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ABSTRACT embeddedarchitecture, where the acoustic models iare
Nowadays, the most successful speech recognition systemtegratedinto the translation model in a similar way as for
are based on stochastic finite-state networks (hidden Markowpeech recognition. In any case, due to the finite-state na-
models and n-grams). Speech translation can be accomture of all the involved models, the procedure for translation
plished in a similar way as speech recognition. Stochasticin the serial architecture, or for integrated recognition-and-
finite-state transducers, which are specific stochastic finite-translation in the embedded architecture, are based on the
state networks, have proved very adequate for translationvery sameviterbi search engine.
modeling. In this work a speech-to-speech translation sys-  One of the main objectives of theJE RANS project was
tem, the D TRANS system, is presented. The acoustic, lan- the development of machine translation systems for limited-
guage and translation models are finite-state networks thatlomain tasks with speech input [4]. Of particular interest
are automatically learnt from training samples. This sys- were finite-state transducers, which can be built automati-
tem was assessed in a series of translation experiments fronsally from examples. ETRANSwas a five-year joint effort
Spanish to English and from Italian to English in an applica- of four European institutions (ITl in V@hcia/Spain, RWTH
tion involving the interaction (by telephone) of a customer in Aachen/Germany, FUB in Rome/ltaly and ZERES GmbH

with a receptionist at the front-desk of a hotel. in Bochum/Germany), partially funded by tt@pen Do-
main of the Long-Term Research (LTRBSPRIT program
1. INTRODUCTION of the European Union.

In this paper, we present the speech translation proto-
The present and most successful speech recognition systerrfypes that have been built using the methodologies devel-
are based on thiategratedapplication of an acoustic and a oped and the data collected in the'ERANS project.
language model. This integration can be carried out due to
the use of finite-state networks as models, particularly Hid- 2. FINITE-STATE TRANSDUCERS AND SPEECH
den Markov Models (HMM) for acoustic modeling and n- TRANSLATION
grams or stochastic finite-state grammars for language mod-
eling. However, the present and most common speech-to-Let = be the acoustic representation of an input sentence.
speech translation systems are baseds®rialarchitecture ~ The translation ofc into another language can be formu-
composed by a speech recognition system followed by a lin-lated as the problem of searching for a sequence of words
guistic (or more recently, statistical [1]) text-to-text transla- in the target language that maximize
tion system.

The possibility of using stochastic finite-state networks
for limited-domain translation has been discussed in pre-
vious works [2, 3]. These models obviously support the But translation can be also seen as a two steps process
above mentioned conventioregrial architecture. More in-
terestingly, these models are also quite adequate for a fully

“THIS WORK HAS BEEN PARTIALLY SUPPORTED BY THEEU-  Wheree is a possible decoding of in the source language
ROPEAN UNION UNDER GRANT IT-LTR-0S-30268. that can be translated into a sequence of wosdén the

§ = argmaxPr(s|z). (1)
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target language. With the assumption tRafx|e, s) does The maximisation can be approximated as follows:
not depend on the output and using the max-operator as

an approximation to the sum, 1. Word decodingof x by searching for a sequence of

wordsé such that
S~ argmaxmax Pr(e, s)-Pr(zle). (2)
’ é ~ argmaxPr(e) - Pr(x|e),
In practice Pr(z|e) is modeled by acoustic models (HMMs) e
andPr(e, s) by a translation model which, in our case, is a
stochastic finite-state transducer.
A stochastic finite-state transducir a finite-state net-

work whose transitions are labeled by three items: (i) an 2. Givené, thetranslationof é by searching for a se-

wherePr(z|e) is modeled by an acoustic aifd(e) a
language model.

input symbol (a word from the input vocabulary), (ii) an quence of words such that

output string (a sequence of words from the output vocabu-

lary) and (iii) a transition probability. Fig. 1 shows a small § ~ argmaxPr(s|é) = argmaxPr(é, s),
fragment of a stochastic finite-state transducer for Italian to s s

English translation. wherePr(é) is assumed to be independentspfand

doppial Pr(é, s) is modeled by a stochastic finite-state trans-
O with two beds 1.0 ducer.

camera/room 0.3

camera/room 0.1

una/a 0.5 3. THE EUTRANS SYSTEM

doppia/double room_0.3 @

One of the most important aims of theJEERANS project
was to develop machine translation systems to assist human

camera/A 0.6

la/the 0.5 to human (speech) communications [4]. More specifically, a
singola/single room 0.7 telephone speech input translation system, capable to trans-
late telephone calls from one language into another has been
Fig. 1. Example of a stochastic finite-state transducey’ de- developed.
notes the empty string. The input senteficea camera doppia” This system is based on the ATROS (Automatically Train-

can be translated to eith& double room” or “a room with two
beds”. The most probable translation is the first one with a proba-
bility of 0.09.

able Recognizer Of Speech) engine. ATROS is a continuous-
speech recognition/translation system which uses stochastic
finite-state models at all its levels: acoustic-phonetic, lexi-
cal and syntactic/translation. All these models can be ob-
ftained in an automatic way. This makes the system easily
adaptable to different recognition/translation tasks. A first
version of ATROS for Spanish continuous speech recogni-
tion was presented in [6].
The ATROS system is completely coded in the C pro-

With such a translation model, the probabillRy(e, s)
can be easily computed by summing up the probabilities o
all paths that account for the translation p&irs). The
probability of each path is the product of the probabilities
of the transitions involved in the path.

The maximisation of Eq. 2 can be performed by a search ina | it onl q | CPU
process in arnntegrated networksimilar to the ones used gramming language. It only needs a general-purpose

for speech recognition. Each transition of the stochastic without the help of any digital 5‘9‘.“"" processor. This allows
finite-state transducer is expanded into the concatenation oft great portability and hardware independence. The system

HMMs of the phone units that define the input word of the currently runs on three different Unix platforms.
transition. ) ) )
As in the case of standard speech recognition, in gen-3-1. Acoustic, lexical and translation models

eral, this search process is a difficult computational prob- ping signal analysis, short-term spectral analysis is per-
lem [5]._ Neverthel_ess, quite ad_equate_ approximations cang,med on short overlapping signal segmefitarie3. The

be obtained by using the Viterbi algorithm ortrallis as-  yag1ting power spectrum is warped according to the Mel-
sociated to the input acoustic sequence and the integrated qie 4 filterbank is applied, and cepstral coefficients are
network. derived from the log filterbank outputs.

Obviously, for translating a given acoustic sequence The different knowledge sources used in ATROS are:
serial architecturecan also be straightforward implemented

using stochastic finite-state transducers. Eq. 2 becomes e Acoustic-Phonetic modelsEach (context-dependent)
phoneme (including silence) is described by a contin-

§ ~ argmaxmax Pr(s[e) - Pr(e) - Pr(zle). uous Gaussian mixture density HMM [7].
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e Lexical models Each word is represented by a stochasmentioned subset of 10,000 training pairs was established
tic finite state automaton, automatically generated fronas a more realistic training corpus for the kind of applica-
the allophonic description of the word. tion considered.

e Translation models Stochastic finite state transduc- ) ) ) )
ers are built automatically from a training corpus of EUTRANS: speech-input Italian-English translation

paired sentences [8, 9]. This second system is also fully operational through stan-

dard telephone lines for remote (or local) operation.
3.2. Linguistic/translation decoding The acoustic models of phone units were also left-to-

The translation procedure of the ATROS system is based or]right continuous density HMMs. These models were trained

a Viterbi beam-search for the optimal path in a finite-state using a W?rb' ap_prommatmn [7]. Best perfqrmanqe was
network which integrates all the above mentioned models. obtained W'th deC|S|_on-tree cIustered_ generahzeq tnpho_nes

The translation of an input sentence is built by concate- f}ﬁgﬁgﬂ'?ﬂ;l’sgg (t:_eg A‘;’tﬁ:retieprhij; S:L?/r;%ezﬁeﬁel?c?arzi t(ijclil-
nating the output strings of the successive transitions thataccuracy y P 9
compose the optimal path. ' . . . .

P P P The translation model was trained with the “Morphic

) Generator Translation Inference” technique introduced in [9].
3.3. Speech-Input translation prototypes The speech corpus consisted of acquisitions of real phone

Two speech-to-speech translation prototypes have been im¢allS to the front desk of a hotel, simulated usWgard
plemented, one for Spanish to English and the other for Ital- °f Oztechniques [11]. This corpus is highly spontaneous
ian to English. In both cases, the general application was@nd contains many non-speech artifacts. The text corpus

the translation of queries, requests and complains made byV@s obtained by manually transcribing the acquired Italian
telephone to the front desk of a hotel. However, the ltalian- utterances and translating them into corresponding English

English task was significantly more complex and closer to a S€ntences. _
real situation than the Spanish-English one. From this text corpus, 3,038 pairs of sentences (61,423/

The output English speech is obtained by using a free 72,689 running Italian/English words) were used for train-

software Text-To-Speech synthesizer which offers under-ing the translation model. The Italian/English vocabular-
standable speech at reasonably good quality. ies had 2,459/1,701 words and the corresponding bigram

test set perplexities were 31/25, respectively. The speech
training corpus used to train the (Italian) phone models was
composed of 52,511 running words. The speech test set
This system is fully operational for both telephone and mi- consisted of 278 Italian sentences (5,381 running words).
crophone input.
The acoustic models of phone units were left-to-right 5 4 Prototype assessment
continuous-density HMMs. They were trained with the HTK
Toolkit [10]. 26 Spanish monophones were used. The trans-To assess the performance of the systems, two error criteria
lation model was trained with the OMEGA transducer infer- were used. On the one hand, ttiRecognition) Word Er-
ence algorithm [8]. ror Rate (WER)or the decoding of the speech input. On
The text corpus was generated in a semi-automatic waythe other hand, th&ranslation Word Error Rate (TWER)
using travel booklets as a seed corpus. From a selected sub-€. the WER obtained by comparing each automatically
set of these text data, a multi-speaker Spanish speech corpuganslated sentence withsingle reference target sentence
was produced. The utterances were acquired using both d8ecause most source-language sentences allow for many
microphone and a telephone. correct target translations, TWER should be considered a
The text training corpus was composed of 10,000 pairs pessimistic error estimation. This is particularly true in the
of sentences (132,198/ 134,922 running Spanish/ Englishcase of the Italian-English application due to the free-form
words). The size of the Spanish/English vocabularies werehuman-produced test set reference translations.
686/513 and the corresponding bigram test set perplexities  The Italian-English BETRANS prototype achieves quite
were 8.6/ 5.2, respectively. The speech corpus for train-acceptable response time (about three times real time or
ing (Spanish) phone HMMs was composed of 11,000 run- less), while the Spanish-EnglislUERANS-I prototype of-
ning words. The speech test set consisted of 336 Spanistien runs in less than real time, even on low-cost Pentium
sentences (3,000 running words). It should be noted thatmachines.
this corpus is significantly smaller than the overall corpus Assessment results of th&JERANS-| prototype are pre-
produced in the project and used in [2, 3]. Recently, the sented in Table 1.

EUTRANS-I: speech-input Spanish-English translation



Table 1. Assessment results of theJERANS-I prototype

(Tel = telephone, Mic = microphone) [1]
| Models and conditions | WER(%) TWER(%)]
OMEGA Tel integrated 12.8 154
OMEGA Tel serial 3-Gr| 11.1 14.1
OMEGA Mic integrated | 5.1 68 [2]
OMEGA Mic serial 3-Gr 4.7 6.8
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