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ABSTRACT

The problem of reconstructing a one-dimensional (1-D) signal from
only the magnitude of its Fourier transform emerges when the
phase of a signal is apparently lost or impractical to measure. Pre-
vious solutions usually employed an Iterative Fourier Transform
(IFT) algorithm applied on a discrete approximation of a signal.
The utilization of these algorithms is seriously limited by the un-
predictability of their convergence. We propose several solutions
to the phase retrieval problem. The first two proposed solutions
uses relationships between the phase and the gain differences (GD),
or gain samples (GS), in nepers. The last proposed solution uses
a neural network (NN) for solving the problem. The NN incorpo-
rates a combination of the maximum entropy estimation algorithm
with some additional nonlinear constraints. We compare our solu-
tions by using some numerical examples. The performances under
noisy conditions are also considered.

1. INTRODUCTION

The phase retrieval problem is associated with applications in which
the wave phase is apparently lost or impractical to measure, and
only intensity data are available [1][2]. These applications in-
clude antenna design, filter design, image reconstruction, wave-
front sensing, and electron microscopy. Solutions of the phase re-
trieval problem are of two types: solutions depending on analytical
properties and solutions depending on numerical procedures. The
analytical solutions are usually related with the logarithmic Hilbert
transform. Customary solution techniques approximate the solu-
tion by discretizing the continuous problem.

The 1-D phase retrieval problem is to reconstruct the phase
given the modulus of its Fourier transform. Equivalently, we syn-
thesize the signal by applying the inverse Fourier transform. The
difficulty of the problem consists in the fact that if the magnitude
of the Fourier transform of a function of finite support is known,
then you cannot find the function if the function and the Fourier
transform are 1-D. This is due to the non-uniqueness of the func-
tion. More information about the signal is needed to be known (for
example that it is of minimum phase).

The discrete phase retrieval problem is to reconstruct a discrete
time signal with known and compact support (N ) from the mag-
nitude of its discrete Fourier transform. There are 2N solutions to
the problem since the zeros of the z transform of the autocorre-
lation function occur in reciprocal conjugate quadruples [1]. The
pair inside the unit circle or the one outside it may be chosen. The
supplementary information, necessary to derive a unique solution,
can consist of some time samples of the signal. For example, a

single endpoint specifies a unique solution, the set of exceptions
having the Lebesque measure zero.

There are two types of the ambiguities for the problem: trivial
and non-trivial. The trivial ones include constant scale factors and
translations: if x(n) is a solution, then x�(n), cx(n), x(n� b) are
also solutions for any integer b and any complex c with jcj = 1.
Beyond these trivial factors, the ambiguity of the problem remains,
because the complex zeros of A2(s) occur in conjugate pairs. For
example, if A2(s) has N complex conjugate pairs of zeros, then
there exist 2N non-trivial solutions, because there are two ways of
choosing one zero from each of the N conjugate pairs.

2. MINIMUM AND NON-MINIMUM PHASE RETRIEVAL

If R(!) and I(!) are the real and respectively the imaginary parts
of an analytic function (its Fourier transform vanishes for ! <

0), then I(!) can be uniquely determined from R(!) [3]. The
phase is also the imaginary part of the natural logarithm of X(!):
lnX(!) = lnA(!) + j � �(!), but lnX(p) is not, in general,
analytic for Re p � 0. X(p) might have zeros with positive real
parts, and those zeros are singularity points of lnX(p). If we as-
sume that X(p) is analytic and has no zeros for Re p � 0, then
lnX(p) will be also analytic in the right half plane and the phase
retrieval problem has a unique solution. The class of functions
with this property is called minimum phase. A minimum phase
system H(s) has a causal impulse response h(t). For these sys-
tems, the log-magnitude and phase functions of the frequency re-
sponse form a Hilbert transform pair.

If X(s) is not minimum phase, more information is needed in
order to produce a unique solution. Non-negativity is usually not
enough, so values of x(t) or X(s) are needed to be known. We
will use the fact that X(s) is completely characterized by its com-
plex poles and zeros. If XMIN(s) is the minimum phase solution,
then the non-minimum phase solution X(s) can be written as a
product of XMIN(s) and an all-pass term Xa(s):

X(s) = XMIN(s)Xa(s); (1)

where jX(s)j = jXMIN(s)j = A(s) and jXa(s)j = 1. This can be
done by selecting for Xa(s), a function whose zeros are the zeros
of X(s) in the right half plane and whose poles are symmetrical
to the zeros with respect to the imaginary axis. So, for s = j!,
Xa(s) will have the form:

Xa(s) =

Qk

i=1
(s+ si)Qk

i=1
(s� si)

; (2)

where k represent the number of zeros of the XMIN(s) correspond-
ing to those k right half plane zeros of X(s) flipped into the open



left half plane. The corresponding non-minimum phase function
can be written as:

�(!) = �MIN(!) + �a(!); (3)

where

�a(!) = 2

kX
i=1

arctan

�
! + Im(si)

Re(si)

�
: (4)

From (1) and (2), by denoting the coefficients of s in the termQk

i=1
(s+ si) with xiF we obtain: 
kX
i=0

(�1)
k�i

x
i
F s

i

!
X(s) =

 
kX
i=0

x
i
F s

i

!
XMIN(s); (5)

where xkF = 1 and x0F =
Qk

i=1
si. Without loss of generality we

can assume that the initial conditions in the time domain are zero.
The following differential equation is obtained:

kX
i=0

(�1)
k�i

x
i
F

dix(t)
dti

=

kX
i=0

x
i
F

dixMIN(t)

dti
: (6)

We used the following procedure to compute the non-minimum
phase solution, from the minimum phase solution:

A. Given jX(s)j compute the minimum phase solution �MIN;

B. With the additional information of the number of zeros to flip
and their type (real or complex) and the support of x(t),,
calculate the flip coefficients by using formula (6). Then
calculate the phase of the all-pass term signal by using for-
mula (4);

C. Compute X(s) = jX(s)j � exp(j � �);
D. Synthesize x(t) by applying the inverse Fourier transform.

3. GAIN DIFFERENCES

The first method we developed uses of a relationship between the
phase and the odd derivatives of the gain for computing the phase
of the minimum phase solution [4]. We showed there that the
phase at a given frequency is the series of the odd derivatives of
the neperian gain evaluated at this frequency. In order to substitute
the higher derivatives involved, we utilized finite differences.

The gain and the phase can be written as functions of variable
u, without loss of generality: a(u) = A(!ce

u), b(u) = �(!ce
u).

We proved in [4] that there exists the following relation between
the phase and the gain differences for the phase of a minimum
phase function:

b(u) =

1X
n=0

2(2n+2 � 1)�2n+1jB2n+2j
(2n+ 2)!

a
2n+1

(u); (7)

where Bn are the Bernoulli numbers of order n.
The error of truncation is propagated through the frequency

domain and the Gibbs phenomenon appears. In order to avoid it,
we used the Feher kernel, i.e, we passed the weights of the deriva-
tives through a triangular window. However, the practical prob-
lems give only the gain samples, and there is necessary to approx-
imate the higher derivatives with differences. Using the Stirling
numbers of the first kind, we have:

dky(a0)

dxk
=

k!

hk

 
nX

z=k

S
(k)
z

z!
�
i
f0

!
: (8)

Let k be the number of terms in approximation. By using the
Feher kernel formula, the following approach is obtained:

bF1 =
�

2
a
0

(0) �=
�

2h
�
1
f0; (9)
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�
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48h3
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(10)

4. GAIN SAMPLING

In [5] we established a relationship for approximating the phase
values from the gain samples in nepers for computing the phase of
the minimum phase solution:

B(!) =
1

�
[A(!Æ)� A(!=Æ)] +

+
2 ln Æ

�

Z k

1

A(!Æz)� A(!Æ�z)

Æz � Æ�z
dz; (11)

where Æ > 1 and k 2 N; k � 1 satisfy certain conditions.
For numerical computation support, it is of interest to develop

a quadrature formula. The condition of equally spaced abscissas
in the logarithmic frequency domain, leads to one of the Newton-
Cotes or Simpson’s quadrature formulae. By selecting the trape-
zoidal formula we have obtained the first approximation BT (!)
for the phase:

BT (!) =
X
p2Z

TpA(!Æ
p
); (12)

Tp = T�p =

8>>>>>>><
>>>>>>>:

1
�
(1 +

ln Æ

Æ � 1=Æ
) if p = 1

2 ln Æ

�(Æp � Æ�p)
if p = 2; : : : ; k � 1

ln Æ

�(Æp � Æ�p)
if p = k

0 otherwise.

(13)

By using the parabolic rule, for k = 2m + 1;m � 0, a second
quadrature approach BS(!) can be obtained:

BS(!) =
X
p2Z

SpA(!�
p
); (14)

Sp = S�p =

8>>>>>>>>>>><
>>>>>>>>>>>:

1

�

�
1 +

2=3 ln Æ

Æ � 1=Æ

�
; p = 1;

8 ln Æ

3� (Æp � Æ�p)
; p = 2; 4; : : : ; 2m;

4 ln Æ

3� (Æp � Æ�p)
; p = 3; 5; : : : ; 2m� 1;

2 ln Æ

3� (Æp � Æ�p)
; p = 2m+ 1;

0; otherwise.
(15)

It seems from the previous estimations that the two quadrature
formulae are comparable in performance according to the number
of samples. However, the multiplying constants and the level of
the samples considered differ by much. By using the Simpson’s
formula the higher frequencies are enhanced, while the trapezoid
rule reduces them. If we compare with the sums of GD, the con-
vergence of the GS series is faster. Also, the numerical evaluations
of the higher derivatives are likely to have sizeable errors. So, we
expect that this approach outperform the previous one. The disad-
vantage consists in an increased computational effort.



5. NEURAL NETWORKS

We separate the real and imaginary parts of the spectrum. Let us
denote by Mk the known spectral magnitudes, and by ank and
bnk the constants related to discrete Fourier transform: ank =

cos(2�(n+ k)=N), bnk = � sin(2�(n + k)=N). The unknown
phase is denoted by �k. The unknown nonnegative sequence x(m)

is denoted by xm. The following equations are obtained:

Mk cos�k =
X
m

xma
k
m, Mk sin�k =

X
m

xmb
k
m: (16)

Let us consider the following nonnegative variables: ck = 1 +

cos�k, sk = 1 + sin�k. By using the above definitions, the
phase retrieval problem can be written as a nonlinear optimization
problem, by the way of the maximum entropy restoration [6][7]:

find max

(
�
X
m

xm ln(xm)�
X
k

[ck ln(ck) + sk ln(sk)]

)
;

(17)
subject to

a) xm; ck; sk � 0; (18)

b)
X
m

xma
k
m �Mkck = �Mk; (19)

c)
X
m

xmb
k
m �Mksk = �Mk; (20)

with normalization:

(ck � 1)
2
+ (sk � 1)

2
= 1: (21)

We denote f(y) = �
P

m
xm ln(xm)�

P
k
[ck ln(ck)+sk ln(sk)].

The maximum entropy method is well described in the litera-
ture, but the standard algorithm has the disadvantage of computa-
tional inefficiency. Since an artificial neural network has a strong
computational capability, it can be used to solve these problems
[8]. If we consider a neural network with fully interconnected neu-
rons, an energy function U and an entropy function S can be asso-
ciated with it [9]. For a positive convex entropy function, and for
any non-decreasing temperature sequence T, the neural network
admits a Lyapunov function, which is the Helmholtz free energy
of the system: F = U � TS. The neural network will evolve
in time until it reaches an equilibrium state that corresponds to
a minimum of the free energy function F, which simultaneously
minimizes the energy and maximizes the entropy.

The nonlinear, sigmoidal transfer function that determines the
relation between an input vi = Mi and an output yi (which in-
cludes all xi; ci and si) is given by:

yi = 1 + tanh

�
vi � v0

g

�
: (22)

The slope of the transfer function at the inflection point vi = v0
(where v0 is the offset) constitutes the maximum gain of the am-
plifier in the practical realization, and is given by:

� =
dyi
dvi

=
1

g
: (23)

In order to obtain the phase normalization, the relation (16) is
modified as follows:

yic;S = 1 +
tanh

�
viC;S�v0

g

�
r

tanh2
�
viC�v0

g

�
+ tanh2

�
viS�v0

g

� : (24)

We encoded the constraints into function U in the following way:

U(v) =
X
i

�ij[a b]Tv + vij2; (25)

where �i is a scaling parameter. We obtained:

U(v) =
X
i

�ij
X
j

[aij bij ]
T
vj + vij2: (26)

The time evolution of the neural network is described by:

dyi
dt

= ��
�
[ri qi]

T
+

1

T

@U

@vi

�
; (27)

where ri = x a
i � vici + vi and qi = x b

i � visi + vi are
the residuals of the neural network. The steady state of the neural
network with the nonlinear constraints satisfied, will provide the
solution for the phase retrieval problem.

6. SIMULATION RESULTS

The proposed solutions to the phase retrieval problem will be com-
pared for several discrete noisy situations. We examined a signal
similar with the one used in [2]:

xMIN(t) =
!m + !n

!m � !n
� [exp(�!nt)� exp(�!mt)] � u(t); (28)

with !m = s2 > !n = s1 > 0, which has two poles in the
complex plane:

XMIN(s) =
!n + !m

(s+ !n)(s+ !m)
=

s1 + s2

(s+ s1)(s+ s2)
: (29)

Three non-minimum phase signals can be obtained by flipping ei-
ther one or both of these poles. When the pole s2 is flipped, the
following non-minimum phase signal is obtained:

x(t) = exp(!mt) � u(�t) + exp(�!nt) � u(t): (30)

By using a direct calculus it can be shown that for these 4 signals,
the entropy of this solution is the biggest one.

The signal (30) has an infinite support on the entire real line,
but there exist t0 > 0 such that this signal is essentially zero for
jtj > t0. So, we can treat this signal as a compact one. The
same is true for the corresponding minimum phase signal on the
positive real line, which goes to zero slower than the non-minimum
phase signal. The GD and GS methods will give the minimum
phase solution. In order to find the maximum entropy solution, we
applied the steps presented in Section 2. The non-minimum phase
solution which has the maximum entropy was obtained by flipping
the pole s2 of the minimum phase solution. The flip coefficient
was computed by succesively applying formula (6) for k = 1 and
k = 2 in the corresponding ’smooth’ subinterval [1:3; 1:5]. In this
subinterval, x(t) was considered to be equal to zero while xMIN(t)

was not. In this situation, we have:

s1xMIN+
dxMIN

dt
= 0: So, s1 =

!n � !m exp[(!n � !m)t]

1� exp[(!n � !m)t]
� !n;

(31)

s1s2xMIN +(s1+ s2)
dxMIN

dt
+

d2xMIN

dt2
= 0 => s2 = !m: (32)

In order to avoid the Gibbs phenomenon in the case of GD
method, the Feher kernel was used. The only first two terms were



Table 1. Signal reconstruction performances.
SNR GD �10�4 GS �10�4 NN �10�4

MSE MAE MSE MAE MSE MAE
Noiseless 114 8010 178 623 83 450

70 dB 523 1630 196 599 51 355
60 dB 427 1598 199 762 63 407
50 dB 758 2425 655 1291 69 357
40 dB 1551 1762 910 2141 73 433
30 dB 2148 3822 1294 2746 327 798

used in approximation. For GS method the phase of the mini-
mum phase signal was approximated by using the Newton-Cotes
approach for � =

p
2 and k = 5. In [4] we gave a detailed anal-

ysis of the effect of distance between the gain samples and of the
quality of the approximated phase. For neural networks, a special
attention required the temperature parameter. If this parameter is
too small, the time evolution of the neural network can be chaotic
(from equation (27)), and if it is too big, a very large number of it-
erations is necessary. The starting temperature was T = 100. The
raising of the temperature in steps of 100 was decided by a very
small decreasing value of the error (� 10�3 during 10 iterations).
The iterative process was stopped when this situation appeared for
the maximum allowed temperature (Tmax = 1000). The error was
computed as follows: Err =

P
i
jrij +

P
i
jqij. The entire neural

network’s output data were scaled between 0 and 2. This was done
in order to encourage equitable distribution of importance.

The computed MSE and MAE for all the proposed approaches
in different noisy situations are presented in Table 1, for !m = 20

and !n = 4. For an easier comparison, all the results were mul-
tiplied by 104. Plots of the actual signals (continuous line) versus
the reconstructed ones (dashed line) are presented in Figure 1 for
noiseless and SNR=30dB situations. The GD solutions are pre-
sented in Figure 1a)b), the GS solutions in c)d) and NN solutions
in e)f). The length of the signals was 512. The obtained results
were similar when the poles were close together (!m � !n < 5),
or when they were far away (!m � !n > 20).

7. CONCLUSIONS

We have proposed three solutions to the problem of phase retrieval.
The first two solutions are not iterative, very simple and stable,
so the convergence problem does not exist anymore. Better re-
sults are obtained by the GS method, but the use of GD has less
computational complexity. The computer simulation results indi-
cate that both approaches gives good results in noisy conditions
with Medium SNRs(> 30 dB). If the number of samples is small (
� 64), or when the SNR is low, the higher derivatives could have
sizeable errors and the use of GD method is unsuitable. The third
solution is iterative and uses a recurrent neural network for posi-
tive sequence reconstruction. This is the most complex solution,
but it has the best performances.
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