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ABSTRACT

This paper presents a procedure for deriving linear fil-
ters which are based on matrix-vector multiplication in-
stead of linear convolution and which can be designed
to match the frequency responses of linear equiripple
FIR filters. The magnitude of the matrix filter response
is matched to the magnitude response of a given linear
FIR filter by solving a set of nonlinear equations nu-
merically using Broyden’s method.

1. INTRODUCTION

Let g = g0, g1, . . . , gN−1 be a sequence of complex num-
bers which represent a set of discrete data points. Let
f = f0, f1, . . . , fM−1 represent the coefficients of a lin-
ear FIR discrete filter. The operation of filtering the
data sequence, g can be implemented as the linear con-
volution h = f ∗ g of g and the filter f , where

hn =
M−1∑
k=0

fkg[n−k], n = 0, . . . , N +M − 2.

where [n − k] = 0 when n − k < 0 and when n − k >
N − 1. Let the sequence, g be written as a column
vector of length N and let a matrix A ∈ C

N×N be
defined. The vector h defined by the matrix-vector
product h = Ag then represents a sequence of lengthN .
The operation is linear, i.e. for sequences g1, g2 ∈ C

N

and scalars α1, α2 ∈ C, A(α1g1 + α2g2) = α1Ag1 +
α2Ag2. Thus the matrix-vector multiplication can be
interpreted as a linear filtering of the data sequence,
g with the property (not shared by linear convolution
filters) that the lengths of the initial and final sequences
are the same. Since the rows of A are not equal and
the entire data vector, g is required before the output
Ag can be obtained, the matrix filter will in general be
both time varying and noncausal.

The terms convolution filter and matrix filter will
be used in order to differentiate between a linear fil-
ter implemented using linear convolution and a lin-
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ear filter implemented using matrix-vector multiplica-
tion, respectively. Sequences of length N will be iden-
tified with column vectors of length N . The vector
f = [f0, f1, . . . , fN−1]T representing the coefficients of
a discrete filter is first determined using a conventional
technique and then a matrix, A ∈ C

N×N is designed
which implements the filtering operation using matrix-
vector multiplication. The design criteria are (1) the
approximation of the magnitude of the frequency re-
sponse of the given convolution filter and (2) the in-
vertibility of the matrix filter.

In order to find the frequency response of a filter of
length N at frequency ωn, the magnitude of the filter
response to the input sequence v(ωn) is found. Define a
Fourier N-vector, v(ω) =

[
1 ejω · · · ejω(N−1)

]T
, where

j =
√−1 and ω ∈ [−π, π]. If the filter f and sequence

g are both of length N then there will be only one
element in the output sequence h = f ∗ g where g and
f have full overlap, i.e. where each element fi of f
multiplies an element gj of g. This element is hN−1 =
(f ∗ g)N−1 = fN−1g0 + fN−2g1 + · · · + f0gN−1. To
evaluate the response of the filter f at frequency ω =
ωn, let g = v(ωn). Then

(f ∗ g)N−1 =
N−1∑
k=0

fk g[N−1−k]

= ejωn(N−1)
(
f0 + · · ·+ fN−1e

−jωn(N−1)
)
.

The squared magnitude response of the filter A will be
defined to be

‖Av(ω)‖2
2 = v(ω)HAHAv(ω), − π ≤ ω ≤ π.

The edge effects which occur when two sequences
are convolved served to motivate research into linear
filtering methods for short data sequences which pre-
serve the length of the input data sequence. In [1] the
idea of using matrix-vector multiplication to perform
the filtering operation was investigated. Let a nonnega-
tive real-valued function µ(ω) representing a magnitude
response be defined on [−π, π]. The design procedure



used a convex optimization algorithm to achieve:

‖Av(ω)− µ(ω)v(ω)‖ ≤ τ(ω).

at prespecified frequencies ω = ω1, . . . , ωp, where the
error tolerance at frequency ωp was τ(ωp) and where
the performance using both the sup−norm and 2−norm
were assessed. It was found by experiment that the
computed matrix filter, A ∈ C

N×N occasionally had
more attenuation in the stopband than the correspond-
ing convolution filter. In particular, an example of
a Hilbert transformer was given for which the mean-
squared error of the matrix filter was less than the filter
designed using MATLAB functions. It was also found
by experiment that low rank matrix filters gave results
which were similar to full rank matrix filters. In order
to decrease the run time of the optimization algorithm
the matrix filter, A was represented in factored form
as A = WWH , W ∈ C

N×r with r small compared to
N . Thus, only Nr matrix elements rather than N2 el-
ements had to be determined, and the complexity of
the matrix-vector product was decreased as well, since
Av = W (WHv) takes only O(Nr) instead of O(N2)
complex operations. It will be shown, however, that
the use of rank deficient matrix filters can and should
be avoided.

In this paper a different perspective than in [1]
is taken. A first step toward an explicit method for
designing improved performance matrix equiripple fil-
ters is to develop a method for producing matrix fil-
ters which reproduce the frequency responses of FIR
equiripple filters. A method for doing this is given here.
This paper is organized as follows. In sections 2 and 3
the theory for the design of a matrix filter is presented.
Section 4 discusses the resulting set of nonlinear equa-
tions which must be solved. The implementation of an
equiripple matrix filter is given in section 5, followed
by conclusions in section 6 .

2. THE LINEAR PROJECTION
OPERATOR, TM .

Consider a FIR filter, f = [f0 f1 · · · fN−1]T and de-
fine an N-vector, c = [c0 c1 . . . cN−1]T , where ck =
f̄N−k−1, k = 0, . . . , N − 1. Let v(ω) be a Fourier vec-
tor. The squared magnitude response of the filter, f is
then

|(f ∗ v(ω))N−1|2 =
∣∣cHv(ω)

∣∣2 = v(ω)Hc cHv(ω). (1)

Since v(ω) is a Fourier vector, (1) can be written as the
rational function

r(z) = āN−1z
−N+1+· · ·+ ā1z

−1+a0+· · ·+aN−1z
N−1.
(2)

For example, when c = [c0 c1 c2 c3]T equation (2) can
be written as

r(z) = v(ω)Hc cHv(ω) =
[1 z−1 z−2 z−3]




|c0|2 c0c̄1 c0c̄2 c0c̄3
c1c̄0 |c1|2 c1c̄2 c1c̄3
c2c̄0 c2c̄1 |c2|2 c2c̄3
c3c̄0 c3c̄1 c3c̄2 |c3|2






1
z
z2

z3




= ā3z
−3 + ā2z

−2 + ā1z
−1 + a0 + a1z + a2z

2 + a3z
3.

Let a linear projection operator Tm be defined. For
G ∈ C

N×M , Tm(G) is found by summing the elements
in each diagonal of G and placing the result in the
upper left element of the diagonal, which is in either
the first column or first row. The remaining entries
in the diagonal are set equal to zero. For any matrix
G, denote the structured matrix Tm(G) as a bordered
matrix. For example,

Tm







a b c
e f g
i j k
m n o





 =




a+ f + k b+ g c
e+ j + o 0 0
i+ n 0 0
m 0 0


 .

It follows from (1) and (2) and the definition of
Tm that the coefficients ak of the rational function
r(z) = v(ω)Hc cHv(ω) are equal to the elements on
the border of the matrix C. The following result is
therefore obtained.

Theorem 1 Let A1, A2 ∈ C
N×N . Then

Tm(AH
1 A1) = Tm(AH

2 A2)
⇓

v(ω)HAH
1 A1v(ω) = v(ω)HAH

2 A2v(ω).

If c is an N−vector then Tm(ccH) ∈ C
N×N is in

general a rank-two Hermitian matrix due to its struc-
ture, with the eigendecomposition

Tm(ccH) = γyyH + βwwH .

with

y =
[

y1
ỹ

]
and w =

[
w1
w̃

]
.

where y1 and w1 are scalars, ỹ and w̃ are (N−1)-vectors
and where

Tm(ccH) [2 : N, 2 : N ] = γỹỹH + βw̃w̃H

=


 0 · · · 0

· · ·
0 · · · 0


 .



In particular,

γ|ỹi|2 + β|w̃i|2 = 0, i = 1, . . . , N − 1. (3)

The eigenvalues γ and β are real since Tm(ccH) is Her-
mitian and it follows from (3) that γ and β are of op-
posite sign. Since AHA has real nonnegative eigenval-
ues whereas the eigenvalues of Tm(ccH) are of opposite
sign, it follows that nontrivial matrices A such that
AHA = Tm(ccH) do not exist. Fortunately this is not
necessary, because it is Tm(AHA) which determines the
magnitude response of the filter, A, and not AHA. The
first design goal then was to find a matrix, A such that:

Tm(AHA) = Tm(ccH).

3. IMPLICATIONS OF MATRIX FILTER
RANK.

The implications involving the rank of the matrix filter,
A will now be considered. The linear convolution b ∗ v
where b ∈ C

M and v ∈ C
N can be written in matrix

format as
x = b ∗ v = Bv. (4)

where B ∈ C
(N+M−1)×N is a convolution matrix. It

follows that x ∈ C
N+M−1. The determination of v

given B and x in (4) with M > 1 involves an overde-
termined set of linear equations which in general cannot
be solved exactly. If B has full column rank, however,
then the original vector, v can be recovered by solving
the normal equations v = (BHB)−1BHx because x lies
in the column space of B. It follows that when B is
full column rank, (1) distinct data vectors are mapped
into distinct filtered vectors, (2) the filtered vector is
nonzero whenever the data vector is and (3) a data
vector can be recovered from its filtered version.

Recall that the kernel or nullspace, N(G) associated
with a matrix, G ∈ C

N+M−1×N is a subspace of C
N

consisting of the set of elements, y such that Gy = 0.
If S is a subspace in C

N then S⊥ is the subspace con-
sisting of all elements, z ∈ C

N such that zHy = 0, for
all y ∈ S. Consider a matrix filter, G which is rank de-
ficient. Then (1) any two distinct data vectors differing
by a data vector in the kernel N(G) of G will have the
same filter output, (2) any data vector in N(G) will
have the filter output zero and (3) any data vector,
w with decomposition w = x + y, x ∈ N(G)⊥, y ∈
N(G), y=/ 0 cannot be recovered once the filtering op-
eration has taken place. It goes without saying that
these are undesirable properties which are not shared
by any linear convolution filter which has a full rank
convolution matrix. The second design goal in addi-
tion to matching magnitude responses was therefore to
design a full rank matrix filter.

4. DEVELOPMENT OF THE NONLINEAR
EQUATIONS.

One candidate matrix filter is a rank one modification
of a scaled identity matrix:

A = xxH + αI. (5)

The matrix A is nonsingular as long as α=/ − xHx; it
will be assumed that this is true in what follows. The
filtering operation, Av = (xxH + αI)v = x(xHv) + αv,
v ∈ C

N takes 10N real flops when A is real. The
Sherman-Morrison-Woodbury formula [2] can be used
to write the inverse filter A−1 as a rank-one update to
the scaled identity:

(
xxH + αI

)−1
= α−1I −

(
α−2

1 + xHx/α

)
xxH .

Using (5) the following is obtained:

AHA = (xxH + αI)H(xxH + αI)
= (2Re(α) + xHx)xxH + |α|2I.

Let f be a given FIR filter and let c = [c0 c1 · · · cN−1]T .
Define H = Tm(ccH) and let M = Tm(AHA). Let
H[:, n] denote the nth column of the matrix, H. Then
the system of equations to be solved is:

M [:, 1]− H[:, 1] = 0.

The first columns of the matrices M and H are thus
required to be equal. Let s = H[:, 1]. For real M,H
and N = 4 these equations are:

y(x2
1 + x2

2 + x2
3 + x2

4) + 4α
2 − s0 = 0.

y(x1x2 + x2x3 + x3x4)− s1 = 0.
y(x1x3 + x2x4)− s2 = 0.

y(x1x4)− s3 = 0. (6)

where y = (2α + x2
1 + x2

2 + x2
3 + x2

4). The existence of
solutions to (6) has been verified by using the computer
algebra program, MAPLE [3]. In order to obtain an
increased degree of freedom the scalar, α, was treated
as an unknown to be solved for along with the elements
of the vector, x, by adding an additional independent
equation. The set of N + 1 equations passed to the
nonlinear equation solver was:

‖M − H‖F = 0. (1 equation).
M [:, 1]− H[:, 1] = 0. (N equations). (7)

In order to solve (7) a quasi-Newton method for the
solution of nonlinear systems of equations called Broy-
den’s method [4, 5] was used because explicit formu-
las for the elements in the Jacobian matrix are not
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Fig. 1. Magnitude and Phase Responses

required. Real matrix equiripple filters up to size 40
have been designed using this method and in all cases
acceptable solutions have been found, although start-
ing Broyden’s method with several different initial val-
ues for x and α was sometimes necessary. However,
this does not imply that matrix filter counterparts to
arbitrary equiripple FIR filters always exist.

5. AN EQUIRIPPLE MATRIX FILTER.

The following example illustrates the design of a 26×26
matrix filter. An equiripple FIR filter was designed in
MATLAB, using the following command:

pfilt = remez(25,[0 .2 .3 1],[1 1 0 0]);

The coefficient vector pfilt is real and symmetric, so
that the vector c satisfies:

[c0 · · · cN−1]T = [c̄N−1 · · · c̄0]T .

The procedure once the filter coefficients were found
was to solve the system of nonlinear equations (7) nu-
merically, starting with approximate values for x ∈ R

26

and α ∈ R. The MATLAB plot in Figure 1 gives mag-
nitude and phase responses for the FIR equiripple fil-
ter and matrix filter. Figure 2 shows the corresponding
magnitude squared error in dB and the phase error in
radians. The RMS magnitude error was 0.0015.

6. CONCLUSIONS

It has been demonstrated that it is possible to design
matrix filters whose frequency responses closely ap-
proximate the responses of linear equiripple FIR filters.
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There are many matters remaining to be investigated
and understood. For example, whether all equiripple
FIR filters can be implemented as matrix filters using
the method in this paper depends on the existence,
uniqueness and computability of solutions to the sys-
tem of equations in (7). In addition, a proof of the
existence of matrix filters which improve upon the per-
formance of equiripple FIR filters remains to be given.

7. REFERENCES

[1] R. Vaccaro, B. Harrison, Optimal Matrix Filter De-
sign, IEEE Transactions on Signal Processing 44 (3)
(1996) 705–709.

[2] G. Golub, C. V. Loan, Matrix Computations, 3rd
Edition, Johns Hopkins University Press, 1996.

[3] A. Heck, Introduction to MAPLE, Springer Verlag,
1996.

[4] W. Press, B. Flannery, S. Teukolsky, W. Vetterling,
Numerical Recipes, The Art of Scientific Comput-
ing, Cambridge University Press, 1990.

[5] J. J.E. Dennis, R. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equa-
tions, SIAM, 1996.


