
LOCALLY OPTIMAL MAXIMUM-LIKELIHOOD ESTIMATE
OF A TOEPLITZ MATRIX OF GIVEN RANK

Y. I. Abramovich

SurveillanceSystemsDivision (SSD),
DefenceScienceandTechnology

Organisation(DSTO), POBox 1500,
Salisbury SA 5108, Australia
yuri@cssip.edu.au

N. K. Spencer

CooperativeResearchCentrefor Sensor
SignalandInformationProcessing(CSSIP),
SPRIBuilding, TechnologyParkAdelaide,

MawsonLakes SA 5095, Australia
nspencer@cssip.edu.au

ABSTRACT

We derive an algorithmto computea maximum-likelihood(ML)
estimateof a Toeplitzcovariancematrix

�
whoserankis known a

priori that is “locally optimal”, by maximisingthe likelihood ra-
tio in the neighborhoodof

�
. This problemarises,for example,

in thedetectionand/ordirection-of-arrival (DOA) estimationof �
uncorrelatedplane-wave sourcesusinga nonuniform(sparse)� -
sensorlinearantennaarray, where ����� (the“superior” case),
but theproblemis importantin its own right, andhasapplication
to otherareasof signalprocessingandcommunications.The al-
gorithm reliesuponthesolutionof a convex linear programming
(LP) problem,whosefeasibility is guaranteed.

1. INTRODUCTION

While this ML estimationproblemcould be consideredin isola-
tion, it is more instructive to presentthe problemin one of its
naturalcontexts, for exampledetectionandDOA estimationwith
nonuniform(sparse)linear antennaarrays[1, 2]. Sucharraysat-
tract considerableattention,especiallywhen the numberof sen-
sors( � ) is limited, sincethey canoffer asignificantimprovement
over thestandard� -sensoruniformarrayin termsof bothestima-
tion accuracy andthemaximumestimatednumberof uncorrelated
sources. Most DOA estimationstudiesassumethat the number
of uncorrelatedGaussiansources� is known or somehow accu-
rately estimated.Naturally, in practicalapplicationswherenoth-
ing is known aboutthe signal environmenta priori, this stepis
not trivial, both for conventional scenarios,where ����� , and
especiallyfor superior scenarios,where �	�
� .

In the conventionalcase,the detectionproblemcan be ad-
dressedby the traditionalAIC andMDL techniques[3] or their
latervariants[4]. In thesuperiorcase,thestandardAIC andMDL
methodsareinappropriatesimply becausethe covariancematrix�

hasno noisesubspace.A forthcomingpaper[2] presentsand
discussestheoverall detectiontechniquefor superiorscenariosof
independentGaussiansourcesfor the classof fully augmentable
nonuniformlineararrays(NLA’s).

Fully augmentableNLA’s belongto the family of “minimum
redundancy” arrays[5], andaredefinedashaving no gapsin the
setof �
������������� intersensorseparations,in otherwords,having
a full or completeco-arraythat is identical to the corresponding
( ��� -sensor)uniform lineararray(ULA). Suchgeometriesconse-
quentlypermitDOA estimationof a superiornumber�����������! "� (1)

of independentsources,andtraditionally, thedirectaugmentation
approach(DAA) of Pillai et al. [6] hasbeenconsideredadequate.
However, we have demonstrated[7] that theDOA estimatespro-
vided by MUSIC applied to the ��� -variateaugmentedsample
covariancematrix #� are far from asymptoticallyoptimal. This
is important becausea naive attemptto directly apply existing
AIC/MDL criteria to #� also fails; indeed,the DAA matrix #� is
not statisticallyp.d. for any reasonablesamplesize $ [2]. For
this reason,the setof estimatedspatialcovariancelags forming
the ��� -variateToeplitzmatrix #� comprisesonly thefirst initial-
izationstepof theproposeddetectionscheme.

Thephilosophyof thisschemeisquitesimple.Giventhesetof
all ��� measuredspatialcovariancelagsprovidedby thestandard� -variatedirect datacovariance(DDC) matrix #� , we find a set%�&('*) �,+.-/��0213121405� � �6�3� of p.d. Toeplitzcovariancematrices,
eachhaving ��� � �7+8� equalizedminimumeigenvalues.A selec-
tion of the mostappropriatemodel (ie. numberof sources)from
thecandidates

&*'
maythenbemadeby thetraditionalinformation

criteriaor Bayesianmodeltechniques.
Herewe specificallypresentthederivationof a “locally opti-

mal” ML estimateof a positive-definite(p.d.)Toeplitzcovariance
matrix,which is a crucialpieceof theentiredetectionscheme.

2. PROBLEM FORMULATION

Consideran � -elementNLA with sensorslocatedat positions9
:�; <>=?:A@ 0 <CB 0 <CD 0E1212120 <(FG: � � �6�IH (2)

restrictedto integervaluesof
<�J

measuredin half-wavelengthunits.
Fully augmentable arrayshave thepropertythat thesetof all in-
tersensordistancesK
: % <�J � <(LNM2O 0�PQ-���0R14121205�
S O �TP ) (3)

is complete,ie.
KU: % @ 0E1213120 < F ) . Recall that the co-array V

of a linear array
9

is the sortedsetof nonduplicatedelementsofK
, thus the � � -elementco-arraycorrespondingto every fully-

augmentableNLA isuniform.Furthermore,for independentGaus-
siansources,this propertyindicatesthat up to �����W�N�3� sources
maybe identified(detectedandestimated),which revealsthepo-
tentialability to identify up to �����X�N�Y� sources,given sufficient
statisticsvia the DDC matrix

�
. We assumethat Gaussianpro-

cessesareobservedasa mixture of � uncorrelatedplanewaves
with DOA’s Z :	; [ = 0E1214120 [�\ H,] , powers ^ : diag

; _ = 0E1213120 _E\ H



andGaussianwhitenoiseof power
_a`

:b ��cd�e-
fg��ZR��hg��c��Eikjl��c�� for cW-���0812121205$ (4)

whereb ��c��nm7o Fqp*= is thevectorof observedsensoroutputs(the
“snapshot”),hg��c��rmso \ p(= aretheGaussiansignalamplitudestvu hl��c = �*hWw���c B �3xy-{z ^ for c = -
c B@

for c =}|-
c B 0 (5)jl��c��rm~o Fqp*= is additive white Gaussiannoise,o*� p?� is thespace
of
_l�W�

complex-valuedmatrices,and
t %�� )

is theexpectationoper-
ator. Thearraymanifoldmatrix is fg��ZE� :�; � � [�= �I0�1412120 � � [ \ ��Hemo F7p \ , whereeach� � [2J �e-��d��0(�2���7�Y�,� <CBR�d���}[�J4� 0E1212130(�2���7�Y�,� <(F��d���}[2J2�W� ]

(6)
is a so-called“steering”vector. Thesetof independentsnapshotsb ��cd�qm�o Fqp(= originatesfrom a complex GaussiandistributionoC�y����0 @ 0 � � , where� -
fg��Z8��^�fg��Z���w�i _ `Y� F 1 (7)

Given $ independentsnapshots,the sufficient statisticfor DOA
estimationis theDDC (sample)matrix#� - �$ �� � � =e¡ ��c�� ¡ w���cd��1 (8)

For thecorresponding� � -elementULA, thearraymanifold
matrix ¢£��Za� :¤; ¥ � [C= �I0R1412120 ¥ � [ \ ��H7m	o F�¦ep \ is of Vander-
mondestructure,with¥ � [2J �W-§�d��0(�2���W���,�E¨ J �I081212120(�2���s©ª��� ; � � �N�5H,¨ J5«�� ] (9)

wherethe spatial frequency is ¨ J�:"�d���¬[2J
. By definition, the� -elementNLA canbeviewedasa subarrayof the ��� -element

ULA. Thusthe � -variatesnapshotvector b ��cd� canbe presented
asa subsetof the � � -variateULA output ­���cd�gm®o F�¦Wp*= :b ��c��W-�¯e­k��c�� (10)

where ¯ is the � � ��� binary selection(or incidence)matrix
with ¯ J5L equalto unity in the

O±°³²
row and

<R°³²L
column,andzero

otherwise.Correspondingly, the � -variateHermitiancovariance
matrix

�
is linkedto the ��� -variateToeplitzcovariancematrix

�
for the � � -elementULA by thelineartransformation� -
¯ � ¯ ] (11)

with � -	¢£��ZE��^�¢´��Z>� w i _a` � F�¦ 1 (12)

Thephilosophyof theDAA [6] is to estimatetheToeplitzma-
trix covariancelags #� - % c J2µ¶L ) F�¦J5· L � = (13)

by simplyaveragingoverthesetof corresponding(possiblyredun-
dant)covariancelagstakenfrom #� :c J4µEL �E¸ -º¹ FJ5· L � = #�lJ5Ll» �,¼R0 <�J � <(L �¹ FJ5· L � = » �,¼R0 < J � < L � 0 O´½ P (14)

where
» �,¾>0I¿4� is thegeneralizedKroneckerdeltafunction.Clearly

theaugmentedcovariancematrix #� is notnecessarilyp.d.,andthe
distributionof its �����X�À�Á� smallest(noise-subspace)eigenvalues
is of majorconcern.

Detectioncannotbe basedon the direct testingof the equal-
ity of the ��� � �.�Á� smallesteigenvaluesof theDAA matrix #� ,
sincethesenoise-subspaceeigenvaluesfluctuateconsiderablyand,
moreover, #� is generallynot p.d. for any reasonablesamplesize$ . We requiresomenew techniquethat exploits the sufficient
statistic #� in a moreappropriatefashion.

3. ESTIMATION OF #� WITH A GIVEN RANK

GiventheDDC matrix #� , wenow wish to computea p.d.Toeplitz
matrix

� '
, whose �����!�T+R� smallesteigenvaluesareequal,that

is “sufficiently close”to #� , via thetransformation #� ' -y¯ � ' ¯ ] ,
in theML sense.

The main idea behindour algorithm is quite simple. Since
small perturbationsin the samplecovariancelagsof #� (with re-
spectto the exact valuesin

�
) leadto significantfluctuationsin

thenoise-subspaceeigenvaluesÂnÃ of thematrix #� , “inverseper-
turbations”in #� thatequalizeup to the �����À�7�s� smallesteigen-
valuesshouldnot involve significantchangesto thesamplelags.
Thusfor +�-�� we expectthematrix #� ' -�¯ � ' ¯ ] to beclose
to #� , asmeasuredby the likelihood ratio (LR). On the contrary,
if somesignaleigenvaluewasattemptedto beequalizedwith the
noiseeigenvalues(for + ½ � ), therewouldbea noticeabledegra-
dationin LR.

SincetheDAA matrix #� is (generally)notp.d.,wecannotuse
it asan initial valuedirectly; ratherthecovariancelagsgenerated
by theDDC matrix #� shouldbemodifiedappropriately, in a man-
nerascloseaspossibleto #� in theML sense[8]. For example,the
simplestideais to properlyloadtheDAA matrix:� ` - #� � #Ä F�¦ � F�¦ 1 (15)

On theotherhand,evenif theDAA matrix #� is p.d., it couldstill
be far away from the ML Toeplitz estimatefor the given suffi-
cientstatistic #� . For thisreason,it wouldbeappropriateto instead
choosetheinitial point to bea“locally optimal” ML estimate #� FgÅ�>` - #� FgÅ 1 (16)

Thematrix #� FgÅ is definedasthatwhichhasmaximumLR, andby
“locally optimal”, we meanthat this appliesin theneighborhood
of theDAA matrix #� .

In principle,for sufficiently smallperturbationsin
� `

, wemay
applya first-orderexpansionof theLRÆ � � ' �e-§Ç È �4É2� � ' µR= #� �Ê =F &3Ë � � ' µR= #� �dÌ FTÍ � (17)

thendirectly maximizetheLR in this neighborhood.Instead,we
suggesta slightly different optimizationcriterion that is closely
relatedto theML one.Let#Î � � �W- #� µ�ÏÐ � #� µ�ÏÐ (18)

with � -
¯ � ¯ w -
¯gÑ w¬Ò Ñ~¯ w (19)



thentheLR canbeexpressedas Æ � � �e- ; Æ ` � � ��H � , whereÆ ` � � �l- Ó FL � =¶Ô µR=LÊ =F ¹ FL � =EÔ µ8=L Ì F (20)

where Ô L is the P °,² eigenvalueof #Î � � � . It shouldnow be clear
thattheLR reachesits maximumof Æ ` � � �Õ-�� only when #Î � � �
is theidentitymatrix,sothat Ô = - Ô B -Ö12141C- Ô F . Thus,instead
of directlymaximizingtheLR Æ ` � � � , we proposeminimizing the
differencebetweentheeigenvaluesfor both thedirect( #Î ) andin-
verse( #Î µ8= ) matrices.Specifically, in a sufficiently small neigh-
borhoodof theinitial p.d.Toeplitzmatrix

�>`
, we iteratively solve

two separateproblems:

Find × ��� � Ô = � Ô F � (21)

and
Find × ��� � Ô µ8=F � Ô µ8== � (22)

wheretheeigenvaluesaresortedin descendingorder Ô =´½ Ô BN½12141 ½ Ô F ½�@
; thensimply selectthesolutionwith greaterLR.

Thenumeratorof (20)makesthisdualapproachnecessary,sincea
“one-sided”minimization(suchas(21) alone)wouldnotprecludeÔ F	Ø @

anda correspondinglytiny LR.
Insteadof thesetwoseparateproblems(21)and(22),wecould

considerthesimultaneousminimizationof theeigenspectraof #Î
and #Î µR= , or somealternatingrule. While suchoptionscould be
exploredin thefuture,we have foundtheabove dualapproachto
bequitesatisfactory.

Sincethe optimizationcriteria (21) and (22) arenot exactly
theML criteria,we musttreatour resultsassuboptimalin theML
sense;nevertheless,for simplicity we call the result the “locally
optimalML Toeplitzestimate”,basedon efficiency shown in [2].

Let usnow describetheiterative routinethatsolvesthedirect
problem(21). We start from someadmissible(p.d.) � � -variate
Toeplitz matrix

� `
(that transformsinto the � -variatep.d. Her-

mitian matrix
�Õ`

via (19)), andat eachiteration c solve the LP
problem:

Find × ��� �,Ù~�~Úe� subjectto (23)@ �
Û � i K � h��TÙÕÜ (24)Û � i K � h ½ ÚÕÜ (25)�ÕÝÀ�TÞ L �TÝ for P!-��Y0R12121405����� � �6�3� (26)Ô F � #Î � �>` ���l�TÙl0dÚ���ß (27)

where Û � is the � -variatevectorof eigenvaluesof #Î � , with#Î � à = - #Î � i B2áâF ¦ µY=,ã� L � = Þ �äà =�· L #� µ ÏÐ ¯eÑ~w�å L Ñ~¯ew #� µ ÏÐ 1 (28)

Theinequalities(26)ensuretheperturbationsaresufficientlysmall,
sothatthefollowing first-orderexpansionis validÔ J � #Î � à = �g- Ô J � #Î � ��i B2áæF�¦2µ�=,ã� L � = Þ � à =�· L�ç wJ #� µ�ÏÐ ¯eÑ~w�å L Ñ~¯gw #� µ¬ÏÐ ç J

(29)
where

ç J
is the

O °,²
eigenvector of the matrix #Î � . The � ��C��� � �N�Y� matrix

K �
is definedaccordingto the first-orderex-

pansion(29)asK � -�� ç wJ #� µ¬ÏÐ ¯eÑ~wnå L Ñ~¯gw #� µ¬ÏÐ ç J � L � =�· è è èâ· B2áâF¬¦±µ�=,ãJ � =�· è è èä· F 1 (30)

The inequalities(27) do not allow the minimum eigenvalue of#Î � � � � to fall below its initial value Ô F � #Î � �>` ��� . Theoverallresult
of this (direct problem)optimizationis that the minimum eigen-
valueof #Î � (andhence

� �
) remainspositive,while theeigenvalue

spreadÔ = �é#Î � �X� Ô F �W#Î � � is minimized.
It is importantto notethatthecontrolledpositive-definiteness

of
� �

does not guaranteethat the � � -variateToeplitz matrix
� �

remainsp.d. throughoutthis optimizationprocedure.In fact, con-
trolledperturbationsin

� `
canleadto ahigherLR for

� �
, while

� �
itself canbecomenon-p.d.Interestingly, thispropertyallows usto
determinewhethertheDAA matrix #� is thebest(in theLR sense)
non-positive Toeplitzestimate.In orderto find a properML esti-
mate,we have to ensurethepositive-definitenessof theoptimized
Toeplitzmatrix,andsowe mustaugmentthelinearinequalitiesof
ourdirectoptimizationproblem(23)–(27)with thefollowing:�lê!ë ��h � ��h~� Ä ��h � �g�y� _ ` Ü (31)

whereê ë ��h � � is definedbyêÁ��h ` �W- u�ì wJ ��h ` �(å L ì J ��h ` � x L � =�·�è è èâ· B2áâF ¦ µY=,ãJ � =�·5è è è�·�F�¦ (32)

andwhere
_ `

is theminimumeigenvalueof theinitial matrix
� `

.
Finally, step-sizemanagementis now definedby whicheverof

thefirst-orderexpansions@ � Ä ' ��h = �eí Ä ' ��h ` �Eikês��h ` ��hgî81 (33)

or (29) is mostsensitive (typically theformer).
The “inverse”optimizationproblemconcerning #Î µ8= � � � � in

(22) is solvedin a similar fashion[2].
As wasmentionedabove, thefinal stepis to simply selectthe

fully iteratedsolution from the “direct” (23)–(27)+(31)and the
“inverse”LP problemswith thegreaterLR asthebestapproxima-
tion to the locally optimal ML estimate

�aFgÅ
for the � � -variate

Toeplitz covariancematrix, given the � -variatesufficient statis-
tics #� andtheinitial solution

�>`
.

It shouldbeclearthatin many applicationsthisestimatecould
beimportantin its own right. Moreover, it couldbedirectlytreated
by the traditionalAIC/MDL criteria [3]. In [2], we describedin
detail a methodof subsequently minimizing the greatestof the
setof noise-subspaceeigenvalues,in otherwords,noise-subspace
equalization,by a linearprogramming(LP) technique.This gen-
eratesthe desiredsequenceof p.d. Toeplitz matrices

� '
( +�-��0214121205� � �¬� ), eachof theproper+ -plane-waves-plus-noisestruc-

ture, that thenpermitsdetectionof thecorrectnumberof sources� basedon informationtheoreticcriteria.

4. SIMULATION RESULTS

Fig. 1 shows thesampleLR distribution Æ ` � � � correspondingto
thesimulationof

9Eï - ; @ 0>�C0EðC0>ñ*0(ò3H conductedoverasetof 1000
Monte-Carlotrials. We indicatethe LR distributions for (a) the
DAA matrix #� , (b) thedirectly loadedDAA matrix (“loaded #� ”),
(c) the“unconstrained”(notnecessarilyp.d.)solution

�ÕóFgÅ
, (d) the

“constrained”p.d.ToeplitzML estimate
� FgÅ

, and(e)theexactco-
variancematrix

�
. Strictly speaking,thedistribution Æ �E#� � should

notbecalculated,sincein 988outof our1000Monte-Carlotrials,
theDAA matrix #� wasnot p.d. Nevertheless,thecorresponding
“contracted”matrix ¯ #� ¯ w maywell bep.d.
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Fig. 1. Sampleprobabilitydistribution of thelikelihoodratio.

First,comparisonof Æ � � óFgÅ � with Æ �8#� � provesthatwithin the
classof non-p.d.Toeplitzmatrices(thatyield � -variatep.d.Her-
mitian matrices ¯ � ¯ w ), LR maximizationgives a result that is
usually even higher than the LR of the true covariancematrix,Æ � � � , andsignificantlybetterthanthat of theDAA matrix or its
variants. We canseethat Æ � #� � spills over into the inappropriate
negative domain,andevenwhentheLR is positive, it lies in a re-
gion of very small valuescomparedwith Æ � � � . Direct diagonal
loadingbringsthe LR distribution backinto the positive domain,
butalsohassmallLR valuescomparedwith Æ � � � . Thisonceagain
demonstratesthatboth redundancy averaginganddirect augmen-
tationareactuallyverypoorestimates(in theML sense)of astruc-
tured(Toeplitz)covariancematrix.

FurtherLR maximizationisshownby thedistribution Æ � �aFgÅ � ,
which leadsto theremarkableobservationthat,while Æ � � � is not
surprisinglyin thehigh range0.80to 0.95,local ML optimization
generallyexceedsthis by a significantmargin. Indeed, Æ � �aFgÅ �
hasanoticeablyright-skeweddistribution thatapproachestheulti-
matelimit of unity. Notethatthis Æ � � FgÅ � ½ Æ � � � behavior does
not necessarilymeanthat

�>FgÅ
really is a betterestimatethanthe

truematrix
�

; it is simply a betterestimatethat theML criterion
cansuggest.Thusdespitethelocalnatureof ouroptimizationsand
theuseof an indirectoptimizationcriterion,any further attempts
to improve the LR beyond Æ � � FgÅ � would not necessarilygive a
significantperformanceimprovementin either detectionor esti-
mation. Effectively, comparisonof Æ � �aFgÅ � and Æ � � � allows us
to conclude,from a practicalviewpoint, that the problemof ML
estimationof a structured(Toeplitz) covariancematrix hasbeen
solvedby theproposedtechnique.

5. SUMMARY AND CONCLUSIONS

Wehaveintroducedanew techniquefor computingaML estimate
of a Toeplitzcovariancematrix

�
. Ratherthanthe trueandexact

ML estimate(that is unknown asyet), we have proposeda tech-
nique that yields a “local ML estimate”

�>ôEõ
. This techniqueis

initialized by thedirectaugmentationapproach(DAA), thenuses
aniteratedlinearprogramming(LP) optimization,with sufficiently
smallperturbationsat eachiterationproviding sufficient accuracy
in thefirst-orderexpansionof theeigenvalues.This schemeguar-

anteeslocaloptimality of theperturbationsat eachiteration.
We stressthat this proposedtechniqueis applicablefor the

generalcase� � -	� , thatmakesit usefulfor a rangeof prob-
lemsfar beyondthelimited scopeof NLA processing[9].
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