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ABSTRACT

This paper deals with a new approach to detect the
structure (i.e. determination of the number of hidden
units) of a feedforward neural network (FNN). This
approach is based on the principle that any FNN could be
represented by a Volterra series such as a nonlinear input-
output model. The new proposed algorithm is based on
the following three steps: first, we develop the nonlinear
activation function of the hidden layer's neurons in a
Taylor expansion, secondly we express the neura
network output as a NARX (nonlinear auto regressive
with  exogenous input) model and finaly, by
appropriately using the nonlinear order selection
algorithm proposed by Kortmann-Unbehauen, we select
the most relevant signals on the NARX model obtained.
Starting from the output layer, this pruning procedure is
performed on each node in each layer. Using this new
algorithm with the standard backpropagation (SBP) and
over various initial conditions, we perform Monte Carlo
experiments leading to a drastic reduction in the
nonsignificant network hidden layer neurons.

1. INTRODUCTION

Multilayer perceptrons form a class of feedforward neural
networks [3]. In spite of their popular use, there is till a
lack of research work concerned with their architecture
design. One major problem is to determine the optimal
number of hidden units needed to mimic the system, by
only using the input-output patterns. In [2], the authors
used an iterative pruning agorithm to find the most
appropriate network size. Their method is based on
solving a linear system by least sguares identification
algorithm. Indeed, for large network size, the output
matrix may have a deficient rank and infinite solutions
may exist. The problem of model selection is handled
differently in [9], where the authors consider it as a
dtatistical problem and hence use the generalization of
Akaike's information criterion (AIC) [1]. In fact, the
problem is to find the optimal model in a family of
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networks and find the optimal parameter to approximate
the system's conditiona distribution which is
computationally consuming. In [4], a statistical stepwise
method for weight elimination has been used to solve the
architecture pruning problem. In their statistical approach
the authors fitted linear models to neural networks where
the SBP becomes mathematically not justified. In this
paper, we propose a new algorithm to solve the size
pruning problem of NN hidden layer units. Among its
different steps, this new approach uses in part the NARX
model order determination algorithm developed first by
Kortman-Unbehauen [5] [6]. Within this framework, the
NN may be seen as a Volterra series [8], specifically as a
NARX model. The paper is organized as follows: in the
second section, we show the equivalence between a
feedforward neural network and a NARX model. Thenin
section 3, we propose the new NN hidden layer’s neurons
pruning algorithm. Finally in section 4, some simulation
results highlight the effectiveness of the proposed
algorithm. In the appendix, we review the algorithm
proposed by Kortmann-Unbehauen to the order selection
of NARX models.

2. FEEDFORWARD NEURAL
NETWORKSEQUIVALENT TO NARX
MODEL

The general deterministic NARX input-output equation is
given by:
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where y(K) is the output signal and ;l its mean value, u(k)

the input signal, n the order of the input regression, mis
the order of the output regression, q the non linearity
order and d the system delay.

In the sequel, we give some results on the equivalence
between NN and NARX models. Equivalent results may
be found in [8]. Eg. (2.1) is a genera Volterra series
expansion describing the input-output relation of a
discrete time causal, nonlinear, time invariant system.

Let us consider a general feedforward neural network of
L layers and assume a single neuron taken at the "
hidden layer Fig. 1
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Fig. 1
If we consider a Taylor expansion of the sigmoid non
linearity to the second order, the output of this unit
becomes:

Ul = 1(T)=ag +agT +a,T? (2.2)
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Here the signals U™ are related to the layer (j-1). In

order to develop these signals as NARX models, the
following lemmais stated:
Lemma:

Let us define A, =w), X, =UUPand L= [
the following equal ity holds:
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Using this lemma and substituting Eqg. (2.3) into Eq.
(2.2), it is possible to derive the following output of the
hidden unit of figure (2.1) as:.
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For convenience the time index is omitted here. Equating
Eq.(2.1) to Eq.(2.5), the coefficients of the NARX model

can be expressed in terms of the NN weights and the
polynomials coefficients of the activation function as:
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Note that all the terms related to the sequence y(k) are
null. Finally by inspecting Eq. (2.5) and Eg. (2.6)-(2.9)
the output of a single neuron in a feedforward NN is a
NARX model. Consequently, we can expect that at a
given hidden layer j we have L; NARX models, this
yields of running the proposed pruning algorithm L; times
over j layers.

3.NN STRUCTURE DETECTION
ALGORITHM

3.1 Introduction

Polynomia filters or Volterra models is an important
class representing real world signals and systems [8].
Structure detection of these polynomia filters i.e.
selection of the statistically significant terms is treated in
the work of Kortman-Unbehauen [5] [6]. In the general
nonlinear model of Eq.(2.1), the number of possible terms
up to the degree q of the polynomial is givenin [5] by:
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as the parameter vector, and
m(k)= [1 L2 Y—— vr]T (33

asthe signal vector. Here
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Eqg. (2.1) can be expressed as:
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Minimizing the sum of the squares of the equation error
for N data points:
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yields a least-square estimation of E(k) [7].
3.2 New NN hidden layer neuron pruning algorithm.

In this section, we give the different steps of the new

algorithm proposed.

Step 1: application definition, choice of N input/ output

data patterns.

Step 2

1. arbitrary choice of a NN maximal structure namely
NN(L,Ly,....4 -1, Lg) Li and L, are fixed by the type
of application L is number of unitsin layer number
-1

2. randomly initialize the initial synaptic coefficients

3. perform the training of the neura network.

Step 3:

1. dtart from the output layer j=1-1;

2. determine al the output signals UkL° for k=1 to L,

function of all the hidden layer signals U b'-l for p=1

to L;. Put the signals in the form of Eq.(2.5), thus

define the vectors m[l .

3. use the Kortmann-Unbehauen algorithm (stepl up to
step 8 in [5] summarized in Appendix A) to find
significant terms entering in the computation of the
output layer signals. Then, find the new neura
network hidden layer namely New L,.;.

4. using the same initial conditions as in step 2.2,
reconstruct the new NN(Lj, Ly,..., Newl, _1,Lg)

perform the training of the new neural network

decrement j = j -1, andreturnto step 3.2

. testj. If j=0then go to step 4.

Step4:

1. we shall obtain a new
NN(L, Newly,..., Newl _1, L)

2. using the same initial condition, train the new

optimal net.

N oo

4. SSIMULATION RESULTS

In the classic application of the circle in the sguare
problem, the NN have to decide whether a point of
coordinate (x, y) varying from —0.5 to 0.5 isin the circle
of radius equal to 0.35. The starting NN structure chosen

isfirst NN(2, 6, 1) and then NN(2, 10, 1). It is shown that
when applying the new agorithm, we have a considerable
reduction in the range of ( ~20% up to 40% ) of the
number of units in the hidden layer for many trias of
initial condition (IC) realizations. We have also tested the
new algorithm on other applications. We find out that on
a Monte Carlo test of many initializing redlizations, we
have often a significant reduction in the number of hidden
layers units.

IC #Start | BIC #Hid. |BIC new | results
realiz | hidden | start units | NN
ation |units | NN new

NN
1 6 -3.829 |5 -4.096 | good
2 6 0.4672 |4 -2.953 | good
3 6 -3.918 |6 -3.898 | bad
4 6 -4.101 |4 -3.804 bad
5 6 -3.978 |5 -4.007 | good
6 6 -3.993 |5 -4,006 | good
7 6 -3.978 |5 -4.013 | good
8 6 -3.983 |4 -4,034 | good
9 6 -3.979 |4 -1.380 | bad
10 6 -4,060 |5 -4,006 | bad
11 10 -3.872 |7 -3.956 | good
12 10 -3.875 |9 -3.900 |good
13 10 -3.891 |7 -3.964 | good
14 10 -3.870 |8 -3.931 | good
15 10 -3.950 |6 -3.995 | good
16 10 -3.891 |7 -3.964 | good
17 10 -3.870 |8 -3.931 | good

Table. 1 results of the circle in the square problem

3.3 Comments.

The above table provides the results for the circle in the
square problem. The results are considered good if the
BIC  test of the new NN is lower than the BIC of the
starting large NN. In some cases, in spite of the reduction
of the number of hidden neurons, the BIC test criterion
remains greater than for the starting net see rows 3, 4, 9
and 10inthe Table. 1.

5. CONCLUSION

In this paper, we have presented a new structure detection
algorithm used to optimize the number of hidden units in
feedforward NN. The proposed agorithm together with
the back propagation training algorithm often leads to a
fairly smal network structure with satisfactory
classification accuracy.

" BIC (Beysian Information Criterion) see Appendix A



APPENDI X

Review of the Kortmann-Unbehauen NARX structure
detection algorithm:

Before reviewing Kortmann-Unbehauen NARX structure
detection algorithm [5] [6], let us define the information
criteria used to get reliable decision on the order detection
procedure:

a) the fina prediction error technique (FPE) [1]

Op N 5. \0 N +v[J
A =FPE(v)= N.L K)o N.L 3.7
v "Sﬁkéi (E“L nH\ﬁE( )

b) Akake's (AIC) [1]

A=AC (V)= N.Ln Ei% £Z(k)g+ 2v (39
BN &

information  criterion

c¢) Khinchin's law of iterated logarithm criterion
(LILC):

0q N 0
A=LILC(v)= N.LnG Zfz(k)EH 2v.LnLn(N)] (3.9)
k=1
Beysian Information criterion (BIC):

A=BIC(V)=N.L EI£ S 2(k)g Ln(N) (3.10)
= V)= N.LNn £ +Vv.Ln .
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Where v is the number of model parameters and N is the
number of data points. g(k) represents the residuals i.e.
£(K) = y(k) — y(Kk) . Therefore (k) is an estimation of the
equation error k). The optimal model is chosen by
decision criteria Eq. (3.7)-(3.10) when 4 is minimal.

Let us resume the main steps of the Kortmann-
Unbehauen algorithm for more details see.[5]:

Step 1: initialize maximal values of the backward shift of
the input output : n, and m, and the maximal degree q of
the polynomial to define the size of the nonlinear model
Eg. (2.1). Cdlculate r by Eqg.(3.1) Set the number of
parameter v=1. Specify the threshold & of the F-test.
Choose the information criteria for decision.

Step 2: Correlate all r possible terms with the output
signa y(k) and determine the normalized correlation
coefficients g; [5] [6] for each term.

Step 3: Select the term with the highest (partia)

correlation coefficient to determine the optimal variable

which has to be added to the model, i.e. the one that

contributes the greatest improvement to fit the

model: Vo fopt = max{p;}, increase the number of
|

parametersby oneto v — U +1.

Step 4: — Estimate the v parameter of the model with
recursive least squares algorithm (RLS) and calculate
ek)=y(k)-y(k) k=1..,N

- Determine the static variable (overall F-test) [5].

- Calculate the multiple correlation coefficient R? [5], R?
measures the proportion of the total variation about the
mean value Y of the output signal model.

- Compute the information criteria defined by EQq.(3.7)-
(3.10): FPE, AIC, LILC, BIC.,.

Step 5: Check the value of the overall F- test for
significance, and compare R? and the information criteria
with their values obtained for v-1 parameters of the
previous model. The procedure quits if the F-test shows
that the model equation is not significant or that the
information criteria are greater than the previous model.
Step 6: Compute for each term in the model, excluding
the mean value, the stochastic variable (partial F- test),
PFi=1.,0-1 uv>2

FPE; AIC; LILGC; BIC;, follow the rest of step 6 in[5]

Step 7 Examine the partial information criteria and the
partial F- values for all current model variables. Check
for the rejected terms and parameter estimation for the
remaining model, see detailsin [5].

Step 8: Compute the normalized partia correlation
coefficient of all possible remaining terms p; - for more
details see [5]-.

Keywords: Neural Network (NN), Standard Back-
Propagation (SBP), pruning algorithm, structure
detection, NARX.
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