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ABSTRACT

In this paper, we introduce a new concept, the time frame
error rate. We show that this error rate is closely corre-
lated with the word error rate and use it to overcome the
mismatch between Bayes’ decision rule which aims at min-
imizing the expected sentence error rate and the word er-
ror rate which is used to assess the performance of speech
recognition systems. Based on the time frame errors we de-
rive a new decision rule and show that the word error rate
can be reduced consistently with it on various recognition
tasks. All stochastic models are left completely unchanged.
We present experimental results on five corpora, the Dutch
Arise corpus, the German Verbmobil 98 corpus, the En-
glish North American Business 94 20k and 64k develop-
ment corpora, and the English Broadcast News 96 corpus.
The relative reduction of the word error rate ranges from
2.3% to 5.1%.

1. INTRODUCTION

Statistical decision theory aims at minimizing the expected
cost of making errors. For speech recognition this cost is de-
fined as the cost of choosing a sentence v{w = V1,...,VM iD-
stead of the presumably correct sentence wl¥ = wy, ..., wn.
In this very general framework, it is left open how the cost
C(wl,v}") is defined:
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where p(v}M|zT) is the posterior probability for sentence
oM | given the acoustic observations z7 = z1,...,z7. The
standard approach in statistical speech recognition is to use
the sentence error rate (SER) as a cost function. With
this simple cost function, Bayes’ decision rule can easily be
derived:
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where p(wl) denotes the language model probability,
p(z]|wl) the acoustic model probability, and p(x]) the
probability of the acoustic observations. The advantage of
this simple cost criterion is that the resulting decision rule

can be evaluated quite easily. Unfortunately, we are now
faced with a conceptual mismatch between the decision rule
and the evaluation criterion for speech recognizers, the word
error rate (WER). The authors of [6] present an example
which shows that minimizing the expected sentence error
rate does not necessarily minimize the expected word error
rate. The easiest way to overcome this mismatch is to use
the same cost function for optimization as for evaluation,
the Levensthein distance between two sentences wl' and
v} which counts the number of word deletions, insertions
and substitutions. The main drawback of this approach is
its computational complexity, since it requires the pairwise
alignment of all possible sentences.

In [6], the pairwise alignment is therefore restricted to
the sentences in an N -best list. The sentence posterior prob-
abilities are also approximated on these lists. This N-best
list based approximation of the posterior probabilities was
previously used in [7] for keyword spotting and in [9, 11]
to compute confidence measures. The authors of 7] report
a reduction of the word error rate by 1.0% relative on the
Switchboard and the CallHome Spanish corpus.

In [3], word graphs are used instead of N-best lists. Un-
fortunately, an explicit Levensthein alignment of all pairs
of sentences contained in the graph is prohibitive, since
word graphs contain a considerably higher number of sen-
tences. The non-local Levensthein alignment (in the sense
that there is no straight-forward factorization which could
be used to compute an alignment for all sentences at the
same time) is therefore replaced by a multiple string align-
ment. With this multiple alignment, the posterior proba-
bilities can easily be approximated and a simple decision
rule can be derived. The authors report a reduction of the
word error rate by 3.6% relative on the Switchboard corpus.

2. TIME FRAME ERRORS

As already discussed, the main problem of an explicit align-
ment of all sentences in a word graph is the non-locality of
the dynamic programming alignment which is caused by
deletions and insertions. Would the situation change, if
we had no deletions and insertions? Let us assume that
substitutions were the only type of error. In this case, all
sentences would be of equal length and the positions of the
words in the sentences would already define a multiple align-
ment. A dynamic programming alignment would thus not
be necessary.



$ but what that yest er day
{1i psmack} what was it yest er day
0 5 10 15 20 25 30 time

Figure 1: Illustration of the time frame error rate concept.
$ denotes a silence and {lipsmack} a noise hypothesis. The
shaded boxes illustrate where time frame errors occur.

With these considerations in mind and with the fact
that a word graph contains the starting and ending times
of the word hypotheses, we study a new cost function that
we decided to denote as time frame error rate. Before going
into details, we first define the term word graph. In this
paper, a word graph is a directed, acyclic, weighted graph.
Its nodes represent discrete points in time, its edges word
hypotheses [w; T, t] for word w from node 7 to node ¢, and
its weights the acoustic probabilities of the hypotheses. Let
tY = t1,...,ty denote the ending times of a sequence of
word hypotheses wi'. The starting time for word wy, is thus
given as t,—1 + 1, where to = 0 and txy = T. Each path
through the word graph is a sentence hypothesis and can be
written as [w; t]{v = [wisto+1,t1], ..., [w;tn—1+1,tn]. We
can now rewrite Eq. (1) so that the minimization and the
summation are also over the unknown starting and ending
times of the words. The assumption we make is that the
cost function now also depends on the word boundaries and
that the word graph as a limited representation of the search
space contains enough sentence hypotheses.

2.1. Definition of the Time Frame Errors

We will now specify the notion of time frame error. Con-
sider two sequences of word hypotheses contained in the
word graph, [w;t]¥ and [v;7]}. For each point in time #
we can evaluate whether the word identities of the hypothe-
ses in both sequences for time frame ¢ are identical or not.
Fig. 1 illustrates this concept. The shaded boxes indicate
where time frame errors occur. The time frame errors are
caused either by word deletions, insertions, and substitu-
tions or by differing word boundaries. As Fig. 1 also shows,
a substitution of lexical entries which are not counted as
word errors (e.g. hesitations, noises, and silence) with each
other is also not counted as a time frame error. We can now
define a new cost function using the notion of time frame
errors:
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where v; is the word identity of the word hypothesis in sen-
tence [v; 7]} which intersects time frame £. We should note
that the quantities which are compared using the Kronecker
function in Eq. (3) are generalized word labels. Substitu-
tions of words with the same label (e.g. silence, hesitations,
and noises) are not counted as errors, as illustrated in Fig. 1.

BROADCAST NEWS EVALUATION CORPUS
120 -

T T T
mean and standard deviation —+—

100 - ]»,

0

NORMALIZED TIME FRAME ERROR COUNT
@
3
T
—
—t

WORD ERROR COUNT

Figure 2: Plot of the mean and the standard deviation of
the normalized time frame error counts for a = 0.05 over
the word error counts for the Broadcast News evaluation
corpus. The plots for other values of a look very similar.

The denominator in Eq. (3) is used to normalize the
time frame errors smoothly. For o = 0 no normalization
takes place, whereas for &« = 1 the time frame errors are
fully normalized with the length of the current hypothesis.
A possible explanation for the usefulness of the normaliza-
tion is that it increases the effect of time frame errors for
short word hypotheses. It is reasonable to argue that time
frame errors are more “significant” if the current word hy-
pothesis is very short, since short hypotheses tend to cause
more word errors than longer word hypotheses. By choos-
ing an appropriate a we can thus adjust the effect of short
hypotheses on the total cost.

The main advantage of our new concept is that there
are only substitutions on a time frame level. The words are
either identical or not and no time consuming alignment of
the hypotheses is necessary.

2.2. Correlation Analysis

It is obvious that for zero time frame errors we will also have
zero word errors. For time frame errors above zero the word
errors will also rise. The only question is, whether both
error types are correlated, so that when minimizing one of
them, the other one is also reduced. In order to study the
correlation, we computed large N-best lists for our testing
corpora (they are described later on) which also contained
the starting and ending times of the word hypotheses. For
each pair of sentences in the N-best list we then computed
the Levensthein alignment, the word errors, and the time
frame errors. Fig. 2 shows a plot of the mean and the
standard deviation of the normalized time frame errors over
the word errors per sentence on the Broadcast News testing
corpus for a = 0.05. The plots for the other corpora look
very similar and are omitted due to the limited space.

In addition, we computed the correlation coefficients
between the word errors and the time frame errors for
a = 0.05, see Table 2. As the experiments clearly show,
there is a significant correlation between the word errors
and the time frame errors. By reducing the time frame er-
ror rate we should thus be able to reduce the word error
rate.
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2.3. Decision Rule

We can now insert the new cost function, cf. Eq. (3), into
the general decision rule, cf. Eq. (4). After some simple
manipulations we obtain our new decision rule, cf. Eq. (7).
The new probability density function p(wn|f,z{) can be
interpreted as the probability to observe word w, at time
frame £, given the acoustic observations:
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As Egs. (8) and (9) show, the sum is over the posterior
probabilities of all sentences which contain a hypothesis
for word w, at time frame £. Assuming that we have
already computed posterior probabilities p([v;7,#]|zT) for
individual word hypotheses, Eq. (9) can be rewritten so
that the summation is over the posterior probabilities of all
word hypotheses for word w, which intersect time frame
t, ¢f. Eq. (10). These word hypothesis posterior probabil-
ities are defined as the sum of the posterior probabilities
of all paths passing through [v;7,¢] and can be computed
very efficiently with a forward-backward algorithm on word
graphs. In [8, 9, 11], these posterior probabilities were used
to compute confidence measures. In [10], they were used
to improve the recognition performance in the standard
Bayesian approach. Regarding the posterior probabilities
as the probability of a word being correct, the new hypoth-
esis score S([wn;tn—1 + 1,¢,]) can be interpreted as the
normalized probability of a word being incorrect. The de-
cision rule simply picks that sequence of word hypotheses
with the minimum expected number of errors.

Table 1: Description of the testing corpora and the word
graphs. WGD denotes the word graph density, GER the
word graph error rate, and WER the word error rate.

corpus size of | WGD | perpl. | GER | WER
vocab. (%] (%]
Arise 985 218.8 12.6 7.4 15.8

Verbmobil 7128 | 209.2 56.1 8.7 33.6
NAB 20k 19987 98.4 | 124.5 4.1 13.2
NAB 64k 64736 87.1 145.9 1.8 11.1
BN 65491 105.5 | 213.7 | 10.6 33.3

3. SPEECH CORPORA

We first describe the five different speech corpora used
for the correlation analysis and the rescoring experiments
which will be presented later. The English North Amer-
ican Business (NAB) 94 development corpora consist of
high-quality recordings of read newspaper articles. The
Broadcast News '96 (BN) evaluation corpus consists of tele-
vision and radio broadcast, whereas the German Verbmo-
bil '98 evaluation corpus consists of spontaneous human-to-
human dialogues, see [1]. The Dutch Arise corpus is com-
posed of human-to-machine dialogues, recorded over the
telephone with an automatic train timetable information
system, see [4]. Table 1 specifies the experimental setup.
The word graph density is defined as total number of word
graph edges divided by the number of spoken words. The
graph error rate is the lowest word error rate that can be
achieved with a given word graph. For details the reader
is referred to [5]. All word graphs were generated with our
speech recognizer using gender independent acoustic models
without speaker adaptation and a trigram language model.

4. RESCORING EXPERIMENTS

In order to simplify the search for the best path with regard
to our new criterion, we compute the word hypothesis pos-



Table 2: Correlation coefficients for o« = 0.05 between the word errors and the time frame errors on a sentence level and
results for the rescoring experiments with sentence error rate (SER) and time frame error rate (TFER) criterion.

corpus correlation SER criterion TFER criterion
coefficient | del - ins - WER [%] | SER [%] | del - ins - WER [%] | SER [%]
Arise 0.84 2.1-32-15.8 24.3 3.7-22-15.0 23.6
Verbmobil 0.93 6.1-6.9-33.6 82.9 8.0-5.2-32.5 83.6
NAB 20k 0.95 1.9-2.1-13.2 79.6 2.2-19-129 79.7
NAB 64k 0.95 2.0-15-11.1 74.8 1.8-1.6-10.8 75.8
BN 0.94 6.0-4.3-33.3 91.4 7.9-33-323 91.6

terior probabilities and then the new hypothesis score for
each hypothesis in the word graph. The search algorithm is
based on our standard word graph rescoring algorithm [5].
Instead of the acoustic scores stored during the generation
of the word graph, we simply use the new hypothesis score.
The language model is no longer needed at this stage.

Table 2 presents the results for the five testing corpora.
As can be seen, the word error rates are reduced signif-
icantly. The relative reduction ranges between 2.3% and
5.1% and is highest for corpora consisting mainly of spon-
taneous speech. In order to obtain these results, we had to
normalize the time frame errors for all corpora with an « in
the range of 0.01 < o < 0.1. The effect of the specific choice
of the normalization parameter in this range is very small.
In order to rule out search errors during the standard word
graph rescoring with the SER criterion which might explain
the improved performance of the new TFER criterion, we
applied no pruning during the rescoring process. We also
verified that the performance of the SER criterion cannot
be further improved with an additional word penalty.

As expected, the sentence error rates rise for the new
criterion with the exception of the Arise corpus whose av-
erage sentence length is three words. For this corpus, the
word error rate and the sentence error rate are stronger cor-
related than for the other corpora. In contrast to [6], we
observed a significant reduction of the word error rate also
for recognition tasks with rather low word error rates.

5. CONCLUSIONS AND OUTLOOK

In this paper, we presented a new cost function for speech
recognition, the time frame error rate. Our experiments
showed a significant correlation between the time frame er-
rors and the word errors. Based on this new error rate we
derived a criterion which directly aims at minimizing the
time frame error rate and thus the word error rate instead
of the sentence error rate. With the suggested method, the
word error rates were reduced significantly on five differ-
ent testing corpora. The relative reduction ranges between
2.3% and 5.1%.

In the future, we will investigate why an appropriate
« is needed for normalization. In particular, we will study
the word errors and time frame errors for individual words
to find a more systematic explanation. Also, the new cost
function could be used for the recognition of content words.
In such a scenario, the generalized word labels discussed
above could be used to map all words which are not relevant
in this context to the same class so that they are not counted
as errors. A similar approach is presented in [2].
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