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ABSTRACT

In this paper a new neural network model for blind demixing of
nonlinear mixtures is proposed. We address the use of the Adaptive
Spline Neural Network recently introduced for supervised and
unsupervised neural networks. These networks are built using neurons
with flexible B-spline activation functions and in order to separate
signals from mixtures, a gradient-ascending algorithm which maximize
the outputs entropy is derived.

In particular a suitable architecture composed by two layers of flexible
nonlinear functions for the separation of nonlinear mixtures is proposed.
Some experimental results that demonstrate the effectiveness of the
proposed neural architecture are presented.

1. INTRODUCTION

The problem of blind source separation (BSS) consists on the
recovery of independent sources from their mixture. This is important in
several applications like speech enhancement, telecommunication,
biomedical signal processing, etc. Most of the work on BSS mainly
addresses the cases of instantaneous linear mixture [1-2][12].

Let A a real or complex rectangular (nxm ; n=m) matrix, the data
model for linear mixture can be expressed as

x(0) = A s(?) (1)
where s(¢) represents the statistically independent sources array while x(¢)
is the array containing the observed signals.

For real world situation, however, the basic linear mixing model (1)
is too simple for describing the observed data. In many applications such
as the nonlinear characteristic introduced by preamplifiers of receiving
sensors, we can consider a non-linear mixing. So a nonlinear mixing is
more realistic and accurate than linear model.

For instantaneous mixtures, a general nonlinear data model can have
the form

x(1) =1(s(2))
were f represents an unknown vector of real functions.

Although some algorithms for nonlinear BSS have already been
proposed, see for example [6-11] and the references therein, in this paper
we proposed a new neural network model for blind demixing of
nonlinear mixtures. In particular we address the use of the Adaptive
Spline Neural Network (ASNN) introduced for supervised neural
networks in [4-5].

The basic scheme of the ASNN is very similar to classical neural
structures, but with improved non linear flexible activation functions.
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These functions can change their shapes adapting few control points
by the learning algorithm.

Recently, under some control points constraints, the ASNNs have
been successfully applied using an unsupervised learning algorithm for
linear BSS problems [3].

As demonstrate in [3-5], the flexible activation functions used in
the ASNNs have several interesting features: they 1) are easy to adapt,
2) have the necessary smoothing characteristics, 3) are easy to
implement both in hardware and in software.

2. NON-LINEAR MIXING/DEMIXING BSS
MODEL

Let assume for simplicity that the number of independent source
signals is equals to the number of mixtures such that n=m, the model
for the mixture assumed in this paper, shown in figure 1, is a simple
nonlinear mixing model without cross-channel non-linearity.
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Fig. 1: Non linear mixing model without cross-channel non-linearity.

s(t) =[5,(£),5,(t),.....s,(t)]" is the unknown instantaneous
source vector, where components s(f) is supposed to be mutually
independent (different people speaking, noise, music,...). A is an
unknown mixing matrix (nxn) that represents the linear superposition
of  original signals for each channel. Vector
£O) =L L0 £, 01
channel transfer function, which is different for each channel.. In
synthesis, the unknown mixing system is modeled as a cascaded
instantaneous linear mixing and non-linear function transformation.
So, it is obvious to consider the corresponding separating system as the
inverse transformation g(.) of the non-linear part followed by a

denotes component-wise  nonlinear



demixing matrix W opportunely defined during an adaptation process.
This separating system is illustrated in figure 2.
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Fig. 2: Non linear blind separation system.

3. INFORMATION MAXIMIZATION FOR NON-
LINEAR BLIND SOURCE SEPARATION

It is well-known that separation of independent sources is possible
using concepts derived from information theory. Two or more random
variables S (j=1,2,..,n) are stochastically independent if knowledge of
the values one of them tells us nothing about the values of others. More
generally a set of signals are independent if their join probability density
function (pdf) can be decomposed as:

q(slaszs"ssn):qu(sj) 3

j=1
where ¢/(s;) is the pdf of j-th source signal.

Let y be estimated source signal vector and let p(y) be its pdf. In
order to measure the degree of independence, we use an adequately
chosen independent probability distribution g(y)= H, q,(y,) and

consider the Kullback-Leibler (KL) divergence between two probability
distributions p,(y) and q(y) :

fpy ) logﬂd

KL p,(M) 14(v)] &)
This measure is non-negative and reaches its minimum value or vanishes
if and only if p=¢, in other terms when the vector y is mutually
independent component-wise. Minimizing the KL divergence can make
the estimated source signals independent.  Under some hypothesis it is
also equivalent to maximizing the entropy of estimated signals, as
demonstrated by Bell and Sejnowski [1]:

KL p,) la)]=TTHG) - H) ®)

where H(y)=-E {log( py(y))} is the entropy of y and H(y;) the

entropy of its i-th component.
Another important property of the KL divergence is the invariance
under an invertible non-linear transformation g(.) of data samples:

KL[p(y) 1 4(9)]= KL[p(g(¥) Il a(g(s))] (©)

As a consequence, the mutual independence will not be affected by any
invertible non-linear function transformation. If we introduce a non-
linear differentiable mapping z=h(y)=g(x) that represent the overall

separating system, the relations between input and output joint
distributions of this mapping is:
_r.®
p.(2) il
where |J| is the determinant of the Jacobian matrix of the
transformation:
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The entropy of the transformed output signal z is given by:

H(z) =—E{log(p.(z))} = E{log|J[}+ H(x) ©)

The optimal solution of the information-theoretic criterion is
obtained when the maximum entropy of z is reached, when p(z) is a
uniform distribution. In this case we have p(x) =[J|. Since the second
term in (9) does not contain any model parameter, thus maximization
of H(z) is performed by only maximizing the first term with respect to
model parameter set Q. Using the gradient ascent learning
algorithm, we have to consider the derivative of the entropy function
H(z) with respect to model parameters:
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4. THE ADAPTIVE SPLINE NN MODEL

4.1 Adaptive Spline Neuron

Spline activation functions are smooth parametric curves, divided
in multiple tracts (spans) each controlled by four control points. Let
h(x) be the non-linear function to reproduce, then the spline activation
function can be expressed as:

y=h(x)=h(u,i) (11)
i.e. as a composition of (N-2) spans (where N is the total number of

the control points Q; (7=1,2,..,N) each depending from a local variable
u € [0,1) and controlled by the O,,0,,,,0..,,0,,; control points (see

Fig. 3). The parameters i, u can be derived by a dummy variable z

x N-1

nt 1
1 if z<1

z=4z if 1<z<N-3 (13)
N-3 ifz>N-3

where Ax is the fixed distance between two adjacent control points;
constraints imposed by equation (13) are necessary to keep the input
within the active region that encloses the control points. Separating z
into integer and fractional parts using the floor operator LJ finally we

get

i=LzJ and u=z-1i

(14)
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Fig. 3: Spline interpolation of cofifrol points.

In matrix form the output can be expressed as

y=h(u,i)=T, M-Q, (15)
where :
T,=[« v u 1] (16)
-1 3 3 1
12 -5 4 -1
M=— a7)
20-1 0 1 0
0 2 0 0
T
Q=[0 0. Q. O] (18)

The corresponding structure is shown in Fig. 4. In order to ensure
the monotonously increasing characteristic of the function, the following
additional constraint must be imposed:

0,<0,<.<0y (19)
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Fig. 4: The adaptive spline activation function.

4.2 Structure of the Spline Neural Separating System

We employed the spline neuron structure to implement the blind
separation system. Both output non-linearities and input non-linearities
are spline based functions. The structure of the non-linear BSS system is
depicted in figure 5. The parameter set € for this model include

Q% of each

i+m

elements of demixing matrix W, spline control points

input non-linearity g{.) and spline control points Q,.h;m of each output
non-linearity A4.)
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Fig. 5: Adaptive spline blind separation system.

4.3 Learning algorithm

We can derive the learning algorithm of parameters of the
nonlinear separating model using a gradient ascent method, on the
basis of the maximization entropy criterion. According to equation
(10) we have:
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where: T, =[3¢ 2u 1 0]; me(0,1,2,3); M, is the m-th

column of M matrix and:

h-l(yl) }-‘-z(yz) }-l.n(yn)
H == x . 23
W=500 B hnm)} &
() =h@i=[6x 2 0 0]-M-Q" (24)
hy()=h (i) =T, M-Q) (25)

We can adjust the matrix W also using the natural gradient
method proposed by Amari [2], which simplifies the learning rule,
avoiding the inversion of W, and accelerates the convergence of
learning process:
0H (z)

oW

where I denotes the identity matrix.

AW =p— = =n[T+Hy) -y |- W (26)



5. EXPERIMENTAL RESULTS

Experiments presented here were obtained using one second
segments of speech from two different speakers and an uniform
distributed noise.

All signals were sampled at 8kHz; no special post-processing was
performed on the waveforms, other than that of normalizing their
amplitudes so they were appropriate for use with the separating system.
In the first experiment a female speech segment ad the noise were
employed. In order to mix the two signals a randomly nonsingular

mixing matrix was chosen: A = [0.65,—0.38;0.45,0.71] .

In the second experiment a female speech and a male speech
segments were mixed using the same mixing matrix. In both
experiments a different non-linear transformation on each linear channel
was applied., i.e. [11]

[fiGu), )] = [ @, +167)/2,(0.5u, + tanh(0.3u,)) | .

Fig. 7: Experiment results for non-linear mixing of two speech signals.

6. CONCLUSIONS

A neural network model for blind demixing of nonlinear mixtures
based on flexible B-spline activation function neuron, has been
proposed.

Based on a gradient ascent method on the basis of the
maximization entropy criterion, a suitable learning algorithm of
parameters of the nonlinear separating model has been derived.

Although, from theoretical point of view the only adaptation of the
nonlinear functions at the input layer of the demixing model is
sufficient [11], (some experiments are not reported in this paper),
better performance are reached by the adaptation of both input and
output layer nonlinear functions.
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