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ABSTRACT 

 
ECG recordings were obtained from 21 healthy subjects aged 
between 13 and 65 years, over a range of heart rate extending 
from 46 to 184 beats/min (bpm). A wavelet transform method, 
based on the Mexican Hat wavelet was then used to precisely 
locate the positions of the onset, peak and termination of 
individual components in the ECG signal. These times were 
then classified according to the heart rate associated with the 
cardiac cycle to which the component belonged. Second order 
equations in the square root of the cardiac cycle time, TR-R of 
the form A.√TR-R + B.TR-R + C were fitted to the data obtained 
for each component to characterize its timing variation. 
 

1. INTRODUCTION 
 

The components of the electrocardiogram are defined 
in Fig.1. It is broadly recognized that the durations of individual 
components vary with heart rate in a non-linear manner. The 
earliest attempt to quantify this relationship was made by 
Bazett [1] and his results are still cited in many instances where 
no other information is available. Bazett formulated equations 
characterizing the duration of three of the ECG components as 
a function of the cardiac cycle time as follows: 
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where TR-R is the cardiac cycle time measured between peaks of 
successive QRS complexes or R-waves. Later researchers, 
including the authors, have questioned the accuracy of Bazett’s 
formulae, with most comment being concerned with the Q-T 
interval because of its clinical importance [2,3]. Much work has 
been done on providing reliable means of detecting the QRS 
complexes in the ECG, primarily for triggering purposes, but 
no comprehensive study examining the variation in the timing 
of the individual components as a function of heart rate has 
been carried out. This article reports such a study. 
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Fig. 1  A typical ECG signal profile with timing of 
components defined 

 
2. WAVELET ANALYSIS 

 
In order to locate individual waves in the ECG signal 
accurately, a wavelet having a similar profile is required and 
the Mexican Hat wavelet shown in Fig. 2 makes an ideal choice 
in this regard. The basic Mexican Hat wavelet is described in 
the continuous time domain as: 
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A family of analyzing wavelets in the time-frequency domain is 
obtained by applying a scaling factor a and a translation factor 
τ to the basic mother wavelet defined by eqn.4 to give: 
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2.1. Wavelet Transform 
 

When applied to a continuous-time signal s(t) the 

Wavelet Transform is defined as:  
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where a value of the transform is obtained for chosen values of 
a and τ. The transform is calculated at discrete values of these 
parameters in a two dimensional grid (am ,τn) such that am = ao

m 
and τm = amτn = amnτo where ao and τo are base values of the 
parameters and m and n are integers. A choice of an octave 
dilation factor with ao=2, so that am=2m and a dyadic translation 
so that τo=1 and τm = 2mn gives an orthogonal set of wavelets  
for the Mexican Hat family and the transform then becomes: 
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In the case of a digitized signal s(tk) where tk = kTs and Ts =1/fs, 
the sampling rate, represented as the sequence of N samples 
s(k), k=0,1,2….N-1, the Discrete-Time Wavelet Transform is 
given as: 
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where m=1,2,3,……log2 N so that the number of octaves of 
scaling is limited to concur with the length of the sequence. 
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Fig. 2  The Mexican Hat Wavelet 



 Grossman et al. [4] showed that better identification 
of singular features in the signal could be obtained by the 
decomposition of each scale into several sub-scales or voices 
while maintaining octave scaling. This allows better frequency 
resolution to be obtained from a tight-framed set of wavelets. 
By choosing ao = 21/M, where M is the number of voices per 
octave, the wavelet transform applied to a digitized signal s(k) 
becomes: 
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When decomposed in this manner the time scales are referred to 
as levels where the level number is 2m/M. 
 
2.2 Modulus Maxima 
 

The total energy contained in the continuous wavelet 

transform at a scale factor a is given as:  
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This can be taken as a measure of the variance of the transform 
at scale factor a. The magnitude of the variance will reach its 
maximum value when the wavelet and the signal are coherent 
i.e. have similar frequency components present at similar 
positions in time. Locating maxima in the wavelet variance 
across scales therefore provides a means of determining the 
scales and translations at which the structure of the signal is 
coherent with the wavelet shape.  
 The value of the signal s(to) at time t = to influences 
the value of the wavelet transform within a domain of the form 

att o ψσ≤−  where 2
ψσ  is the variance of the analyzing wavelet 

function. This domain has a triangular shape in the time-scale 
plane, which converges to to as the scale factor a approaches 
zero and is known as the cone of influence. 

The concept of modulus maxima was first introduced 
by Mallat [5,6]. A point (ao , to) in the time-scale plane is 
referred to as a modulus maximum if: 
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The modulus maxima can be thought of as points in the time-
scale plane at which both the signal and the analyzing wavelet 
have local maxima. A line drawn across the scales which 
connects maxima belonging to the same point in the signal is 
called the modulus maxima line. Mallat & Hwang [5] have 
shown that a singular behavior in the signal s(t) at time to means 
that there exists a modulus maxima line which converges 
towards the point to on the time axis as a→ 0. If there is no such 
line, then the signal is regular or smooth in the vicinity of t = to. 
Hence, modulus maxima lines in the time-scale plane may be 
used to identify singularities in the signal. Often the square 
modulus is used in place of its magnitude so that the modulus 
maxima are evaluated as: 
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The left-hand side of this expression can also be written as: 
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where ),a(W*
s, τψ

is the complex conjugate of ),a(W s, τψ
. For 

real valued signal and wavelet functions this becomes: 
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 After appropriate substitutions for both functions on the right 
hand side of this expression and further simplification, it can be 
shown that: 
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Since the third function on the right hand side of this equation 
is non-zero, the condition is satisfied when 
either )(sor)(s ττ ��� is zero. Now 0)(s =τ� at maxima or 

minima in the signal while 0)(s =τ�� at points of inflexion. 

Hence the locations of the square modulus maxima of the 
wavelet transform can be used directly to identify the maxima, 
minima and points of inflexion in the signal being analyzed. 
 
2.3. Wavelet Skeleton 
 
A ridge vector for a given feature in the signal is formed when 
modulus maxima belonging to the same point in the signal are 
traced across increasing levels of analysis to the highest level 
used. Although the precise locations in time of the modulus 
maxima associated with a particular feature vary slightly across 
levels, they are always identified as the closest maxima points 
in time as the level increases [5,6]. Modulus maxima in the 
wavelet transform caused by noise occur sporadically, while 
those due to singularities in the signal are sustained across 
levels and this allows the two to be distinguished from each 
other. In addition modulus maxima due to signal features 
converge very definitively to a final position in time as the level 
is increased. A small amount of thresholding applied to the 
modulus maxima in generating the ridge vectors will eradicate 
those caused by noise at lower and middle levels of analysis so 
that only those caused by features of the signal will contribute 
to ridges. If chains are plotted on the time-scale plane 
connecting the points of individual ridges together for the entire 
signal a wavelet transform skeleton of the signal is obtained. 

The skeleton of a single cardiac cycle of an ECG 
signal is shown in Fig. 3. At very low analysis levels where the 
wavelet spans the entire time scale, significant modulus 
maxima occur only at central points in the signal where most of 
its energy is concentrated. Consequently, the features of the 
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Fig. 3   The skeleton of the modulus maxima of a single  

cardiac cycle 



QRS complex emerge first but the onset and termination of this 
component are not accurately located on the time scale. As the 
level is increased and the wavelet contracts, other prominent 
features of the signal occupying shorter periods of time 
generate modulus maxima above the threshold. It can be seen  
that the features of the P-wave and T-wave become established 
around level 7. At higher levels the locations of the onset, peak 
and termination points of these components approach their true 
values while other less pronounced features of the signal begin 
to generate ridges under the influence of the more compressed 
wavelet. Finally, at very high analysis levels even minor 
variations in the morphology of the signal caused by 
quantization and interference contribute to the skeleton, while 
the ridges of the components in the signal of interest have 
converged to their final values. By tracing the paths of the 
modulus maxima ridges established at lower analysis levels to 
their final convergence, the precise positions of the onset, peak 
and termination points for the QRS complex, the P-wave and 
the T-wave can be determined. It can be seen that these values 
have fully converged at level 22. From these positions on the 
time scale, the duration of these components can be calculated 
as well as the other segments and intervals of the signal defined 
in Fig. 1. 
 

3. DATA ACQUISITION AND PREPROCESSING 
 

Resting and exercise ECGs were recorded from 10 
male and 11 female patients between 13 and 65 years referred 
to a hospital stress test unit. ECGs were recorded for a period of 
3 minutes with the subject lying down resting. Following this, 
exercise ECGs were recorded for a period of 12 minutes with 
the subject on a treadmill, the speed and incline of which were 
slowly increased until the subject’s heart-rate approached its 
maximum value (estimated as 220 - age(yrs) beats/min.). A 
recovery recording was then made following the exercise, with 
the subject lying down again until the heart rate returned to its 
resting value. 

ECGs were monitored using a Marquette Mac-12 
recorder, which provided an analogue lead-II output signal that 
was fed through a bandlimiting, anti-aliasing filter having a cut-
off frequency of 200Hz to an analogue-to-digital converter card 
in a personal computer. Data was sampled at a rate of 1.64kHz 
with 12-bit resolution and stored on the hard disk. The digitized   
signals were then pre-processed by applying digital filtering 
algorithms in succession to the data. A low-pass filter having a 
cut-off frequency of 200Hz, a high-pass filter with a cut-off 
frequency of 0.5Hz and a notch filter centered around 50Hz 
were used to remove noise, baseline drift and mains 
interference respectively. This also helped to eliminate out-of-
band movement artefact and muscle noise. Recordings were 
then scanned both automatically and manually to identify 
premature, ectopic and irregular beats as well as any other 
anomalies or artefact and offending recordings were discarded.  

 
4. SIGNAL ANALYSIS 

 
Data files of the ECG recordings were imported into 

MathLab (MathWorks Inc.) where all computations were 
carried out. Initially, long sequences of data were processed to 
obtain the wavelet transform of the entire recording of each 
subject up to level 12, i.e. 4 voices over the first 3 octaves of 
scaling and the modulus maxima were established in each case. 
Ridge vectors were traced up to level 12 to detect the peaks of 
the QRS complexes exclusively, which allowed successive 
cardiac cycles to be identified in the recordings. The 
corresponding heart rate to the nearest beat/min. was then 
determined for each cardiac cycle. 

Following this, data files for individual subjects were 
segmented into lengths of 1024 samples suitably positioned 
around the QRS complex and were categorized according to 
heart rate with a 1beat/min. resolution over the full range, 
which extended from 46-184 beats/min. Sequences having the 
same heart rate were aligned so that the positions of their QRS 
complexes coincided in time. 

 Data sequences having the same heart rate were then 
processed in cross ensembles of 5 in a parallel 5-stage median 
filter, which removed any impulse-like interference present and 
also significantly reduced the quantization noise associated 
with the digitization process. The wavelet transform was then 
computed for each resulting sequence using 4 voices over 10 
octaves of scaling and the modulus maxima were evaluated in 
each case. From this, skeletons of the transforms similar to that 
shown in Fig. 3 were constructed. Ridges in the skeleton were 
then traced for convergence to a fixed position in time, which 
was usually reached once the position of a ridge remained 
unchanged over 4 consecutive levels. Having already identified 
the position of the QRS complex, zones in the skeleton were 
searched on either side of this to determine the precise locations 
of the peaks of the P and T waves to within one sample time. 
Subsequently, the onset and termination of the QRS complexes 
and the associated P and T waves were determined with the 
same precision. This allowed the values of all of the 
components of the ECG signal defined in Fig. 1 to be 
established for each individual data sequence. This resulted in 
several values being obtained for each component, at each 
value of heart rate in the range covered. 
 

5. VERIFICATION 
 

The accuracy of the wavelet based method of 
identifying the timing of ECG components was verified by 
applying the technique to a test ECG signal. This test signal 
was obtained from the data file of a previously digitized ECG 
recording, which had been manually modified to remove noise 
and interference and to idealize the waveform structure. The 
file was stored in a Read Only Memory (ROM) and could be 
read out through a digital-to-analogue converter followed by a 
low-pass filter to generate an output signal simulating an ECG. 
From the addresses of samples in the data file the positions of 
the peak, onset and termination points of the waves were 
known exactly. The rate at which the contents of the ROM were 
read out allowed the effective heart rate of this test signal to be 
varied as desired. 

This analogue signal was re-sampled, stored and 
processed in the same manner as the clinical recordings. The 
wavelet analysis method was applied to the test signal to 
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Fig. 4    The convergence of measured ECG components 

 



determine the timing of its components at heart rates of 70, 80, 
90, 110,120, 180 and 190 beats/min. The values obtained for all 
timing measurements made at all heart rates were within +1ms 
of the true values established from the data file with the 
exception of a single error of –3ms. The convergence of the 
values measured for a test signal at a heart rate of 70 beats/min., 
having a P-wave duration of 75ms, a T-wave duration of 186ms 
and a QRS complex of 50ms is shown in Fig. 4. 
 

6. RESULTS 
 

The data obtained from the subjects above were 
processed to obtain a characteristic equation for each 
component of the ECG signal which would describe the 
variation in its duration as the cardiac cycle time altered 
inversely with heart rate. The values of each component 
measured at the same heart rate were averaged to give a single 
value for each component. Averages were obtained as a 
function of the cardiac cycle time for male and female subjects 
separately and for all of the subjects combined. Second order 
equations in the square root of the cardiac cycle time of the 
form A√TR-R + BTR-R + C were then fitted to the data for each 
component of the ECG using a least-mean-square error method.  
The data obtained from the combined male and female subjects 
for each of the constituent components are 
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Fig. 5  Data obtained from combined subjects with 2nd-

order curves fitted 

shown plotted in Fig. 5. As data points were obtained with a 
1beat/min resolution in heart rate, they are closely spaced and 
standard deviation bars have been omitted for clarity but ranged 
typically from 3 - 15ms. The corresponding equations fitted are: 
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While coefficients in the equations obtained were 
somewhat different for male and female subjects the trend was 
the same for all components and the range of values was not 
greatly different. Values for female subjects were a little lower 
and showed a slightly lower dependence on heart rate. 

  
7. CONCLUSION 

 
Fig. 6 shows a lead-II ECG signal, which has been 

synthesized from this set of equations at a heart rate of 140 
bpm. Stored files were used to generate the profiles of the P and 
T waves. Changes in the timing of the constituent components 
are an accurate reproduction of those observed in vivo. It is the 
intention of the authors to use these equations as the foundation 
for a versatile micro-controller based ECG simulator, which 
will provide an output signal having user adjustable properties 
and a profile which behaves in a manner closely aligned to that 
of the in-vivo ECG. 
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Fig. 6  Waveform of a simulated ECG signal at 140 bpm 


