rate, they are closely spaced and
standard deviation bars have been omitted for clarity but ranged
typicaly from 3 - 15ms. The corresponding equations fitted are:

Towme = 0.37Ty , —0.22T, . ~0.06 s @)
To gy =0.33yTp 5 —0.18T, . -0.08 s 18)
Toom =0.69Tyr —039T, . -014 s 9
Tors  =025T,  —0.16T, 002 s (20)
Torm =124/Ty 5 —053T, . -031 s (2D
T e =1.06yT, o —05IT, . -033 s (22)
Toreg = —0.09T, o +0.13T; . +0.04 s (23

While coefficients in the equations obtained were
somewhat different for male and female subjects the trend was
the same for al components and the range of values was not
greatly different. Values for female subjects were a little lower
and showed a dlightly lower dependence on heart rate.

7. CONCLUSION

Fig. 6 shows a lead-Il ECG signal, which has been
synthesized from this set of equations at a heart rate of 140
bpm. Stored files were used to generate the profiles of the P and
T waves. Changes in the timing of the constituent components
are an accurate reproduction of those observed in vivo. It is the
intention of the authors to use these equations as the foundation
for a versatile micro-controller based ECG simulator, which
will provide an output signal having user adjustable properties
and a profile which behaves in a manner closely aligned to that
of thein-vivo ECG.
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Fig. 6 Waveform of a ssimulated ECG signal at 140 bpm



