
( ) ∏ −−

−−
−

++
++=

k k

k

zzb
zzbzW 221

21
1

1
1

ρρ
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ABSTRACT

The study is concerned with a single-parameter adaptive comb
filter (ACF), a multi-notch filter with periodically located nulls.
The filter is suggested to retrieve a waveform modeled by
superposition of harmonics, in particular, periodic non-sinusoidal
signal. Using trigonometric constraints between the signal
fundamental frequency and over tones results in a non-linear
estimation problem. In the present study, the parameter
adjustment relies on the extended Kalman filter scheme.
Particularly, the 2, 3 and 4 notch ACF are derived and tested
under different conditions. Given a multi-tone scenario, the ACF
significantly outperforms common adaptive multi-notch filter.

1. INTRODUCTION

To eliminate (or retrieve) the signal components periodically
located across the frequency band is a problem frequently
encountered in different applications. Given the signal component
frequencies, one usually applies a multi-notch (or, specifically,
comb) filter [1].

If the component frequencies are unspecified beforehand, one
may use a common adaptive notch filter (ANF) [2-4] with a
desired number of zeros. A reasonable choice is the Nehorai's
minimal parameter ANF with constrained poles and zeros where
the number of parameters equals the number of notches [3].
Another choice is the Regalia-type ANF [4].

The objective of the current study is to modify the ANF into
an adaptive comb filter (ACF) that agrees with the signal model
rich in harmonics. Indeed, applying the multi-notch ANF to a
superposition of over tones, one may utilize explicit
trigonometric relationships between the fundamental frequency
and its multiples. By this means only one parameter (basic
frequency) is necessary to build the desired comb filter.

Combining the IIR notch filter with proper trigonometric
constraints results in essentially nonlinear models that should be
treated by a nonlinear estimation technique. An extended Kalman
filter (EKF) is applied to adjust the ACF parameter.

Next we determine the ACF model by convolving a cascade
of single-parameter sections related to a fundamental frequency,
and build a corresponding adaptation procedure relying on an
EKF-like technique. Major questions behind this study are
whether an ACF provides benefits over a conventional ANF and
whether an ACF is applicable to a signal with a large number of
over tones.

2. THE ANF MODEL

The Nehorai minimal parameter ANF has the IIR form

(1)
where the nominator and denominator are specified by the
polynomial

(2)
where (a1,…,an) is the n-vector of the filter coefficients, and ρ is a
parameter that defines the notch sharpness. The Nehorai ANF
needs n coefficients to extract n sinusoids.

For a single null, (1) reduces to the single-parameter section

(3)

where b=-2cos2πfT, the filter coefficient, f is the notch frequency,
and T the sampling period.

Respectively, a multi-notch filter (1) can be defined as a
product of single-parameter sections

(4)

where bk corresponds to a certain notch, k=1,2,…, n.
In the presence of super harmonics, their frequencies are

multiples of the fundamental frequency and therefore a single
parameter can specify the filter. The cases of 2, 3 and 4 over
tones are of particular interest.

3. THE COMB FILTER

We start with a signal consisting of the basic frequency f and its
2nd harmonic, the case when a 2-notch ANF (ANF2) is common.
The ANF2 with model (1) needs two parameters, a1 and a2.
However, both terms can be expressed via a single parameter, say
b. Let us consider ANF2 in the form (4) with k=1,2. If
b=b1=-2cosΩ  (where Ω=2πfT), then b2=-2cos2Ω. Using the
familiar trigonometric identity

cos2Ω=2cos2Ω-1 (5)

results in the constraint
b2=2-b2 (6)

Substituting (6) into the 2nd section of (4) and convolving two
sections gives the model (1) with
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a1=2+b-b2, a2=2+2b-b3 (7)

So, the nulls of 2-notch ACF (ACF2) depend on the single
parameter b specified by the fundamental frequency f.

Next, the ANF for three notches (ANF3) has the structure (4)
with 3 coefficients: b1, b2 and b3. Similarly, using a proper
trigonometric identity

cos3Ω=4cos3Ω-3cosΩ (8)

results in the relationship
b3=b3-3b (9)

Substituting (6) and (9) into the model (4) and convolving
three sections gives the ACF3 parameters

a1=2+2b-b2+b3

a2=3-4b-3b2+4b3+b4-b5,
a3=4-4b-8b2-2b3+5b4-b6

(10)

Next, the four notch filter ANF4 can be expressed in the form
(4) with coefficients b1,…, b4. Using the identity

cos4Ω=8cos4Ω-8cos2Ω+1 (11)

one obtains
b4=-b4+4b2-2 (12)

Substituting (6), (9) and (12) into (4), and convolving four
sections gives the ACF4 parameters

a1=-b4+b3+3b2-2b,
a2=-b7+b6+5b5-5b4-6b3+7b2,

a3= b9-b8-8b7+6b6+22b5-12b4-21b3+9b2+2b,
a4= b10-9b8-2b7+30b6+10b5-44b4-12b3+26b2-2

(13)

In a similar manner, one can specify a higher order ACF.

4. THE PARAMETER ESTIMATION TECHNIQUE

Since the ACF models are strongly nonlinear, a proper filtering
technique is necessary to adjust the filter parameter. In particular,
one may try an EKF [5] rather than the conventional
Gauss-Newton method [1-4]. So, there is a question of interest
whether the model's nonlinearity affects the ACF behavior.

Due to (1), the ANF inputs and outputs are related as
yiL(z-1)=eiL(ρz-1) (14)

where yi and ei are the filter input and output, respectively, at ith

instant of time. The latter expression can be rearranged so that to
isolate the current observation yi in the left-hand side:

i
TT

i eEAAYy ++−= ΛΛΛΛ (15)
where A=[a1,…,an,,…,a1, 1], Y=[yi-1,…, yi-n,,…, yi-2n], E=[ei-1,…,
ei-n,,…, ei-2n], and Λ=diag(ρ,…,ρ2n).

The relationship (15) can be viewed as the filter observation
function (first and second terms) contaminated by the noise term
ei. The ANF parameters, a1 through an, are unknowns and so (15)
is a nonlinear function of the form

yi = hi(a1, …, an ) + ei (16)

The observation function hi relies on the past inputs yi-1,…,
yi-2n and outputs ei-1,…, ei-2n. Both sets play role of the observation
function parameters. In practice, the unknown output noise
sequence may be replaced by the corresponding ANF residuals.

 After translating an ANF to single-parameter ACF, the term
b can be viewed as the EKF state. The simplest way is to model
the time varying parameter as the 1st order autoregression [5].

With another approach, the slowly changing parameter b and
its several derivatives (b', b'',…) may be viewed as states of the
Kalman-like tracking filter [6]. Then the system state vector
equation becomes

xi=Fxi-1+ qi (17)
where xi =[b, b',…]T denotes the system state vector at ith instant,
F - state transition matrix, and qi - system noise term [6].

The filter observation model then can be presented as
yi=hi(xi)+ ei (18)

Given a linear system (17) and nonlinear observation
function (15), one may apply the EKF equations

(19)

(20)

(21)

(22)

(23)

(24)

where Q and R are the covariance matrices of the process and
measurement noise, respectively, and H is the gradient of the
observation function hi with respect to (w.r.t.) the system state
variables. Thus, differentiating both sides of (14)  w.r.t. b gives

y’L(z-1)+ yL(z-1)’=eL(ρz-1)’+e’L(ρz-1) (25)

Note that in the stable mode, the output error represents a
white noise and its sensitivity to b may be ignored. So, the 2nd

term in the right-hand side of (25) drops resulting in
y’= L(z-1)-1[ -yL(z-1)’ + eL(ρz-1)’ ] (26)

Thus the gradient H that can be presented in the form
H=G(ΛVT -XT)

(or, approximately [2], H= -GXT )
(27)

where
G=grad{A} w.r.t. b

 X=[ξi-1,…,ξ i-n]
 V=[εi-1,…,εi-n]

(28)

with

(29)
However, it was found useful to replace the latter terms with

  (29a)
where r, ρ≤r≤1 distinguishes a more general narrow-band ARMA
by contrast to a sine-based model [3].

Eqs. (27)-(29) together with (19)-(24) define an EKF-based
ACF. Note that in accordance with (20)-(21), the filter residual is
found due to the predicted b. However, it is reasonable to
recompute the current residual using an updated b. For this
purpose, steps (20) and (21) can be iterated (at least once).

The term ρ is defined as recommended in [3]. Next, the noise
covariance starts from a sufficiently large magnitude and then
gradually reduces to a smaller value that suites to a stable mode.

As seen, for any type of ACF the parameter estimator holds a
general structure based on the EKF equations (19)-(24) and
expressions (27)-(29). A peculiarity of each particular case (1-4
nulls) is reflected only in the model of hi and its gradient H.
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5. SIMULATIONS

Next we check the ACF performance and compare it with an
ordinary ANF under different conditions.

 A generated signal comprises the unit-amplitude sinusoid of
0.112 normalized frequency and its super harmonics. Harmonics
vary their amplitudes due to a particular scenario. The signal is
contaminated by an additive, zero-mean, 0.1 rms white noise. By
this means, SNR=102/2=50  (or, equivalently, 16 dB).

With each scenario, we apply a particular ACF or ANF to a
certain type of signal. The EKF runs with the single-state
dynamic model. Computation of ρ starts with 0.8 and approaches
0.995 with forgetting factor 0.99 [3]. The observation noise
covariance R=σ2, where σ=4. Initial covariance P=0.01. The
system noise covariance Q=10-5. Each scenario is averaged over
100 independent runs (with the same initial conditions). At the
first stage, we intentionally determine a slower and smoother
convergence in order to enhance differences between scenarios.

Figs. 1 and 2 show performance of the ANF1 and ANF2,
respectively, under a 2-tone scenario. As the 2nd harmonic
magnifies (curves 1, 2 and 3 correspond to amplitudes 0, 0.5 and
1, respectively), both filters dramatically deteriorate.

It is not the case with a comb filter. Unlike the ANF, ACF2
(Fig. 3) not only remains smooth, but also, as the 2nd harmonic
magnifies, converges significantly faster.

Figs. 4 and 5 show the performance of ACF3 and ACF4
applied to the 3-tone and 4-tone signals, respectively, while the
highest harmonic amplitude is 0 (curve 1), 0.5 (curve 2) and 1
(curve 2). These figures display that as the highest harmonic
magnifies, the ACF improves convergence rate. However, for
higher order filters the benefit becomes less significant. So, the
ACF3 or ACF4 may be sufficient for practical purposes. All ACF
demonstrate a fast and smooth unbiased convergence.

In the next scenario, the observation noise is set smaller
(σ=0.4) in order to increase the convergence rate and reduce bias.
The initial frequency is given a true value in order to exclude the
initial error contribution on the filter output.

Fig. 6 displays the standard deviation (std) experienced by the
ACF2 in the 2-tone scenario. As the 2nd tone is zero (curve 4), the
output std, as expected [3], is slightly higher than the
corresponding CRB (curve 1). As far as the 2nd tone amplifies
(curves 2 and 3 correspond to amplitudes 1 and 0.5, respectively),
the ACF2 drastically changes its behavior for short-length data, in
particular, the filter considerably decreases output variance for
shorter records. At initial stage, up to nearly 200 steps, the filter
experiences a std even smaller than predicted by the CRB for
given SNR. It may be explained so that utilizing higher
harmonics yields proper increase in the SNR. Note that the
shorter is the data length, the higher is the benefit provided by the
increasing 2nd amplitude. For longer periods, the curves 2, 3 and 4
in Fig. 6 gradually converge.

Other simulations (not presented due to space limitation)
exhibit the filter advantages in more detail.

6. FIELDS OF APPLICATION

The ACF is an efficient tool to retrieve a non-sinusoidal signal, a
problem encountered in a wide range of applications.

Thus, the Sagnac effect utilized in the fiber-optic gyroscope
(FOG) [7] yields a phase-modulated signal with significant super
harmonics.

Another example is the dithering technique when a vibrating
high-power and high-frequency signal is applied to the sensing
block in order to avoid a non-linear (lock-in) zone. The block
output usually comprises higher harmonics that should be
accurately deleted in order to recover the original input.

One more application field is the photoplethysmographic
signal (PPS) encountered in the pulse oxymetry [8]. The PPS is
definitely a non-sinusoidal waveform and has 4-5 significant
harmonics. The accurate spectrum shape is of importance to
distinguish between useful components and artifacts.

The list of ACF applications may be continued.

7. CONCLUSIONS

In this study, the conventional ANF was adjusted to a signal
model comprising a basic sinusoid and several super harmonics.
Trigonometric relationships between the fundamental tone and its
multiples are used as the filter constraints. This modification
results in a particular type of adaptive multi-notch filter, ACF.
Given the multi-harmonic signal scenario, an ACF clearly
outperforms ANF. Thus, as the higher harmonics amplify, an
ACF with appropriate number of notches improves its
convergence rate, whereas an ANF, a notch filter of the same
order but with independent nulls deteriorates. Evidently, in the
former case, with an ACF, a super harmonic contributes in the
signal power, whereas in the latter case, with an ANF, it
magnifies an interference.

It is noteworthy that as the number of nulls is less than the
number of harmonics the standard ANF considerably degrades in
the convergence rate. It means that with a parallel or cascade
ANF implementation each section that retrieves a particular
harmonic is affected by other tones. It is not the case with an
ACF when all notches are in agreement with the basic frequency.

An ACF may be efficiently used to recover non-sinusoidal
waveforms encountered in a multitude of applications.
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Fig. 1. ANF1. 2nd tone 0 (dashed curve 1), 0.5 (dashdot
2) and 1 (solid 3).
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Fig. 2. ANF2. 2nd tone 0 (dashed curve 1), 0.5 (dashdot
2) and 1 (solid 3).
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Fig. 3. ACF2. 2nd tone 0 (dashed curve 1), 0.5 (dashdot
2) and 1 (solid 3).
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Fig. 4. ACF3. 3rd tone 0 (dashed curve 1), 0.5 (dashdot
2) and 1 (solid 3).
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Fig. 5. ACF4. 4th tone 0 (dashed curve 1), 0.5 (dashdot
2) and 1 (solid 3).
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Fig. 6. CRB (solid curve 1) & ACF2 standard deviation.
2nd tone 0 (dotted 4), 0.5 (dashdot 3) and 1 (dashed 2).


