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ABSTRACT  

This paper deals with a new approach to detect the 
structure (i.e. determination of the number of hidden 
units) of a feedforward neural network (FNN). This 
approach is based on the principle that any FNN could be 
represented by a Volterra series such as a nonlinear input-
output model. The new proposed algorithm is based on 
the following three steps: first, we develop the nonlinear 
activation function of the hidden layer’s neurons in a 
Taylor expansion, secondly we express the neural 
network output as a NARX (nonlinear auto regressive 
with exogenous input) model and finally, by 
appropriately using the nonlinear order selection 
algorithm proposed by Kortmann-Unbehauen, we select 
the most relevant signals on the NARX model obtained. 
Starting from the output layer, this pruning procedure is 
performed on each node in each layer. Using this new 
algorithm with the standard backpropagation (SBP) and 
over various initial conditions, we perform Monte Carlo 
experiments leading to a drastic reduction in the 
nonsignificant network hidden layer neurons.  

1. INTRODUCTION 

Multilayer perceptrons form a class of feedforward neural 
networks [3]. In spite of their popular use, there is still a 
lack of research work concerned with their architecture 
design. One major problem is to determine the optimal 
number of hidden units needed to mimic the system, by 
only using the input-output patterns. In [2], the authors 
used an iterative pruning algorithm to find the most 
appropriate network size. Their method is based on 
solving a linear system by least squares identification 
algorithm. Indeed, for large network size, the output 
matrix may have a deficient rank and infinite solutions 
may exist. The problem of model selection is handled 
differently in [9], where the authors consider it as a 
statistical problem and hence use the generalization of 
Akaike’s information criterion (AIC) [1]. In fact, the 
problem is to find the optimal model in a family of 

networks and find the optimal parameter to approximate 
the system’s conditional distribution which is 
computationally consuming. In [4], a statistical stepwise 
method for weight elimination has been used to solve the 
architecture pruning problem. In their statistical approach 
the authors fitted linear models to neural networks where 
the SBP becomes mathematically not justified. In this 
paper, we propose a new algorithm to solve the size 
pruning problem of NN hidden layer units. Among its 
different steps, this new approach uses in part the NARX 
model order determination algorithm developed first by 
Kortman-Unbehauen [5] [6]. Within this framework, the 
NN may be seen as a Volterra series [8], specifically as a 
NARX model. The paper is organized as follows: in the 
second section, we show the equivalence between a 
feedforward neural network and a NARX model. Then in 
section 3, we propose the new NN hidden layer’s neurons 
pruning algorithm. Finally in section 4, some simulation 
results highlight the effectiveness of the proposed 
algorithm. In the appendix, we review the algorithm 
proposed by Kortmann-Unbehauen to the order selection 
of NARX models. 

2. FEEDFORWARD NEURAL 
NETWORKS EQUIVALENT TO NARX 

MODEL 

The general deterministic NARX input-output equation is 
given by: 
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where y(k) is the output signal and y  its mean value, u(k) 

the input signal, n the order of the input regression, m is 
the order of the output regression, q the non linearity 
order and d the system delay. 
In the sequel, we give some results on the equivalence 
between NN and NARX models. Equivalent results may 
be found in [8]. Eq. (2.1) is a general Volterra series 
expansion describing the input-output relation of a 
discrete time causal, nonlinear, time invariant system. 
Let us consider a general feedforward neural network of 
L layers and assume a single neuron taken at the jth 
hidden layer Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                         Fig. 1  
If we consider a Taylor expansion of the sigmoid non 
linearity to the second order, the output of this unit 
becomes: 
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Here the signals )1( −j
sU are related to the layer (j-1). In 

order to develop these signals as NARX models, the 
following lemma is stated: 
Lemma: 

Let us define )( j
kss wA = , )1( −= j

ss UX and 1−= jLL , 

the following equality holds: 
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Using this lemma and substituting Eq. (2.3) into  Eq. 
(2.2), it is possible to derive the following output of the 
hidden unit of figure (2.1) as:  
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 (2.5) 

For convenience the time index is omitted here. Equating 
Eq.(2.1) to Eq.(2.5), the coefficients of the NARX model 
can be expressed in terms of the NN weights and the 
polynomials coefficients of the activation function as: 
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Note that all the terms related to the sequence y(k) are 
null. Finally by inspecting Eq. (2.5) and Eq. (2.6)-(2.9) 
the output of a single neuron in a feedforward NN is a 
NARX model. Consequently, we can expect that at a 
given hidden layer j we have Lj NARX models, this 
yields of running the proposed pruning algorithm Lj times 
over j layers. 

3. NN STRUCTURE DETECTION 
ALGORITHM 

3.1 Introduction 
 
Polynomial filters or Volterra models is an important 
class representing real world signals and systems [8]. 
Structure detection of these polynomial filters i.e. 
selection of the statistically significant terms is treated in 
the work of Kortman-Unbehauen [5] [6]. In the general 
nonlinear model of Eq.(2.1), the number of possible terms 
up to the degree q of the polynomial is given in [5] by: 
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as the parameter vector, and  
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as the signal vector. Here  
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Eq. (2.1) can be expressed as: 

( ) ( )pkmky T=                                                   (3.5) 

Minimizing the sum of the squares of the equation error 
for N data points: 
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yields a least-square estimation of )(ˆ kp [7]. 

3.2 New NN hidden layer neuron pruning algorithm: 
 
In this section, we give the different steps of the new 
algorithm proposed. 
Step 1: application definition, choice of N input/ output 
data patterns. 
Step 2  
1. arbitrary choice of a NN maximal structure namely 

NN( oli LLLL ,,...,, 11 − ) Li and Lo are fixed by the type 

of application Ll-1 is number of units in layer number 
l-1 

2. randomly initialize the initial synaptic coefficients 
3. perform the training of the neural network. 
Step 3:  
1. start from the output layer j=l-1; 

2. determine all the output signals oL
kU for k=1 to Lo 

function of all the hidden layer signals 1−lL
pU for p=1 

to Ll-1. Put the signals in the form of Eq.(2.5), thus 

define the vectors T
Ll

m
1−

 

3. use the Kortmann-Unbehauen algorithm (step1 up to 
step 8 in [5] summarized in Appendix A) to find 
significant terms entering in the computation of the 
output layer signals. Then, find the new neural 
network hidden layer namely New Ll-1. 

4. using the same initial conditions as in step 2.2, 
reconstruct the new NN( oli LNewLLL ,,...,, 11 − ) 

5. perform the training of the new neural network 
6. decrement 1−= jj , and return to step 3.2 

7. test j. If j=0 then go to step 4. 
Step 4 : 
1. we shall obtain a new 

NN( oli LNewLNewLL ,,...,, 11 − ) 

2. using the same initial condition, train the new 
optimal net. 

4. SIMULATION RESULTS 

In the classic application of the circle in the square 
problem, the NN have to decide whether a point of 
coordinate (x, y) varying from –0.5 to 0.5 is in the circle 
of radius equal to 0.35. The starting NN structure chosen 

is first NN(2, 6, 1) and then NN(2, 10, 1). It is shown that 
when applying the new algorithm, we have a considerable 
reduction in the range of ( ~20% up to 40% ) of the 
number of units in the hidden layer for many trials of 
initial condition (IC) realizations. We have also tested the 
new algorithm on other applications. We find out that on 
a Monte Carlo test of many initializing realizations, we 
have often a significant reduction in the number of hidden 
layers units. 
 
 

IC 
realiz
ation 

#Start 
hidden 
units 

BIC 
start 
NN 

#Hid. 
units 
new 
NN 

BIC new 
NN 

results 

1 6 -3.829 5 -4.096 good 
2 6 0.4672 4 -2.953 good 
3 6 -3.918 6 -3.898 bad 
4 6 -4.101 4 -3.804 bad 
5 6 -3.978 5 -4.007 good 
6 6 -3.993 5 -4.006 good 
7 6 -3.978 5 -4.013 good 
8 6 -3.983 4 -4.034 good 
9 6 -3.979 4 -1.380 bad 
10 6 -4.060 5 -4.006 bad 

11 10 -3.872 7 -3.956 good 

12 10 -3.875 9 -3.900 good 

13 10 -3.891 7 -3.964 good 

14 10 -3.870 8 -3.931 good 

15 10 -3.950 6 -3.995 good 

16 10 -3.891 7 -3.964 good 

17 10 -3.870 8 -3.931 good 

Table. 1 results of the circle in the square problem 
 
3.3 Comments: 
 
The above table provides the results for the circle in the 
square problem. The results are considered good if the 
BIC* test of the new NN is lower than the BIC of the 
starting large NN. In some cases, in spite of the reduction 
of the number of hidden neurons, the BIC test criterion 
remains greater than for the starting net see rows 3, 4, 9 
and 10 in the Table. 1. 

5. CONCLUSION 

In this paper, we have presented a new structure detection 
algorithm used to optimize the number of hidden units in 
feedforward NN. The proposed algorithm together with 
the back propagation training algorithm often leads to a 
fairly small network structure with satisfactory 
classification accuracy. 
 
 

                                                           
* BIC (Beysian Information Criterion) see Appendix A 



  

APPENDIX  

Review of the Kortmann-Unbehauen NARX structure 
detection algorithm: 
 

Before reviewing Kortmann-Unbehauen NARX structure 
detection algorithm [5] [6], let us define the information 
criteria used to get reliable decision on the order detection 
procedure: 
a) the final prediction error technique (FPE) [1] 
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b) Akaike’s information criterion (AIC) [1] 
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c) Khinchin’s law of iterated logarithm criterion 
(LILC):  
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Beysian Information criterion  (BIC): 
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Where  is the number of model parameters and N is the 
number of data points. (k) represents the residuals i.e. 

)(ˆ)()( kykyk −=ε . Therefore (k) is an estimation of the 

equation error e(k). The optimal model is chosen by 
decision criteria Eq. (3.7)-(3.10) when �is minimal.  
Let us resume the main steps of the Kortmann-
Unbehauen algorithm for more details see.[5]: 
Step 1: initialize maximal values of the backward shift of 
the input output : n, and m, and the maximal degree q of 
the polynomial to define the size of the nonlinear model 
Eq. (2.1). Calculate r by Eq.(3.1) Set the number of 
parameter =1�� ������	� 
��� 
���
����� � ��� 
��� �-test. 
Choose the information criteria for decision. 
Step 2: Correlate all r possible terms with the output 
signal y(k) and determine the normalized correlation 
coefficients iρ [5] [6] for each term. 

Step 3: Select the term with the highest (partial) 
correlation coefficient to determine the optimal variable 
which has to be added to the model, i.e. the one that 
contributes the greatest improvement to fit the 
model: { }i

i
optoptv

v ρρ max: = , increase the number of 

parameters by one to 1+→υυ . 
Step 4: – Estimate the  parameter of the model with 
recursive least squares algorithm (RLS) and calculate 

Nkkykyk ,...,1)()()( =−=ε  

- Determine the static variable (overall F-test) [5]. 
- Calculate the multiple correlation coefficient R2 [5], R2 
measures the proportion of the total variation about the 
mean value y of the output signal model. 

- Compute the information criteria defined by Eq.(3.7)- 
(3.10): FPE  AIC  LILC  BIC . 

Step 5: Check the value of the overall F- test for 
significance, and compare R2 and the information criteria 
with their values obtained for -1 parameters of the 
previous model. The procedure quits if the F-test shows 
that the model equation is not significant or that the 
information criteria are greater than the previous model. 
Step 6: Compute for each term in the model, excluding 
the mean value, the stochastic variable (partial F- test), 
PFi 21,...,1 >−= υυi  

FPEi AICi LILCi BICi, follow the rest of step 6 in [5] 
Step 7 Examine the partial information criteria and the 
partial F- values for all current model variables. Check 
for the rejected terms and parameter estimation for the 
remaining model, see details in [5]. 
Step 8: Compute the normalized partial correlation 
coefficient of all possibl�� ���������� 
���
� i - for more 
details see [5]-. 
 
Keywords: Neural Network (NN), Standard Back-
Propagation (SBP), pruning algorithm, structure 
detection, NARX. 
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