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ABSTRACT

This paperconcernstheunderdeterminedcaseof theconvolutive
sourceseparationproblem,i.e. thesituationwhenthenumberof
observedconvolutively mixedsignalsis lower thanthenumberof
sources.We proposea criterion andassociatedalgorithmwhich,
unlike classicalapproaches,make it possibleto performthe sep-
arationof a subsetof thesesourcesby exploiting their assumed
non-stationarityproperties.This approachusesthe second-order
statisticsof the signalsandadaptsthe filters of a direct separat-
ing systemso as to cancelthe ”dif ferential cross-correlation”of
signalsderivedby this system.This new methodis relatedto the
generaldifferential sourceseparationconceptthat we proposed.
Its effectivenessis shown by meansof numericaltests.

1. PROBLEM STATEMENT

Blind sourceseparation(BSS)methodsaim at estimatinga setof���
sourcesignals�����	��
 from a setof

�
�
observedsignals�����	��
 ,

whicharemixturesof thesesourcesignals[1],[2]. Themixedsig-
nals � � �	��
 aretypically providedby sensors,andin theso-called
convolutive mixture model,eachpropagationpathfrom source�
to sensor� is representedby a filter, whosetransferfunctionis de-
noted ��� ������
 hereafter. In the � domain,theoverall relationship
betweenthecolumnvectors������
 and ������
 of sourcesandobser-
vationsthenreads: ������
! "�#����
$������
&% (1)

where the elementsof the mixing matrix �#����
 are the transfer
functions ��� �'����
 . Most investigationshave beenperformedin the
casewhen: i)

� �  � � , sothatthematrix �#����
 is square,andii)
this matrix is invertible. TheBSSproblemthenbasicallyconsists
in determininganestimateof the inverseof �(����
 , soasto restore
the sourcesignalvector ������
 from the observation vector ������

in (1). Variousmethodshave beenproposedto this end,basedon
theassumedstatisticalindependenceor uncorrelationof thesource
signals(seee.g. the surveys, resp. in [1] for the specificcaseof
linearintantaneousmixturesandin [2] for theconvolutive case).

As statedabove, mostof theseinvestigationswereperformed
undertheassumption

� �  � � . In many practicalsituationshow-
ever, only a limited numberof sensorsis acceptable,duee.g. to
costconstraintsor physicalconfiguration,whereasthesesensors
receive a larger numberof sources. This underdeterminedsitu-
ation correspondingto

����)*���
hasbeenconsideredby a few

authors,mainly in therestrictedcaseof linear instantaneousmix-
tures(seee.g. [3] andreferencestherein,[4]). In a previouspaper
[5], we also introduceda general”dif ferentialBSS” conceptfor

treatingthe underdeterminedcase. We defineda versionof this
conceptby exploiting the assumednon-stationaritypropertiesof
thesources,i.e. thevariationsof thestatisticsof a subsetof these
sourcesover time. Using the ”dif ferentialstatistics”of the latter
sourcesthenmakesit possibleto separatethemexactly (whereas
the other sourcesyield someadditional”noise” contributions in
theoutputsof theproposedsystem).We introduceda specificdif-
ferentialBSScriterionresultingfrom this generalconceptandin-
tendedfor linearinstantaneousmixtures.Thisspecificapproachis
basedontheoptimizationof the”dif ferentialnormalizedkurtosis”
thatwe introducedto this end.

The currentpaperpresentsmajor extensionsof our previous
work on underdeterminedBSSfrom two pointsof views. On the
onehand,we heredevelopa practicalapproachintendedfor con-
volutivemixtures. On theotherhand,thecriterionandalgorithm
proposedbelow are basedon our generaldifferential BSS con-
ceptbut arenot mereconvolutive extensionsof the onesthat we
previously developedfor linear instantaneousmixtures. Instead,
they useother statisticalsignal parametersandadaptationrules.
Thesedifferencesstemfrom the well-known fact that linear in-
stantaneousBSS can only be performedby resortingto higher-
orderstatisticsif nospecificassumptionsaremadeonthesources,
whereas(strictly causal[6]) convolutiveBSSmayalsobeachieved
by meansof second-orderstatistics.By usingthelatterapproach,
we here introducea methodbasedon correlation(i.e. second-
order)parametersandtheir cancellation,which is to becontrasted
with our previousapproachbasedon normalizedkurtosis (i.e.
fourth-orderparameter)andits min/maximization.

2. PROPOSEDAPPROACH

2.1. Redefiningthe classicalapproach

The investigationreportedin this paperis basedon the classical
decorrelationapproachthat hasbeenusedby variousauthorsfor
solving the basicconfigurationof the convolutive BSS problem
[6]-[9]. We thereforefirst redefinethis classicalmethodin a way
which is suitedto the approachthat we will then useto extend
it. The consideredbasicconfigurationinvolves two convolutive
mixturesof two uncorrelatedsources,definedin the � domainas:�,+-����
. �/+0����
213��+54�����
$�647����
 (2)� 4 ����
. � 4&+ ����
$� + ����
�1�� 4 ����
&% (3)

where �#+548����
 and ��4&+-����
 arestrictly causalMA filters andtheir
ordersare(atmost)equalto 9 . Thesemixedsignalsareprovided
to a separatingsystem,which aimsat restoringthesourcesignals
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Fig. 1. Separatingsystembasedon a directstructure.

from them. Theversionof this systemconsideredhereis thedi-
rect structureshown in Fig. 1, where @ +54 ����
 and @ 4&+ ����
 arethe
transferfunctionsof strictly causal9BA	C -orderMA filters. Theco-
efficientsof eachof thesefilters evolve vs. time andthevalueof
the D A	C coefficient,with D�EGFIH7%&9"J , attime � isdenotedKL� �'�	�M%NDO
 .
Thesecoefficientsareadaptedsoasto decorrelatethetime-shifted
intermediatesignalsP + �	��
 and P 4 �	��
 of theseparatingsystem,i.e.
soasto fulfill thefollowing criterion:Q�R8S�R8T �	�M%��/U�DV
W "X'%Y�[Z \�]E_^�H�%&`�a�%ND�EGFIH7%&9"J�% (4)

where
Q[bdc �	e + %�e 4 
f g(^0h?�	e + 
$i(�	e 4 
ja denotes the

cross-correlationof any coupleof signalsandwhereall thesignals
consideredin this paperareassumedto bezero-meanfor simplic-
ity. Theclassicalstochasticalgorithmusedin practiceto fulfill the
above criterion consistsin adaptingeachfilter coefficient at each
time � accordingto therule:K � � �	�61"H7%jDO
. K � � �	�W%�DO
k1mlkP � �	��
$P � �	�/U�DV
�[Z \�]E_^�H�%&`�a�%ND�EGFnH�%&9oJqp (5)

Thisalgorithmactuallyimplementstheabovecriterion,asits equi-
librium pointscorrespondto:g(^0KL� �'�	�]1"H7%NDO
,UrKL� �'�	�M%NDV
jas X�tZ 3�]Er^�H�%&`�a�%ND/EuFnH�%&9oJq% (6)

whichis clearlyequivalentto (4). Themotivationfor selectingthis
criterion(andassociatedalgorithm)maybeexplainedasfollows.
Theinternalstateof theseparatingsystemof Fig. 1 is definedby
thetransferfunctions @[+54�����
 and @v4&+0����
 . Thestateof interestin
theBSSproblemis theso-called”separatingstate”,which yields
non-permutedseparatedsignalson thesystemoutputs,i.e:w �j����
! o�x�N����
&%y�WEr^�H�%&`�a (7)

andwhichmaybeshown to bedefinedby:@ � � ����
W "� � � ����
&%z�[Z \�6E_^�H7%&`�a�p (8)

The criterion to be usedshouldthereforebe selectedso that it is
fulfilled at theseparatingstate. It may bechecked easilythat the
criteriondefinedby (4) meetsthis requirement.

2.2. Limitations of the classicalapproach

Now considerthesituationwhentheavailabletwo mixedsignals� + ����
 and � 4 ����
 containnot only the above contributions from

sources� + ����
 and � 4 ����
 , but alsocontributionsfrom anarbitrary
numberof additionalsources�x{�����
 to �6|�}�����
 , sothat:

� + ����
' ~� + ����
k13� +54 ����
$� 4 ����
�1 | }� �d� { � + ������
$�
�'����
 (9)

�k47����
' ���4&+0����
$�/+0����
21\�]4�����
�1 |�}��d� { ��4 � ����
$� � ����
&% (10)

where
���

is the overall numberof sourcesandwherethe addi-
tional transferfunctions � � � ����
 introducedhereare alsostrictly
causal 9 A	C -order (or less)MA filters. Before focusingon the
structureof Fig. 1, we considerthe completeclassof separating
systemswhich processthesemixed signalsin a linear (convolu-
tive) way, basedon themotivationspresentedin [5]. Thedesired
”optimum operation”of thesesystemsfor the consideredmixed
signalsmay be definedas follows. By linearly combining the
mixedsignals,only a singlesourcecontribution maybecancelled
in any (non-zero)outputof suchsystemsfor arbitrarymixtures.
If ��+0����
 and �]4�����
 areconsideredas the main signalsof inter-
est,i.e. the”useful signals”to beseparated,onewould like these
signalsto appearresp. only in the outputs

w + ����
 and
w 4 ����
 of

theseparatingsystem. ��+0����
 and �64�����
 arethenthesignalsthat
shouldbecancelledin systemoutputs.Theseoutputswould then
alsocontaincontributionsfrom sources� { ����
 to � | }�����
 , which
arethenconsideredasadditionalundesirablesources,i.e. ”noise”.
The consideredseparatingsystemwould thus perform what we
call the”partial BSS” of � + ����
 and � 4 ����
 .

Thestructure of theseparatingsystemshown in Fig. 1 is po-
tentially suitedto this optimum operation,in the sensethat it is
ableto achieve the partial BSSof �/+0����
 and �64�����
 : this partial
BSSoccurswhen(8) is met,which heredefinesthe ”partial sep-
aratingstate”. However, theoverall classicalapproachdefinedin
Subsection2.1is notableto achievethispartialBSS,duethecrite-
rion (andassociatedalgorithm)thatit uses,aswill now beshown.
By combiningthemixing equations(9)-(10)andtheinternalequa-
tions of the separatingsystemof Fig. 1, the intermediatesignalsP � �	��
 of thelattersystemmaybeexpressedas:

P � �	��
W |�}� � � +
4���� � +�� � � �	�M%�e~
$� � �	��Ure�
&% (11)

where � � � �	�W%�e�
 are the time-varying coefficients of the overall
filterscombiningthefilters �[� ������
 and @�� ������
 . Thecross-correlation
of thesesignalsfor any separatingsystemstatethenreads:

Q R S R T �	�W%j�/U�DV
� |�}�� � +
4���� � +

4��� � � + F � � � �	�M%je�
 � � � �	��UuD2%��	
Q��d� �	�/Uuer%���UuD(Uu�	
5�!p (12)

At thepartialseparatingstate,thecontributionsof ��+0����
 and�]4�����

in (12) maybeshown to disappear, while thecontributionsof the
noisesourcesremain. In otherwords,in thecaseof noisymixed
signals,thecross-correlationvalues

Q R S R T �	�M%��#U�DV
 arenon-zero
atthepartialseparatingstate.Theclassicalapproachof Subsection
2.1 cannotthenconverge to this state,asit adaptsthe separating
filter coefficientssoasto reacha statewherethecross-correlation
values

Q R S R T �	�M%j��UuDO
 arecancelled.Thisapproachthenfails to
achieve partialBSS.



2.3. Proposeddiffer ential approach

We herestill considerthenoisymixedsignalsintroducedin Sub-
section2.2.Basedon theabove results,we againusethestructure
of Fig. 1, but wehereaimat introducinganew criterion(andasso-
ciatedalgorithm)for adaptingits filter coefficients. This criterion
is designedso that the resultingmethodbecomesableto achieve
the partial BSSof �/+0����
 and �]4�����
 . The proposedapproachis
basedon thegeneraldifferentialBSSconceptthatwe introduced
in [5]. It requiresthe sources� + ����
 and � 4 ����
 to be long-term
non-stationary, whereastheothersourcesshouldbelong-termsta-
tionary. In other words, the useful (resp. noise)sourcesshould
have different(resp. identical)second-orderstatisticsat times � +
and ��4 whenthesetimesareseparatedby a ”long” period. This
long periodis definedby contrastto eachshortperiodassociated
to a singletime � + or � 4 , over which samplestatisticsof thesig-
nalsaremeasuredin practice,andover which all signalsshould
thereforebeshort-termstationarity. Themain ideaof differential
BSSthenconsistsof consideringthedifferencebetweenthesignal
statisticsresp. associatedto �M+ and ��4 , so that the contributions
of the long-termstationary(i.e. noise)sourcesare cancelledin
the resultingdifferentialstatisticalparameters.We thusget back
into the classicalnoiselessconfigurationfrom the point of view
of theresultingadaptationcriterion. To apply this generalideato
the specificapproachintroducedin this paper, we first definethe
”dif ferentialcorrelationfunction”, which reads:�6Q bdc �	�M+-%���47%j�q+L%���4-
� Q b&c �	��4�Uu�q+-%���4�U���4L
U Q b&c �	�M+�Uu�q+L%j�M+!UG��4-
&% (13)

where �M+ and ��4 are two referencetimes and �q+ and ��4 are two
lags. When consideringthe differencebetweenthe two values,
resp.associatedto �� o� + and �~ o� 4 , of thecorrelationinvolved
in theclassicalcriterion(4), we obtain:Q�R8SqR0T �	� 4 %�� 4 UuDV
�U Q�R8SqR0T �	� + %�� + UuDV
 �6Q R S R T �	�M+-%���47%jX�%jDV
&p (14)

We then usethe sameseparatingfilter valuesfor �� �� + and�~ "��4 , andthesameprincipleis alsoappliedto any time-shifted
versionof this coupleof times. The first overall filter coefficient

� � � �	�W%�e�
 involved in (12) thenhasthe samevaluefor �" �� +
and �u ���4 andthis commonvalueis simply denoted� � � �	�M%�e~
hereafter. Thecoefficient � � � �	��U\D?%j�	
 in (12) leadsto thesame
phenomenon,sothatcombining(12)with (14)yields:

�6Q R S R T �	�W+-%���47%�X'%NDV
� |�}� � � +
4���� � +

4��� � � + F � � � �	�M%�e�

� � � �	��UuD2%j��
 �6Q��d� �	� + %�� 4 %�er%jD
1\�	
 � p (15)

This equationholdsfor any stateandany typeof sources.When
the noisesources� { ����
 to � | }�����
 have the above-mentioned
long-termstationarityproperty, their differentialautocorrelations�6Q � � ��p 
 containedin (15) areequalto zero,sothatonly theuse-
ful sources� + ����
 and � 4 ����
 remain. In otherwords, from the
point of view of thenew parameter

�6Q R S R T �	�M+L%���47%NX�%jDO
 thatwe
introduced,we actually get back in the classical2-sourceto 2-
sensorsconfiguration,exceptthat this new parameterdependson
thedifferentialauto-correlationfunctionsof thesources,insteadof
theplainauto-correlationswhichappearin theclassicalapproach.
It maythenbeshown easilythat

�6Q[R7SqR8T �	� + %�� 4 %NX�%jDV
� "X at the

partial separatingstatewhereas,if thesources� + ����
 and � 4 ����

are long-termnon-stationary,

�6Q R S R T �	�M+-%���47%jX'%jDV
3Z �X for all
otherstates(exceptfor somepossiblespuriousstates,which cor-
respondto thosethatmayexist for theclassicalapproach).Thecri-
terionthatweeventuallyproposefor performingthepartialBSSof��+0����
 and �64�����
 in thecaseof noisymixturesthereforeconsists
in adaptingall separatingfilter coefficientssoasto achieve:�6Q R S R T �	�M+-%���47%jX�%NDO
W "X'%Y��Z 3�]E�^�H�%&`�a�%ND�EGFnH�%&9oJ�p (16)

A practicalstochasticalgorithmwhich implementsthis criterion
maythenbederivedby adaptingtheapproachthatwedefinedSub-
section2.1for theclassicalalgorithm.It reads:K � � �	�]1"H7%NDO
. K � � �	�W%NDV
k1ml � F P � �	��4-
$P � �	��4vUuDV
UtP��N�	� + 
$P����	� + UuDO
5J�%��Z \�6E_^�H�%&`�a�%jD/E�FnH�%N9oJ (17)

anddeservesthefollowing comments.Theclassicalalgorithm(5)
performsa sweepover thedataby usinganincreasingtime index� . Thealgorithmproposedhereis alsobasedon a singlesweep,
but eachstepof this sweepinvolves two points in the datatime
series,correspondingto the indices �M+ and ��4 . The difference
betweentheseindicesis typically kept constant(and ”long”, as
definedabove),sothatthesweepis performedin parallelover two
time-shiftedversionsof thedata.Theconsideredcoupleof times
insidethesedatais thendefinedby a single index, denoted� in
(17),which is e.g.equalto � + or � 4 . Theadaptationgainsl + andl�4 in (17) typically have thesameabsolutevalue,but their signs
areselectedsothat:� lW+ �6� �-� �	�M+-%���4-
� ¡Xl 4 �6�,�8¢ �	� + %�� 4 
� ¡X (18)

wherewedefinethedifferentialpowerof any signal h?�	��
 between
times � + and � 4 as:�6� b �	�M+-%���4-
W Q b �	��47%���4-
,U Q b �	�M+-%��M+&
&p (19)

The condition (18) is basedon stability requirements,to be re-
portedin a futurepaper.

3. NUMERICAL TESTS

Wehavevalidatedtheaboveapproachbymeansof testsperformed
with two artificial convolutive mixturesof threesyntheticrandom
sources.Theusefulsources��+L�	��
 and �247�	��
 consistsof 100000
samples,split in two 50000-sampleperiods.In eachof theseperi-
ods,thesesourcesareindependentandeachof themis stationary,
binary-valuedandequiprobable.They take thevalues£(H in their
first periodand £
` in the secondone. The noisesource � { �	��

is uniformly distributedover the range FnU
H7%&1(HdJ in both periods.
Thesethreesourcesare mixed accordingto (9)-(10), wherethe
mixing filters associatedto theusefulsourcesaresetto:��+54�����
.¤ U�X'p ¥�¦�H-�V§ + 1\X'pIH-¥7¨��V§ 4 1mX'p X�¦�H-�V§ { (20)� 4&+ ����
.¤ U�X'p ¥�`7©7�V§ + UuX'pIH-¦8ª��V§ 4 1mX'p X�`7©7�V§ { % (21)

whereasthemixing filters associatedto thenoisesourceare:

� +q{ ����
� �V§ + 1 `¥ �V§ 4 1 H¥ �'§ { (22)

� 4�{ ����
� H¥ � § + 1 `« � § 4 1 H« � § { p (23)
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Fig. 2. Evolutionof thecoefficients KL� �'�	�M%jDV
 of thestrictly causal
MA separatingfilters for noisy mixtures(left column: @[+54�����
 ,
right column: @v4&+0����
 ).
Fig. 2 representstheevolution of thecoefficients K � � �	�M%jDV
 of the
separatingfilters when the above-definedparallel sweepis per-
formed over both 50000-sampleperiodsand thesefilter coeffi-
cientsareadaptedby meansof theproposedalgorithm(17). These
coefficientsconvergeto valueswhicharecloseto thoseof themix-
ing filters � +54 ����
 and � 4&+ ����
 . This shows theability of thepro-
posedapproachto achieve the partial BSSof �/+0����
 and �64�����

definedby (8), althoughthe contributions from the noisesource� { ����
 containedin theprocessedmixedsignalscoversignificantly
largerrangesthanthoseof theusefulsources.This insensitivity to
thepresenceof noisesourcesis alsoconfirmedby thefactthatthe
above separatingfilter coefficient trajectoriesarealmostidentical
to thoseobtainedwith theproposedapproachin thenoiselesscase,
i.e. for � +q{ ����
W BX and � 4�{ ����
W "X , whichareshown in Fig. 3.

4. CONCLUSIONS AND FUTURE WORK

In thispaper, weproposedacriterionandassociatedalgorithmfor
adaptingthefilters of a direct separatingsystemsoasto perform
the separationof two non-stationarysourcesfrom two convolu-
tive mixtureswhich alsocontainanarbitrarynumberof stationary
noisesources. The proposedalgorithm consistsof a stochastic
cancellationof theabove-defined”dif ferentialcross-correlations”
of intermediatesignalsof the separatingsystem. This algorithm
is the differentialversionof the classicaldecorrelationapproach
andwasderivedby usingthegeneraldifferentialBSSconceptthat
we proposed.We demonstratedits effectivenessby meansof nu-
mericaltestsperformedwith syntheticdata.Our futurework will
esp.concerntheapplicationof thisapproachto real-world signals,
suchasnoisyspeechmixtures.
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