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ABSTRACT
Nowadays, the most successful speech recognition systems
are based on stochastic finite-state networks (hidden Markov
models and n-grams). Speech translation can be accom-
plished in a similar way as speech recognition. Stochastic
finite-state transducers, which are specific stochastic finite-
state networks, have proved very adequate for translation
modeling. In this work a speech-to-speech translation sys-
tem, the EUTRANS system, is presented. The acoustic, lan-
guage and translation models are finite-state networks that
are automatically learnt from training samples. This sys-
tem was assessed in a series of translation experiments from
Spanish to English and from Italian to English in an applica-
tion involving the interaction (by telephone) of a customer
with a receptionist at the front-desk of a hotel.

1. INTRODUCTION

The present and most successful speech recognition systems
are based on theintegratedapplication of an acoustic and a
language model. This integration can be carried out due to
the use of finite-state networks as models, particularly Hid-
den Markov Models (HMM) for acoustic modeling and n-
grams or stochastic finite-state grammars for language mod-
eling. However, the present and most common speech-to-
speech translation systems are based on aserialarchitecture
composed by a speech recognition system followed by a lin-
guistic (or more recently, statistical [1]) text-to-text transla-
tion system.

The possibility of using stochastic finite-state networks
for limited-domain translation has been discussed in pre-
vious works [2, 3]. These models obviously support the
above mentioned conventionalserialarchitecture. More in-
terestingly, these models are also quite adequate for a fully
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embeddedarchitecture, where the acoustic models arein-
tegratedinto the translation model in a similar way as for
speech recognition. In any case, due to the finite-state na-
ture of all the involved models, the procedure for translation
in the serial architecture, or for integrated recognition-and-
translation in the embedded architecture, are based on the
very sameViterbi search engine.

One of the main objectives of the EUTRANSproject was
the development of machine translation systems for limited-
domain tasks with speech input [4]. Of particular interest
were finite-state transducers, which can be built automati-
cally from examples. EUTRANSwas a five-year joint effort
of four European institutions (ITI in València/Spain, RWTH
in Aachen/Germany, FUB in Rome/Italy and ZERES GmbH
in Bochum/Germany), partially funded by theOpen Do-
main of the Long-Term Research (LTR)ESPRIT program
of the European Union.

In this paper, we present the speech translation proto-
types that have been built using the methodologies devel-
oped and the data collected in the EUTRANS project.

2. FINITE-STATE TRANSDUCERS AND SPEECH
TRANSLATION

Let x be the acoustic representation of an input sentence.
The translation ofx into another language can be formu-
lated as the problem of searching for a sequence of wordsŝ
in the target language that maximize

ŝ = argmax
s

Pr(s|x). (1)

But translation can be also seen as a two steps process

x→ e→ s,

wheree is a possible decoding ofx in the source language
that can be translated into a sequence of words,s, in the



target language. With the assumption thatPr(x|e, s) does
not depend on the outputs, and using the max-operator as
an approximation to the sum,

ŝ ≈ argmax
s

max
e

Pr(e, s)·Pr(x|e). (2)

In practice,Pr(x|e) is modeled by acoustic models (HMMs)
andPr(e, s) by a translation model which, in our case, is a
stochastic finite-state transducer.

A stochastic finite-state transduceris a finite-state net-
work whose transitions are labeled by three items: (i) an
input symbol (a word from the input vocabulary), (ii) an
output string (a sequence of words from the output vocabu-
lary) and (iii) a transition probability. Fig. 1 shows a small
fragment of a stochastic finite-state transducer for Italian to
English translation.

una/a 0.5

la/the 0.5

camera/room  0.3

doppia/double room  0.3

singola/single room  0.7

camera/room  0.1

doppia/
with two beds  1.0

camera/     0.6λ

Fig. 1. Example of a stochastic finite-state transducer. “λ” de-
notes the empty string. The input sentence“una camera doppia”
can be translated to either“a double room” or “a room with two
beds”. The most probable translation is the first one with a proba-
bility of 0.09.

With such a translation model, the probabilityPr(e, s)
can be easily computed by summing up the probabilities of
all paths that account for the translation pair(e, s). The
probability of each path is the product of the probabilities
of the transitions involved in the path.

The maximisation of Eq. 2 can be performed by a search
process in anintegrated network, similar to the ones used
for speech recognition. Each transition of the stochastic
finite-state transducer is expanded into the concatenation of
HMMs of the phone units that define the input word of the
transition.

As in the case of standard speech recognition, in gen-
eral, this search process is a difficult computational prob-
lem [5]. Nevertheless, quite adequate approximations can
be obtained by using the Viterbi algorithm on atrellis as-
sociated to the input acoustic sequence and the integrated
network.

Obviously, for translating a given acoustic sequencex, a
serial architecturecan also be straightforward implemented
using stochastic finite-state transducers. Eq. 2 becomes

ŝ ≈ argmax
s

max
e

Pr(s|e) · Pr(e) · Pr(x|e).

The maximisation can be approximated as follows:

1. Word decodingof x by searching for a sequence of
wordsê such that

ê ≈ argmax
e

Pr(e) · Pr(x|e),

wherePr(x|e) is modeled by an acoustic andPr(e) a
language model.

2. Given ê, the translationof ê by searching for a se-
quence of wordŝs such that

ŝ ≈ argmax
s

Pr(s|ê) = argmax
s

Pr(ê, s),

wherePr(ê) is assumed to be independent ofs, and
Pr(ê, s) is modeled by a stochastic finite-state trans-
ducer.

3. THE EUTRANS SYSTEM

One of the most important aims of the EUTRANSproject
was to develop machine translation systems to assist human
to human (speech) communications [4]. More specifically, a
telephone speech input translation system, capable to trans-
late telephone calls from one language into another has been
developed.

This system is based on the ATROS (Automatically Train-
able Recognizer Of Speech) engine. ATROS is a continuous-
speech recognition/translation system which uses stochastic
finite-state models at all its levels: acoustic-phonetic, lexi-
cal and syntactic/translation. All these models can be ob-
tained in an automatic way. This makes the system easily
adaptable to different recognition/translation tasks. A first
version of ATROS for Spanish continuous speech recogni-
tion was presented in [6].

The ATROS system is completely coded in the C pro-
gramming language. It only needs a general-purpose CPU
without the help of any digital signal processor. This allows
a great portability and hardware independence. The system
currently runs on three different Unix platforms.

3.1. Acoustic, lexical and translation models

During signal analysis, short-term spectral analysis is per-
formed on short overlapping signal segments (frames). The
resulting power spectrum is warped according to the Mel-
scale, a filterbank is applied, and cepstral coefficients are
derived from the log filterbank outputs.

The different knowledge sources used in ATROS are:

• Acoustic-Phonetic models: Each (context-dependent)
phoneme (including silence) is described by a contin-
uous Gaussian mixture density HMM [7].



• Lexical models: Each word is represented by a stochas-
tic finite state automaton, automatically generated from
the allophonic description of the word.

• Translation models: Stochastic finite state transduc-
ers are built automatically from a training corpus of
paired sentences [8, 9].

3.2. Linguistic/translation decoding

The translation procedure of the ATROS system is based on
a Viterbi beam-search for the optimal path in a finite-state
network which integrates all the above mentioned models.

The translation of an input sentence is built by concate-
nating the output strings of the successive transitions that
compose the optimal path.

3.3. Speech-Input translation prototypes

Two speech-to-speech translation prototypes have been im-
plemented, one for Spanish to English and the other for Ital-
ian to English. In both cases, the general application was
the translation of queries, requests and complains made by
telephone to the front desk of a hotel. However, the Italian-
English task was significantly more complex and closer to a
real situation than the Spanish-English one.

The output English speech is obtained by using a free
software Text-To-Speech synthesizer which offers under-
standable speech at reasonably good quality.

EUTRANS-I: speech-input Spanish-English translation

This system is fully operational for both telephone and mi-
crophone input.

The acoustic models of phone units were left-to-right
continuous-density HMMs. They were trained with the HTK
Toolkit [10]. 26 Spanish monophones were used. The trans-
lation model was trained with the OMEGA transducer infer-
ence algorithm [8].

The text corpus was generated in a semi-automatic way
using travel booklets as a seed corpus. From a selected sub-
set of these text data, a multi-speaker Spanish speech corpus
was produced. The utterances were acquired using both a
microphone and a telephone.

The text training corpus was composed of 10,000 pairs
of sentences (132,198/ 134,922 running Spanish/ English
words). The size of the Spanish/English vocabularies were
686/513 and the corresponding bigram test set perplexities
were 8.6/ 5.2, respectively. The speech corpus for train-
ing (Spanish) phone HMMs was composed of 11,000 run-
ning words. The speech test set consisted of 336 Spanish
sentences (3,000 running words). It should be noted that
this corpus is significantly smaller than the overall corpus
produced in the project and used in [2, 3]. Recently, the

mentioned subset of 10,000 training pairs was established
as a more realistic training corpus for the kind of applica-
tion considered.

EUTRANS: speech-input Italian-English translation

This second system is also fully operational through stan-
dard telephone lines for remote (or local) operation.

The acoustic models of phone units were also left-to-
right continuous density HMMs. These models were trained
using a Viterbi approximation [7]. Best performance was
obtained with decision-tree clustered generalized triphones
(CART with 1,500 tied states plus silence). A linear dis-
criminant analysis (LDA) further improved the recognition
accuracy.

The translation model was trained with the “Morphic
Generator Translation Inference” technique introduced in [9].

The speech corpus consisted of acquisitions of real phone
calls to the front desk of a hotel, simulated usingWizard
of Oz techniques [11]. This corpus is highly spontaneous
and contains many non-speech artifacts. The text corpus
was obtained by manually transcribing the acquired Italian
utterances and translating them into corresponding English
sentences.

From this text corpus, 3,038 pairs of sentences (61,423/
72,689 running Italian/English words) were used for train-
ing the translation model. The Italian/English vocabular-
ies had 2,459/1,701 words and the corresponding bigram
test set perplexities were 31/25, respectively. The speech
training corpus used to train the (Italian) phone models was
composed of 52,511 running words. The speech test set
consisted of 278 Italian sentences (5,381 running words).

3.4. Prototype assessment

To assess the performance of the systems, two error criteria
were used. On the one hand, the(Recognition) Word Er-
ror Rate (WER)for the decoding of the speech input. On
the other hand, theTranslation Word Error Rate (TWER),
i.e. the WER obtained by comparing each automatically
translated sentence with asingle reference target sentence.
Because most source-language sentences allow for many
correct target translations, TWER should be considered a
pessimistic error estimation. This is particularly true in the
case of the Italian-English application due to the free-form
human-produced test set reference translations.

The Italian-English EUTRANSprototype achieves quite
acceptable response time (about three times real time or
less), while the Spanish-English EUTRANS -I prototype of-
ten runs in less than real time, even on low-cost Pentium
machines.

Assessment results of the EUTRANS -I prototype are pre-
sented in Table 1.



Table 1. Assessment results of the EUTRANS -I prototype
(Tel = telephone, Mic = microphone)

Models and conditions WER(%) TWER(%)

OMEGA Tel integrated 12.8 15.4
OMEGA Tel serial 3-Gr 11.1 14.1
OMEGA Mic integrated 5.1 6.8
OMEGA Mic serial 3-Gr 4.7 6.8

In the original experiments with the EUTRANS -I proto-
type [3], the results with microphone input in the integrated
architecture were better than those reported here. The main
reason was that in those experiments a huge amount of train-
ing data was used to train the finite-state transducers. In
the present experiment, in order to approach more realis-
tic conditions, the amount of training data was dramatically
reduced.

Assessment results of the EUTRANSprototype are pre-
sented in Table 2. Using transducers trained with OMEGA
the results achieved were clearly worse than the ones achieved
by MGTI and are not reported here for the sake of brevity.

Table 2. Assessment results of the EUTRANSprototype.
Models WER(%) TWER(%)

MGTI serial 3-Gr 22.1 37.9
MGTI integrated 32.0 44.8

Both for EUTRANS -I and for EUTRANS , the results
presented with a serial architecture were achieved by using
a trigram language model for the input speech decoding.

4. DISCUSSION AND CONCLUSIONS

Two prototypes have been implemented for speech-to-speech
translation. One for translation from Italian to English and
another for translation from Spanish to English. Both sup-
port all kinds of finite-state translation models. They run on
low-cost hardware and are fully accessible through standard
telephone lines. Response times are close to or better than
real time.

From our present results, it appears that the integrated
recognition/translation architecture performs similar or worse
than the serial coupling of a speech recognizer and a trans-
lation module. We believe, however, that this is caused by
insufficient training data for transducer learning, as sug-
gested by our previous results with simpler tasks and/or
larger training sets [2, 3].
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