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ABSTRACT

In this paper, two array signal processing techniques
are combined with independent component analysis to
enhance the performance of blind separation of acoustic
signals in a reflective environment such as rooms. The
first technique is the subspace method which reduces
the effect of room reflection. The second technique is a
method of solving permutation, in which the coherency
of the mixing matrix in adjacent frequencies is utilized.

1. INTRODUCTION

When applying blind source separation (BSS) based on
independent component analysis (ICA) to an acousti-
cal mixture problem such as a number of people talk-
ing in a room, the performance of the BSS system
is greatly reduced by the effect of the room reflec-
tions/reverberations and ambient noise [1]. In array
signal processing, the authors previously proposed a
method based on the subspace method for reducing
the effect of room reflections and ambient noise [2].
The subspace method works as a self-organizing beam-
former and, therefore, can be used in the framework
of BSS [3]. In this paper, a combined approach of the
subspace method and ICA is proposed.

For combining the subspace method with ICA, the
frequency-domain ICA [4] must be employed, since the
subspace method works in the frequency domain. The
biggest obstacle in the frequency-domain ICA is the
permutation problem. In the frequency-domain pro-
cessing for a convolutive mixture, different permuta-
tions at different frequencies lead to re-mixing of sig-
nals in the final output. A method for solving the
permutation using the correlation between the spec-
tral envelope at different frequencies was proposed [4],
but was reported to sometimes fail when the input sig-
nals had similar envelopes [1]. In this paper, a new
approach for solving the permutation problem termed
Inter-Frequency Coherency (IFC) is proposed.

2. MODEL OF SIGNAL

Let us consider the case when there are D sound sources
in the environment. By observing this sound field with
M microphones and taking the short-term Fourier trans-
form (STFT) of the microphone inputs, we obtain the
input vector x(w,t) = [X1(w,t),-- , Xar(w,t)]T where
Xm(w,t) is STFT of the input signal in the tth time
frame at the mth microphone. By taking STFT, the
convolutive mixture problem is reduced to a complex
but instantaneous mixture problem. The symbol -7 de-
notes the transpose. In this paper, the input signal is
assumed to be modeled as

x(w,t) = A(w)s(w, t) + n(w, ). (1)

The M x D matrix A(w) is termed the mixing matrix,
its (m, n) element, A,, ,(w), being the transfer function
from the nth source to the mth microphone as

Apn(w) = Hm,n(w)e*jw’”’". (2)

The symbol H,, ,(w) is the magnitude of the trans-
fer function. The symbol 7., denotes the propaga-
tion time from the nth source to the mth microphone.
Vector s(w,t) consists of the source spectra as s =
[S1(w,t),,Sp(w,t)]T. The first term, A(w)s(w,?),
expresses the directional components. On the other
hand, the second term, n(w,t), is a mixture of less-
directional components, which includes room reflections
and ambient noise.

3. BSS SYSTEM

A block diagram of the system is depicted in Fig. 1.
First, the subspace method is applied to the input vec-
tor x(w,t) to obtain the subspace filter W(w). In this
stage, room reflections and ambient noise are reduced
in advance of the application of ICA. It should be noted
that the node of the filter network is reduced from M
to D in this stage as depicted in Fig. 1.

Then, the instantaneous ICA is applied to the out-
put of the subspace stage, y(w,t) = W(w)x(w,t), to
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Fig. 1. Proposed BSS filter network.

obtain the filter matrix U(w). In this paper, the In-
fomax algorithm with feed-forward architecture [5] ex-
tended to complex data [4] is used. The learning rule
is written as

Uw,t+1) = Uw,t) + n [I - ¢(z(w,t)z" (v,1)] U(w,

3)

where z(w,t) = U(w)y(w,t). The score function for
the complex data ¢(z) is defined as [4]

©(z) = 2tanh(G - Re(z)) + 2j tanh(G - Im(z)). (4)

The matrix I is an identity matrix. The symbol -
denotes the Hermitian transpose. The constant 7 is
termed the learning rate. The symbol G is the gain con-
stant for the nonlinear score function, assuming that
the magnitude of y(w,t) is normalized.

For the sake of convenience, the product of W(w)
and U(w),

(5)

is termed the separation filter.

After obtaining this separation filter, the permuta-
tion and the scaling problem must be solved. In this
stage, the output of the separation filter is processed
with the permutation matrix P(w) and the scaling ma-

.ot
trix B, (w).
diagonal matrix ]§+( ) = diag[B;} SAPPEER ,B:;’ p] where
B . denotes the (m, n)th element of the pseudoinverse
of B( ) [4]. The permutation matrix P(w) is described
in Section 5.

Using the matrices obtained above, the final filter-
ing matrix in the frequency domain can be written as

(6)

This filter matrix F(w) is transformed into the time do-
main, and the input signal is processed with the time-
domain filter network [4].

The scaling matrix ]:)v:_n(w) isaDxD

F(w) = P(w)B."

m

(w)B(w).
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Fig. 2. Typical eigenvalue distribution.

4. SUBSPACE METHOD

4.1. Properties of Spatial Correlation Matrix

The spatial correlation matrix is defined as R(w) =
E[x(w,t)x" (w,t)]. The frequency index w is omitted
in this section for the sake of simplicity in notation.
Assuming that s(¢) and n(¢) are uncorrelated, R can
be written as

R=AQAY + K, (7)
where Q = E[s(t)s” (t)] and K = E[n(t)n” (t)]. When
n(t) includes room reflections of s(t), s(t) and n(t) are
correlated and the above assumption does not hold.
However, when the window length of STFT is short
and the time interval between the direct sound and the
reflection exceeds this window length, this assumption
holds to some extent in a practical sense.

By taking the generalized eigenvalue decomposition[6]
of R as R = KEAE™!, we have the eigenvector ma-
trix E = [e1,--- ,en] and the eigenvalue matrix A =
diag(\1,-- -, An), where e, and A, are the eigenvec-
tor and the eigenvalue, respectively. The eigenvalues
and eigenvectors have the following properties [2, 6]:

P1: The energy of the D directional signals s(¢) is con-
centrated on the D dominant eigenvalues.

P2: The energy of n(t) is equally spread over all eigen-

values.
P3: R(A) = R(E,).
P4: R(A) = R(E,)* .

The matrices, E; = [e1, -+ ,ep]land E,, = [ep41, -+ ,em],
consist of the eigenvectors for the D dominant eigenval-
ues and those for the other M — D eigenvalues, respec-
tively. The notation R(A) denotes the space spanned
by the column vectors of A. The notation R(E, )" de-
notes the orthogonal complement of R(E,,). The sub-
spaces R(E;) and R(E,,) are termed signal subspace
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Fig. 3. Rotation of the location vector. (a) Correct
permutation; (b) Incorrect permutation.

and noise subspace, respectively. A typical eigenvalue
distribution and the corresponding energy distribution
that reflects the properties P1 and P2 are depicted in
Fig. 2.

4.2. Subspace Filter
The subspace filter is defined as
W = A7l (8)

where A, = diag(A\1,---,Ap). According to the prop-
erties P1 and P3, the directional component As(t) be-
longs to the signal subspace. On the other hand, using
the properties P2-P4, the ambient component n(t) can
be split as n(t) = n,(t) + n,(t) where n,(t) and n,(¢)
denote the components which belong to the signal sub-
space and the noise subspace, respectively. Due to the
orthogonality in P4, the component n,,(t) in the noise
subspace is canceled by the subspace filter W. In this
regard, the subspace filter is equivalent to the delay-
and-sum beamformer [2].

5. PERMUTATION

5.1. Structure of mixing matrix

When the mixing matrix A (w) has the form in (2), the
nth column vector (location vector of the nth source)
in the mixing matrix at the frequency w and that at
the adjacent frequency wy = w — Aw are written as

—JwTin

an(w) = [e Ce demen]t

an(wo) = [e_j(w—Aw)Tln, e e—j(w—Aw)TMn]T (g)

Here, Hp, n(w) = 1 in (2) is assumed for the sake of
simplicity. From (9), it can be known that the loca-
tion vector a,(w) is a,(wg) being rotated by the an-
gle 0,, as depicted in Fig. 3(a). Based on this rela-
tion (coherency) of the location vectors at the adjacent
frequencies, the relation of the mixing matrix can be
written as A(w) = T(w,wo)A(wg), where the matrix
T(w,wo) is the rotation matrix [7]. When the differ-
ence in frequency Aw (frequency resolution of STFT)
is sufficiently small, T(w,wp) ~ I, and the rotation an-
gle 6, is small.

5.2. Method for solving permutation (IFC)

Based on this, it is expected that 8,, is the smallest for
the correct permutation as depicted in Fig. 3. Permuta-
tion is solved so that the sum of the angles {6;,--- ,0p}
between the location vectors in the adjacent frequencies
is minimized. An estimate of the mixing matrix can be
obtained as the pseudoinverse of the separation matrix
B(w) as A (w) = B*(w). Let us denote the mixing ma-
trix multiplied by the arbitrary permutation matrix P
as AT (w) = PAT(w). The permutation PAT(w) ex-
changes the row vectors of AT(w) (the column vectors
of A(w)). The column vectors of A(w) are denoted
as {a;(w), -+ ,ap(w)}. The cosine of the angle 6, be-
tween a,(w) and a,(wp) is defined as

&l (w)an(w)
€086 = Tan@)Il- 82 (wo)|

By using this, the permutation matrix is determined as

(10)

P= argmng(P), (11)

where the cost function F(P) is defined as
L D
FP) = D ;cosﬁn. (12)

5.3. Confidence Measure

Since the permutation at frequency w is determined
based on only the information of the two adjacent fre-
quencies, w and wp, and the permutation is solved it-
eratively with increasing frequency, once the permuta-
tion at the certain frequency fails, the permutation in
the succeeding frequencies may also fail. To prevent
this, the reference frequency wy is extended to the fre-
quency range wo = w — k - Aw, for k =1,--- | K. The
cost function (12) is calculated at all K frequencies in
this range. Let us denote the value of the cost function
at wo=w — k- Aw as F(P, k).

Next, a confidence measure for F'(P,k) is consid-
ered. When the largest value of the cost function is
close to that with other permutations, it is difficult to
determine which permutation is correct and the value
of F(P,k) is not reliable. Based on this, the following
confidence measure is defined:

C(k) = max [F(P, )] - max [F(P, )] (13)

Here, Q denotes the set of all possible P while Q'
denotes  without P = argmaxpeq [F(P,k)]. The
appropriate reference frequency wp is determined as
wo = w— k- Aw with £ = argmaxC(k). The per-
mutation is then solved using the information at this
reference frequency as P = argmaxpco[F(P, k)].
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Fig. 4. Spectra of reflection at the input/output.

6. EXPERIMENT

A signal separation experiment was conducted in an
ordinary meeting room with a reverberation time of 0.4
s. The sound sources (loudspeakers) were located in the
front (0° ) and in the right (60° ) with a distance of 1
m from the array. The microphone array was circular
in shape with a diameter of 0.5 m and M = 8.

Figure 4 shows the spectra of the reflection at the
input/output of the system (normalized by the input
spectrum). From this, it can be seen that the reflections
were reduced by 10-15 dB by the subspace method.
Figure 5 shows the results of the automatic speech
recognition (ASR). For the cases ICA and ICA+SS,
the correct permutation was given. As can be seen
from this figure, the recognition rate was improved by
around 18% by employing the subspace method.

Figure 6 shows the theoretical value of the cost func-
tion F'(P, k) for the correct and incorrect permutation.
From this, it can be seen that F(P,k) shows a high
value for the correct permutation. In Fig. 5, the ASR
rate for the case when the permutation is solved by IFC
is also shown (ICA+SS/IFC). From this, reduction of
the ASR rate by employing IFC is small (around 4%).

7. CONCLUSION

The performance of BSS using ICA in a reflective en-
vironment was improved by combining ICA with array
processing techniques. As a pre-processor, the sub-
space method was employed to reduce the effect of
room reflections. This method reduced the reflections
by around 10 dB and improved the ASR rate by around
18%. As a post-processor, a method for solving the per-
mutation based on the coherency of the mixing matrix
was proposed. The permutation error in ASR was re-
duced to 4% compared with that for the conventional
method reported in [1] (around 18 %).
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Fig. 6. Theoretical value of the cost function F(P, k).
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