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ABSTRACT

This paper analyzes the asymptotic performance of Max-
imum Likelihood (ML) channel estimation algorithms in
wideband code division multiple access (WCDMA) scenar-
ios. We concentrate on systems with periodic spreading
sequences (period larger than or equal to the symbol span)
with high spreading factors, where the transmitted signal
contains a code division multiplexed pilot for channel esti-
mation purposes. Assuming randomized training and code
sequences, we derive and compare the asymptotic covari-
ances of the training-only (TO), semi-blind conditional ML
(CML) and semi-blind Gaussian ML (GML) channel esti-
mators.

1. INTRODUCTION

Multi-rate code division multiple access systems —such as
WCDMA- have recently been proposed for third generation
terrestrial and satellite mobile communication applications.
One of the most interesting features of these systems is the
introduction of a pilot signal which, serving channel estima-
tion purposes, is code division multiplexed and transmitted
at the same time as the traffic information. Given the im-
portance that such systems may have in the near future, it
seems crucial to answer questions such as what is the de-
pendence of the channel estimation performance on e.g. the
spreading codes repetition period, the signal to noise ratio,
the quotient between the pilot and the traffic signal pow-
ers or the spreading factor employed. This paper tries to
provide answers to these questions in a theoretical yet sim-
ple manner. It will be shown that under some asymptotic
conditions very simple expressions describing the mean be-
havior of the analyzed channel estimation algorithms can
be obtained. These simple expressions will prove most use-
ful from a system designer point of view in that they will
provide a precise description of the expected performance
as a function of physical system parameters.

From the whole range of channel estimation algorithms
available in the literature, we will focus on Maximum Like-
lihood (ML) estimation procedures, since under certain reg-
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ularity conditions they provide asymptotically efficient esti-
mates. In particular, we will study both classical training-
only techniques (based on the knowledge of the pilot or
training sequence exclusively) and semi-blind techniques
(which make use of the training sequence and improve this
estimation taking into account the signal structure).

2. MULTI-RATE CDMA SIGNAL MODEL

The transmitting station is assumed to map the underly-
ing data sequence to (Q distinct and synchronized spreading
sequences with period N. chips. Both the period of the
spreading sequences and the chip rate are assumed con-
stant for all the sequences. Let sq(m)& C represent the
underlying complex symbol stream associated with the gth
code sequence and assume that Ns(gq), ¢ =1...Q consecu-
tive symbols are mapped to each interval of N. chips. The
spreading factor associated with a particular spreading se-
quence is denoted as SF; = N./N(q) chips/bit. According
to these definitions, the total number of symbols mapped
to a code sequence period (N, chips) is Ns = Zqul Ns(q),
where it is assumed that N, < N..

We assume that at the basestation the signal is syn-
chronously sampled at the chip rate (modulation with no
excess bandwidth) and that symbol detection is made in ob-
servation windows of M N. chips, where M can be regarded
as the number of spreading periods in the observation in-
terval. Stacking M N. samples of the received signal into
a column vector x € CMNe*! we can describe the received
signal as

x =x"+Gs +n, (1)
with x* the channel-filtered training sequence, G a ma-
trix of received signatures, s a vector containing the
complex-valued transmitted symbols and n the noise com-
ponent. Note that the training sequence is transmitted
code division multiplexed (rather than time division mul-
tiplexed) with the traffic information. The column vector

h = [h(1) ~~~h(L)}T € CY*! contains the channel impulse
response, assumed constant within the observation interval
and of length L < N.. Accordingly, the known part of the
received signal x* can be expressed as
t(1) -+ t(-L+2)
x"=Th, T= Lo : . (2)
t(MNe)---t(MN:. — L+ 1)



where t(n) denotes the chip-level complex-valued training
sequence.

Let us now concentrate on the matrix of received sig-
natures G. This matrix is formed stacking side by side the
signature matrices corresponding to each of the code se-
quences G = [Gl ~~~GQ] These Gg, ¢ = 1...Q, can in
turn be expressed as

Gy =Cy (L, (q) @h)

Dq(Q)Cq(l) 0

c,=| © @@ C)
: 0
0 CQ(Q)CQ(l) M X M+1 blocks

SF,
M Ns(q) the effective number of symbols received in an ob-
servation interval. Matrices Cq(1) and C4(2) are the upper
and lower parts of the next convolution matrix:

with ® the Kronecker product and M,(q) = [ﬂw +

{Cq(l)} - [Cq,1 Cao - Cq,NS(q)} € O2NexNs(a)L

Cq(2)
[ cq,r(l) <o+ Op-1x1
. cq.r(1)
Cor = | Car(Ne) : e CNexE (4)
0 T cgr(Ne)
L <+ On.—Ly1x1 |

with ¢g,r(n) defined from the original code sequences c4(n),
q =1...Q, setting to zero all the samples outside the rth
symbol interval, i.e.
_Jeq(n) (r=1)SF,<n<rSF,
Cqr(n) = { 0 otherwise - ()

Matrix Dy(2) is obtained as the (é—;ﬂ columns on the right
of C4(2), and contains the contribution from symbols trans-
mitted prior to the observation interval.

Returning to the signal model in (1), s € CMs*1 con-
tains the set of received symbols, i.e.

s=[sTsl s}

Sq = {sq (— (g—;ql-‘ + 1> "'Sq(MNS(q))}T c (CMS(Q)><17

1" e M (6)

where M, = 3% | M,(q).

It is assumed that the components of the noise vec-
tor are circularly symmetric Gaussian distributed with zero
mean and covariance F [nnH} = O'QIA[N(,. This seems a
reasonable approximation since we are concentrating on a
single-user scenario. The results obtained here could in
principle be generalized to the multi-channel estimation
case, modifying the signal model in (1) to include the con-
tribution from several users. This is, however, out of the
scope of this paper.

3. ML CHANNEL ESTIMATION METHODS

In the following, we present some channel estimation meth-
ods based on the principle of Maximum Likelihood. We
will see that different ways of modelling the presence of
the unknown symbols, transmitted simultaneously with the
training sequence, will lead to distinct types of estimators
with different asymptotic performance. In particular, we
will concentrate on three different types of estimators: a
classical training-only (TO) estimator, which results from
ignoring the presence of the unknown symbols; a CML es-
timator, based on a model in which unknown data are re-
garded as deterministic parameters; and a GML estimator,
which arises from modelling them as Gaussian-distributed
random variables.

3.1. Training-only Approach

The training only estimator disregards the presence of the
traffic channels, which is equivalent to setting s = 0 in (1).
The ML estimator for this signal model can be expressed
as

o = (THT>71 THx. (7)

In order to investigate the asymptotic performance of the
channel estimator, we make the following assumptions:

(Asl) The unknown symbols are circularly symmetric i.i.d.
random variables with zero mean and unit variance:

E [sq(i)s;(j)} =06i—j6p—q.

(As2) The spreading codes are circularly symmetric
i.id. random variables with zero mean, variance
E [cp(n)cy(m)] = agbp ¢6n—m and independent of
the unknown symbols.

(As3) The training sequences are circularly symmetric
i.id. random variables with zero mean, variance
E[t(n)t*(m)] = a*6,—m, and independent of the un-
known symbols and the spreading sequences.

Proposition 1 Under (Asl,As2,As3), the training-only

channel estimator v/Mheo is consistent and asymptotically
(in M) circularly symmetric Gaussian-distributed with co-
variance matrix given by

2

o a
Cifo=—-1 —R
¢ atN, L +ath h (®)
——
MByo
L—itj

{Rh}i,j: Z h*(l)h(l+i*j)a 1>

=1

and {Rh}i,j = {Rh}

of the spreading codes allocating traffic data, o = Zqul Qag.
The diagonal matriz B, denotes the Training-only Cramér-

Rao Bound for the asymptotic conditions specified.

Proof. See [1].
Defining now the effective Signal to Noise Ratio as

;w where o stands for the global power

HhH2 (at + a) N,
= T

; 9)

T



we can express the normalized covariance matrix as

|\(1:1t|\02 - 7—12 (1+ %) I+ Ni (%) le—"[z- (10)

When the effective signal to noise ratio increases without
bound the relative asymptotic covariance matrix tends to
the constant value NLC (%) III::IIILQ' Due to the presence of
the traffic channels (a # 0) and the finite period of the
code sequence (N, < co) the estimator can never attain the
Cramér-Rao bound, however high the signal to noise ratio
might be.

The poor performance of this estimator can be overcome
with an explicit modelling of the traffic channels in the sig-
nal model of (1). In particular, one can model the unknown
data either as deterministic parameters (Conditional Ap-
proach) or as random variables (Unconditional Approach);
see [2] and references therein. These two approaches will
lead to two distinct estimators which, as shown in [3, 4, 5],
do not perform equivalently.

3.2. Conditional (Deterministic) ML Approach

If we model the unknown data as deterministic parameters,
the ML channel estimator h. can be obtained minimizing
the following negative log-likelihood function

7, (h,JQ) = MN.log (7r(72) + % (x— Th)H P (x—Th),
o
(11)
with P& denoting the orthogonal projection matrix onto
the null space of the columns of G. A closed expression of
the CML channel estimator can be found in, e.g. [3].

Proposition 2 Assume that (Asl, As2, As3) hold. The
normalized conditional channel estimator v/Mh, is consis-
tent and asymptotically (M — oo) circularly symmetric
Gaussian-distributed. If, in addition, the noise power, the
period of the spreading codes and the corresponding Spread-
ing Factors increase without bound at the same rate (02,
N, SF; — o0) while their quotient remains constant, the
asymptotic covariance is given by'

2
&= mp, + LB (l) Pi (12)
Va

(L[

T

MB.=

Pie (1 2) ).

with Be the asymptotic conditional Cramér-Rao bound un-
der the conditions specified, Pn = Ih}l]‘—li, Pi =1, —Py and
v, defined in (9). Furthermore, this result holds regardless
of the statistical assumption about the unknown data.
Proof. See [1].

Two observations are in order. First, note that the co-
variance of the CML channel estimator does not depend on
how the symbols are distributed across the different codes
or what is the power associated with each code. Instead,
it depends on the total number of transmitted symbols per

I Throughout the paper, a dot ['] will be used upon covariances
calculated under this double asymptotic limit.

code period Ns and the global power associated with the
codes a. Second, we see from (12) that the conditional
channel estimator is inefficient for finite values of the signal
to noise ratio.

3.3. Gaussian ML Approach

According to the Gaussian ML Approach, symbols are mod-
elled as complex mutually independent circularly symmetric
Gaussian random variables with zero mean and unit covari-
ance. A GML approach is preferred to a strictly Uncondi-
tional ML estimator (according to which symbols should be
modelled with a discrete uniform distribution) because we
seek to obtain methods based on second order statistics of
the received signal only.

The negative log-likelihood function to be minimized
can be expressed as

n, (0%, h) =logdet (7Cy) + (x — Th)" C;' (x — Th),
(13)
where C, = GG + O'QIMNF represents the temporal co-
variance matrix associated with the random component of
the signal. A closed expression for the GML channel esti-
mator can be found in [1].

Proposition 3 Assume that (Asl, As2, As3) hold. As-
sume further that the product agSFy remains constant for
all the transmitted codes.> Then, the GML channel estima-
tor is consistent, efficient and asymptotically (M — oo)
Gaussian-distributed. If, in addition, the noise power and
the period of the spreading codes and the corresponding
Spreading Factors increase without bound at the same rate
(62, N., SF, — oo) while their quotient remains constant,
the asymptotic covariance of the GML channel estimator is
given by

¢, = MB, (14)

CmP ] y.(e) +1
- -
Yoo |7s(@)+ 5

MB,

)

Pﬁ+(1+%)Ph

with Bg the Cramér-Rao Bound under the asymptotic con-
ditions specified and v,(q) denoting Symbol Energy to Noise
Power Spectral Density associated with channel g

Q4 HhH2 SFy
—_—

v.(q) =

Moreover, the same result is obtained regardless of the sta-

tistical assumption about the unknown symbols.
Proof. See [1].

Next, we compare the asymptotic covariances of the
three methods under consideration. Their influence on the
performance of the symbol detectors is analyzed in [6].

(15)

g

4. ANALYTIC COMPARISONS

From the expressions obtained in the last Section, it is easy
to establish the following inequalities, which are asymptot-
ically valid when M as well as SF, and o increase without
bound (the last two parameters at the same rate):

2This assumption guarantees a constant reception quality for
each of the transmitted codes.



MB,. < C, = MB, < MB,, (16)

M]:ato > (::c Y6(@) = Yen } (18)
MBio < Ce Ys(@) < Ve

with v, = (1+ %)71 and where A < B indicates that
B — A is positive semidefinite.

According to (16), under the asymptotic conditions
specified, the semi-blind GML estimator performs better
than the training-only method, while the inequality in
(17) indicates that the conditional method performs worse
than the Gaussian method. As a conclusion, the Gaussian
Cramér-Rao bound can be interpreted, under the present
assumptions and asymptotic limits, as the performance
bound for both conditional and Gaussian methods, whereas
the asymptotic Conditional Cramér-Rao bound can never
be attained with second order approaches. All these con-
clusions are in perfect agreement with the results presented
in [2] in the context of direction of arrival estimation.

It is finally observed from (18) that, surprisingly, the
conditional semi-blind method can perform worse than its
training-only counterpart at low values of the effective sig-
nal to noise ratio. The threshold symbol energy to noise
power density +,, establishes a limit over which a perfor-
mance gain can be expected from using semi-blind condi-
tional estimation schemes under our asymptotic assump-
tions. In any case, the values of v,, will in practice be low
enough to guarantee that the semi-blind conditional scheme
performs better than the training-only estimator (values of
the traffic to training power ratio are expected to be much
higher than one in actual WCDMA systems).

In Figures 1 and 2, the trace of the asymptotic covari-
ances normalized by the squared norm of h is represented as
a function of the traffic to training power ratio (o/cy) and
the effective signal to noise ratio (v, ) respectively. The re-
lationships in (16)-(18) can be readily verified. It is finally
worth stressing that, as shown in [1], the asymptotic ex-
pressions derived in this paper Cio, C., Cg are very close to
the actual ones for spreading factors SFy > 16.
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Figure 1: Asymptotic covariances as a function of a/ay.
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5. CONCLUSIONS

We have derived asymptotic expressions describing the per-
formance of three different channel estimation algorithms in
a pilot sequence-aided multi-rate CDMA framework. For
the classic training-only channel estimation method, we
have been able to describe the mean asymptotic behavior
as the number of spreading periods (M) increases with-
out bound. After investigation of the resulting covariance
matrix we have shown that the performance of the algo-
rithm tends to saturate as the effective signal to noise ratio
(7,) increases. Semi-blind techniques have been proposed
as means to overcome this effect. The performance of two
different semi-blind approaches has been evaluated under
asymptotic conditions in the number of spreading periods
M when both the spreading factor and the noise power tend
to infinity. These results have finally been used to estab-
lish the relationship among different techniques under the
asymptotic conditions considered.
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