A SECOND-ORDERDIFFERENTIAL APPROACH FOR UNDERDETERMINED
CONVOLUTIVE SOURCE SEPARATION

Yannidk DEVILLE and S&phaneSA/OLDELLI

Laboratoired’Acoustique de Métrologie,d’'Instrumentatior(LAMI),
Universie Paul SabatierBat. 3R1B2,118 Routede Narbonne 31062ToulouseCede, FRANCE.
e-mail: ydeville@cict.fr

ABSTRACT

This paperconcernghe underdeterminedaseof the convolutive
sourceseparatiorproblem,i.e. the situationwhenthe numberof
obsered convolutively mixed signalsis lower thanthe numberof
sources.We proposea criterion and associatedlgorithmwhich,
unlike classicalapproachesmale it possibleto performthe sep-
arationof a subsetof thesesourcesby exploiting their assumed
non-stationarityproperties. This approachusesthe second-order
statisticsof the signalsand adaptsthe filters of a direct separat-
ing systemso asto cancelthe "dif ferential cross-correlation’dof
signalsderived by this system.This new methodis relatedto the
generaldifferential sourceseparatiorconceptthat we proposed.
Its effectivenesds shawvn by meansof numericaltests.

1. PROBLEM STATEMENT

Blind sourceseparatior(BSS)methodsaim at estimatinga setof

N, sourcesignalsz; (n) from asetof N, obseredsignalsy;(n),

which aremixturesof thesesourcesignals[1],[2]. Themixedsig-

nalsy;(n) aretypically provided by sensorsandin the so-called
convolutive mixture model, eachpropagatiorpathfrom sourcej

to sensot is representedly afilter, whosetransferfunctionis de-
notedA;;(z) hereafter In the Z domain,the overall relationship
betweerthecolumnvectorsX (z) andY (z) of sourcesandobser

vationsthenreads:

Y(z) = A(2) X (2), @)

where the elementsof the mixing matrix A(z) are the transfer
functionsA;; (z). Mostinvestigationshave beenperformedn the
casewhen:i) N, = N, sothatthematrix A(z) is squareandii)
this matrix is invertible. The BSSproblemthenbasicallyconsists
in determiningan estimateof the inverseof A(z), soasto restore
the sourcesignalvector X (z) from the obseration vectorY (z)
in (1). Variousmethodshave beenproposedo this end,basedon
theassumedtatisticaindependencer uncorrelatiorof thesource
signals(seee.g. the suneys, resp. in [1] for the specificcaseof
linearintantaneousnixturesandin [2] for the corvolutive case).
As statedabore, mostof theseinvestigationsvereperformed
undertheassumptionV, = N,. In mary practicalsituationshow-
ever, only a limited numberof sensorss acceptableduee.g. to
costconstraintsor physicalconfiguration,whereaghesesensors
receve a larger numberof sources. This underdetermineditu-
ation correspondingo N, < N, hasbeenconsiderecy a few
authorsmainly in therestrictedcaseof linearinstantaneoumix-
tures(seee.qg.[3] andreferencesherein,[4]). In a previouspaper
[5], we alsointroduceda general'dif ferential BSS” conceptfor

treatingthe underdeterminedase. We defineda versionof this
conceptby exploiting the assumedon-stationaritypropertiesof
the sourcesi.e. thevariationsof the statisticsof a subsebf these
sourcesover time. Using the "dif ferential statistics”of the latter
sourceghenmalesit possibleto separateghemexactly (whereas
the other sourcesyield someadditional”"noise” contributionsin
the outputsof the proposedsystem).We introduceda specificdif-
ferentialBSScriterionresultingfrom this generalkconceptandin-
tendedbor linearinstantaneousiixtures.This specificapproachs
basedntheoptimizationof the "dif ferentialnormalizedkurtosis”
thatwe introducedo this end.

The currentpaperpresentanajor extensionsof our previous
work on underdetermine®SSfrom two pointsof views. On the
onehand,we heredevelop a practicalapproachntendedfor con-
volutive mixtures. On the otherhand,the criterion andalgorithm
proposedbelov are basedon our generaldifferential BSS con-
ceptbut are not merecorvolutive extensionsof the onesthat we
previously developedfor linear instantaneousnixtures. Instead,
they useother statisticalsignal parameterand adaptationrules.
Thesedifferencesstemfrom the well-known fact that linear in-
stantaneou8SS canonly be performedby resortingto higher
orderstatisticsf no specificassumptionaremadeon thesources,
whereagstrictly causa[6]) convolutive BSSmayalsobeachieved
by meansof second-ordestatistics.By usingthelatterapproach,
we hereintroducea methodbasedon correlation(i.e. second-
order)parameterandtheir cancellationwhich s to be contrasted
with our previousapproachbasedon normalizedkurtosis (i.e.
fourth-ordermparameterandits min/maximization.

2. PROPOSEDAPPROACH

2.1. Redefiningthe classicalapproach

The investigationreportedin this paperis basedon the classical
decorrelatiorapproactthat hasbeenusedby variousauthorsfor
solving the basic configurationof the corvolutive BSS problem
[6]-[9]. We thereforefirst redefinethis classicaimethodin a way
which is suitedto the approachthat we will thenuseto extend
it. The consideredbasicconfigurationinvolves two corvolutive
mixturesof two uncorrelatedourcesdefinedin the Z domainas:

Yl (Z)
YQ (Z)

X1(2) + A12(2)X2(2) )
A21(2) X1(2) + Xa(2), 3)

where A12(z) and A (z) arestrictly causalMA filters andtheir
ordersare(at most)equalto M. Thesemixedsignalsareprovided
to a separatingsystemwhich aimsat restoringthe sourcesignals
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Fig. 1. Separatingystembasecdn adirectstructure.

from them. The versionof this systemconsideredereis the di-
rectstructureshavn in Fig. 1, whereCi2(z) andC21(z) arethe
transferfunctionsof strictly causal}M **-orderMA filters. Theco-
efficientsof eachof thesefilters evolve vs. time andthe value of
thek?" coeficient,with k € [1, M), attimen is denoted;; (n, k).
Thesecoeficientsareadaptedsoasto decorrelatehetime-shifted
intermediatesignalsu: (n) andus (n) of theseparatingystemj.e.
soasto fulfill thefollowing criterion:

Ryu;(n,n—k)=0, i#j€{l,2},ke[l,M], (4)

where Ry,(mi,m2) = E{v(mi)w(mz)} denotes the
cross-correlationf ary coupleof signalsandwhereall thesignals
consideredn this paperareassumedo be zero-mearfor simplic-
ity. Theclassicaktochasti@algorithmusedin practiceto fulfill the
above criterion consistsin adaptingeachfilter coeficient at each
time n accordingo therule:
cijin+1,k) = c¢i(n, k) + pui(n)u;(n — k)
i#je{1,2},kell, M. (5
Thisalgorithmactuallyimplementgheabove criterion,asits equi-
librium pointscorrespondo:
Efcij(n+1,k) —cij(n,k)} = 0
i#je{L,2}kel, M], (6)
whichis clearlyequivalentto (4). Themotivationfor selectinghis
criterion (andassociate@lgorithm)may be explainedasfollows.
Theinternalstateof the separatingystemof Fig. 1 is definedby
thetransferfunctionsC12(z) andCb; (z). The stateof interestin

the BSSproblemis the so-called’separatingstate”,which yields
non-permutedgeparatedignalson the systemoutputs,.e:

Si(z) = Xi(2), i€{1,2} @)
andwhich maybe shawvn to be definedby:
Cij(2) = Aij(2), i#j€{l,2} ®)

The criterion to be usedshouldthereforebe selectedso thatit is
fulfilled atthe separatingstate. It may be checled easilythatthe
criteriondefinedby (4) meetsthis requirement.

2.2. Limitations of the classicalapproach

Now considerthe situationwhenthe availabletwo mixed signals
Y1(z) andY>(z) containnot only the abore contritutions from

sourcesX (z) and X3 (z), butalsocontributionsfrom anarbitrary
numberof additionalsourcesX(z) to X v, (z), sothat:

Yi(2)=X1(2) + Ana(2)Xa(2) + > A(2)X;(2)  (9)

j=3

Ya(2) = Az (2) X1 (2) + Xa(2) + ) A2(2)X;(2), (10)
ji=3

where N; is the overall numberof sourcesand wherethe addi-
tional transferfunctions A;;(z) introducedhereare also strictly
causalM**-order (or less)MA filters. Before focusingon the
structureof Fig. 1, we considerthe completeclassof separating
systemswhich procesgthesemixed signalsin a linear (corvolu-
tive) way, basedon the motivationspresentedn [5]. Thedesired
"optimum operation”of thesesystemsfor the considerednixed
signalsmay be definedas follows. By linearly combining the
mixed signals,only a singlesourcecontritution may be cancelled
in ary (non-zero)outputof suchsystemsfor arbitrary mixtures.
If X;(z) and X2(z) areconsideredasthe main signalsof inter-
est,i.e. the”useful signals”to be separatedpnewould lik e these
signalsto appearresp. only in the outputsS; (z) and Sa(z) of
the separatingystem.X; (z) and X»(z) arethenthe signalsthat
shouldbe cancelledn systemoutputs. Theseoutputswould then
alsocontaincontributionsfrom sourcesX3(z) to X, (z), which
arethenconsideredsadditionalundesirablesourcesi.e. "noise”.
The consideredseparatingsystemwould thus perform what we
call the”partial BSS” of X1(z) andX2(z).

The structue of the separatingystemshavn in Fig. 1 is po-
tentially suitedto this optimum operation,in the sensethat it is
ableto achieve the partial BSSof X (z) and X»(z): this partial
BSSoccurswhen(8) is met, which heredefinesthe "partial sep-
aratingstate”. However, the overall classicalapproachdefinedin
Subsectior?.1is notableto achieve this partial BSS,duethecrite-
rion (andassociate@lgorithm)thatit usesaswill now beshawn.
By combiningthemixing equationg9)-(10)andtheinternalequa-
tions of the separatingsystemof Fig. 1, theintermediatesignals
u;(n) of thelattersystemmaybe expresseds:

Ns 2M

wi(n) =D D hip(n,m)ap(n —m), (1)

p=1m=1

whereh;,(n, m) arethe time-varying coeficients of the overall
filterscombiningthefilters A;; (z) andC;;(z). Thecross-correlation
of thesesignalsfor arny separatingystenstatethenreads:

Ns 2M 2M

Ruwj(mn—k) = D3> [hip(n,m)hjp(n — k,1)

p=1m=1 [=1

Ry,(n—mn—k—-10)]. (12

At thepartialseparatingtate thecontritutionsof X1 (z) andXs(z)
in (12) may be shawn to disappearwhile the contributionsof the
noisesourcegemain. In otherwords, in the caseof noisy mixed
signals,thecross-correlationaluesRuiu]. (n,n— k) arenon-zero
atthepartialseparatingtate. Theclassicabpproacthof Subsection
2.1 cannotthencorverge to this state,asit adaptsthe separating
filter coeficientssoasto reacha statewherethe cross-correlation
valuesR,,.; (n, n — k) arecancelled This approactthenfails to
achieve partial BSS.



2.3. Proposeddiffer ential approach

We herestill considerthe noisy mixed signalsintroducedin Sub-
section2.2. Basedontheabove results we againusethe structure
of Fig. 1, but we hereaim atintroducinganew criterion(andasso-
ciatedalgorithm)for adaptingits filter coeficients. This criterion
is designedso thatthe resultingmethodbecomesbleto achieve
the partial BSS of X (z) and X2(z). The proposedapproachs
basedon the generaldifferential BSS conceptthatwe introduced
in [5]. It requiresthe sourcesX:(z) and X»(z) to be long-term
non-stationarywhereaghe othersourceshouldbelong-termsta-
tionary In otherwords, the useful (resp. noise)sourcesshould
have different(resp. identical)second-ordestatisticsat timesmn,
andn. whenthesetimesareseparatedy a "long” period. This
long periodis definedby contrastto eachshortperiodassociated
to asingletime ny or na, over which samplestatisticsof the sig-
nalsare measuredn practice,and over which all signalsshould
thereforebe short-termstationarity The mainideaof differential
BSSthenconsistof consideringhedifferencebetweerthesignal
statisticsresp. associatedo n; andn., sothatthe contritutions
of the long-termstationary(i.e. noise)sourcesare cancelledin
the resultingdifferential statisticalparameters We thusget back
into the classicalnoiselessconfigurationfrom the point of view
of theresultingadaptatiorcriterion. To apply this generalideato
the specificapproachintroducedin this paper we first definethe
"dif ferentialcorrelationfunction”, which reads:

DRyw(n1,n2,l1,l2) = Ryw(na —li,ne — 1)

_va(nl - l1,1’L1 - l2): (13)

wheren,; andny aretwo referencetimesand!; andl, aretwo
lags. When consideringthe differencebetweenthe two values,
resp.associatetb n = n; andn = na, of thecorrelationinvolved
in the classicakriterion (4), we obtain:
Ruiuj (nz,nz —k‘) - Ruiuj (n1,n1 —k‘)
= DRuiuj (m,ng,O, k) (14)

We then usethe sameseparatindilter valuesfor n = n; and
n = ng, andthesameprincipleis alsoappliedto ary time-shifted
versionof this coupleof times. The first overall filter coeficient
hip(n, m) involved in (12) thenhasthe samevaluefor n = n,

andn = ny andthis commonvalueis simply denotedh;, (n, m)

hereafter The coeficient h;,(n — k,1) in (12) leadsto the same
phenomenorsothatcombining(12) with (14)yields:

Ns 2M 2M

DRuju;(n1,m2,0,k) = >3 ) [hip(n,m)

p=1 m=1 [=1

hip(n — k,0)DRo, (n1,n2,m, k +1)] . (15)

This equationholdsfor ary stateandary type of sources.When
the noise sourcesXs(z) to Xn,(z) have the abose-mentioned
long-termstationarityproperty their differentialautocorrelations
DR, (.) containedn (15) areequalto zero,sothatonly the use-
ful sourcesX;(z) andX»(z) remain. In otherwords, from the
pointof view of thenew parameteD Ry, .,; (n1,n2, 0, k) thatwe
introduced,we actually get backin the classical2-sourceto 2-
sensorgonfiguration,exceptthatthis new parametedependon
thedifferentialauto-correlatiofiunctionsof thesourcesinsteadof
theplain auto-correlationsvhich appeaiin the classicalapproach.
It maythenbeshawvn easilythat DRy, ; (n1,n2,0, k) = 0 atthe

partial separatingstatewhereasjf the sourcesX(z) and X»(z)
arelong-termnon-stationary DRy« ; (n1, 12,0, k) # 0 for all
otherstateqexceptfor somepossiblespuriousstateswhich cor-
respondo thosethatmayexist for theclassicabpproach)Thecri-
terionthatwe eventuallyproposeor performingthepartial BSSof
X1(z) andX3(z) in the caseof noisy mixturesthereforeconsists
in adaptingall separatindilter coeficientssoasto achieve:

DRy;u;(n1,n2,0,k) =0, i#j€{1,2},k€[l,M]. (16)

A practicalstochasticalgorithm which implementsthis criterion
maythenbederivedby adaptingheapproachhatwe definedSub-
section2.1for the classicaklgorithm. It reads:
Cij (TL +1, k) = Cij (n, k) + pi[ui ('nz)Uj (nz - k’)
—ui(n1)u;(na — k)],
i#je{l,2kel,M] (17)

anddeseresthefollowing commentsTheclassicaklgorithm(5)

performsa sweepover the databy usinganincreasingime index

n. The algorithmproposechereis alsobasedon a singlesweep,
but eachstepof this sweepinvolvestwo pointsin the datatime

series,correspondingo the indicesn; andny. The difference
betweentheseindicesis typically kept constant(and”long”, as
definedabore), sothatthe sweepis performedn parallelovertwo

time-shiftedversionsof the data. The considerectoupleof times
inside thesedatais thendefinedby a singleindex, denotedn in

(17),whichis e.g.equalto n; or nz. Theadaptatiorgainsy: and
p2 in (17) typically have the sameabsolutevalue, but their signs
areselectedsothat:

p1DPy,(n1,n2) >0 (18)

p2DPy (n1,n2) >0
wherewe definethedifferentialpower of ary signalv(n) between
timesn; andn; as:

DPv(nl,nz) = Rv(nz,n2) - Rv(m, nl). (19)

The condition (18) is basedon stability requirementsto be re-
portedin afuture paper

3. NUMERICAL TESTS

We have validatedtheabove approactby meanf testsperformed
with two artificial corvolutive mixturesof threesyntheticrandom
sources.The usefulsourcese: (n) andz2(n) consistsof 100000
samplessplit in two 50000-sampl@eriods.In eachof theseperi-
ods,thesesourcesareindependenandeachof themis stationary
binary-valuedandequiprobable They take thevalues+1 in their
first periodand +2 in the secondone. The noisesourcezs(n)

is uniformly distributed over the range[—1, +1] in both periods.
Thesethree sourcesare mixed accordingto (9)-(10), wherethe
mixing filters associatedo the usefulsourcesaresetto:

Aip(z) ~ —0.381z ' +0.1362 > +0.081z"°> (20)
An(z) =~ —0.327z7' —0.184272 +0.027:7%, (21)

whereaghe mixing filters associatedo the noisesourceare:
Ais(s) = 2T §Z_2 + %z_s 22)
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Fig. 2. Evolution of thecoeficientse;; (n, k) of thestrictly causal
MA separatindilters for noisy mixtures (left column: C12(2),
right column: Cs1 (2)).

Fig. 2 representshe evolution of the coeficientsc;; (n, k) of the
separatindfilters when the above-definedparallel sweepis per
formed over both 50000-samplegeriodsand thesefilter coefi-
cientsareadaptedy meanf theproposedilgorithm(17). These
coeficientscorvergeto valueswhich arecloseto thoseof themix-
ing filters A12(z) and A2:1(z). This shaws the ability of the pro-
posedapproachto achieve the partial BSS of X (z) and X»(z)
definedby (8), althoughthe contrikbutions from the noisesource
X3(z) containedn theprocessedhixedsignalscover significantly
largerrangeghanthoseof the usefulsourcesThis insensitvity to
the presencef noisesourcess alsoconfirmedby thefactthatthe
above separatindilter coeficient trajectoriesare almostidentical
to thoseobtainedwith theproposedpproacthin thenoiseles€ase,
i.e.for Ai13(z) = 0 andA2s(z) = 0, whichareshavn in Fig. 3.

4. CONCLUSIONS AND FUTURE WORK

In this paperwe proposed criterionandassociateelgorithmfor
adaptingthefilters of a directseparatingystemso asto perform
the separatiorof two non-stationarysourcesfrom two corvolu-
tive mixtureswhich alsocontainanarbitrarynumberof stationary
noise sources. The proposedalgorithm consistsof a stochastic
cancellationof the abore-defined'dif ferential cross-correlations”
of intermediatesignalsof the separatingsystem. This algorithm
is the differential versionof the classicaldecorrelationapproach
andwasderivedby usingthe generalifferentialBSSconcepthat
we proposed.We demonstrateds effectivenesshy meansof nu-
mericaltestsperformedwith syntheticdata. Our future work will
esp.concerrtheapplicationof this approacho real-world signals,
suchasnoisyspeechmixtures.
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