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ABSTRACT

We derive an algorithmto computea maximum-likelihood(ML)
estimateof a Toeplitzcovariancematrix 7' whoserankis known a
priori thatis “locally optimal”, by maximisingthe likelihood ra-
tio in the neighborhoodf 7. This problemarises for example,
in thedetectionand/ordirection-of-arval (DOA) estimationof m
uncorrelateglane-wae sourceausinga nonuniform(sparse)¥/ -
sensollinear antennarray wherem > M (the“superior” case),
but the problemis importantin its own right, andhasapplication
to otherareasof signalprocessingandcommunications.The al-
gorithmreliesuponthe solutionof a corvex linear programming
(LP) problem,whosefeasibility is guaranteed.

1. INTRODUCTION

While this ML estimationproblemcould be consideredn isola-
tion, it is more instructve to presentthe problemin one of its
naturalcontexts, for exampledetectionand DOA estimationwith
nonuniform(sparsejinear antennaarrays[1, 2]. Sucharraysat-
tract considerableattention,especiallywhenthe numberof sen-
sors(M) is limited, sincethey canoffer asignificantimprovement
overthestandardV/-sensomuniformarrayin termsof bothestima-
tion accuray andthe maximumestimatechumberof uncorrelated
sources. Most DOA estimationstudiesassumethat the number
of uncorrelatedsaussiarsourcesn is known or somehav accu-
rately estimated.Naturally, in practicalapplicationswherenoth-
ing is known aboutthe signal ervironmenta priori, this stepis
not trivial, both for conventional scenarioswherem < M, and
especiallyfor superior scenarioswherem > M.

In the corventionalcase,the detectionproblem can be ad-
dressedy the traditional AIC and MDL techniqueq3] or their
latervariantg4]. In thesuperiorcasethestandardAIC andMDL
methodsareinappropriatesimply becausehe covariancematrix
R hasno noisesubspaceA forthcomingpaper[2] presentsaand
discussesghe overall detectiontechniquefor superiorscenarioof
independenGaussiarsourcesor the classof fully augmentable
nonuniformlineararrays(NLA's).

Fully augmentabldNLA’s belongto the family of “minimum
redundanyg” arrays[5], andaredefinedashaving no gapsin the
setof M (M —1)/2 intersensoseparationsn otherwords,having
afull or completeco-arraythatis identicalto the corresponding
(M4-sensoruniformlineararray(ULA). Suchgeometriesonse-
quentlypermitDOA estimationof a superiomumber

1<m< Ma>M (1)
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of independensourcesandtraditionally the directaugmentation
approachDAA) of Pillai et al. [6] hasbeenconsiderecadequate.
However, we have demonstratefi7] thatthe DOA estimategro-
vided by MUSIC appliedto the M ,-variate augmentedsample
covariancematrix 7" are far from asymptoticallyoptimal. This
is importantbecausea naive attemptto directly apply existing
AIC/MDL criteriato 7' alsofails; indeed,the DAA matrix 7" is
not statisticallyp.d. for ary reasonablesamplesize N [2]. For
this reasonthe setof estimatedspatial covariancelags forming
the M, -variate Toeplitz matrix 7" comprisesonly the first initial-
izationstepof the proposedietectionscheme.

Thephilosophyof thisschemeés quitesimple.Giventhesetof
all M, measuredpatialcovariancelagsprovided by the standard
M -variatedirect datacovariance(DDC) matrix R, we find a set
{T.} (u = 1,..., Mq—1) of p.d. Toeplitz covariancematrices,
eachhaving (M., — p) equalizednminimumeigervalues.A selec-
tion of the mostappropriatemodel (ie. numberof sourcesfrom
thecandidate§,, maythenbemadeby thetraditionalinformation
criteriaor Bayesianrmodeltechniques.

Herewe specificallypresenthe derivation of a “locally opti-
mal” ML estimateof a positive-definite(p.d.) Toeplitz covariance
matrix, whichis a crucial pieceof the entiredetectionscheme.

2. PROBLEM FORMULATION
Consideran M -elementNLA with sensordocatedat positions

d=[d=0,dy, ds, ..., dy = Ma—1] 2)

restrictedo integervaluesof d; measuredh half-wavelengthunits.
Fully augmentable arrayshave the propertythat the setof all in-

tersensodistances

D={d; —dx|jk=1,...,M; j >k} A3)

is complete,ie. D = {0, ...,dn}. Recallthatthe co-array ¢
of alineararrayd is the sortedsetof nonduplicatecelementsof
D, thusthe M,-elementco-arraycorrespondingo every fully-
augmentabl®&lLA is uniform. Furthermorefor independenGaus-
siansourcesthis propertyindicatesthatup to (M, —1) sources
may be identified (detectedand estimated)which revealsthe po-
tential ability to identify up to (M. —1) sourcesgiven sufficient
statisticsvia the DDC matrix R. We assumehat Gaussiarpro-
cesseare obsened as a mixture of m uncorrelatecblanewaves
with DOA's @ = [61, ...,0m]", powersP = diag[p1, ..., pm]



andGaussiarwhite noiseof power pq:
y(t) = S(O)m(t) +n(t)  for

wherey(t) € ¢M*! is thevectorof obsenedsensooutputs(the
“snapshot”)z(t) € C™*" arethe Gaussiarsignalamplitudes

t=1,...,N (4

t1 =12

L B P for
S{m(tl)iﬂ (t2)} = { 0 for t1 #t2, ©

n(t) € CM*" is additve white Gaussiamoise,C?*? is thespace
of pxq comple-valuedmatricesandé{- } istheexpectatioroper
ator Thearraymanifoldmatrixis S(68) = [s(61), ..., 8(6,,)] €
cM*m™ whereeach

T
s(6,) = |:17 exp (2'7rd2 sin 6’]), ..., Xp (iTrdM sin 6’]>}
(6)

is a so-called'steering”vector The setof independensnapshots
y(t) € cM*1 originatesfrom a complex Gaussiardistribution
CN(M,0, R), where

R=S(8)PS(0)" +poln. )

Given N independensnapshotsthe suficient statisticfor DOA
estimationis the DDC (sample)matrix

N
R=2 3" w0y (). ®)

For the correspondingV/,-elementULA, the arraymanifold
matrix A(0) = [a(6:), ...,a(8,,)] € CMeX™ is of Vander
mondestructurewith

T
a(f;) = |1, exp(iwwy), ..., exp (in’[/\la—l]w])} 9)

wherethe spatialfrequeng is w; = sind;. By definition, the
M-elementNLA canbeviewedasa subarrayof the M, -element
ULA. Thusthe M -variatesnapshotectory(t) canbe presented
asasubsebf the M,,-variateULA outputY (t) € CMe":

y(t) = LY (1) (10)

where I is the M x M, binary selection(or incidence)matrix
with £;x equalto unity in the 5** row andd* column,andzero
otherwise.Correspondinglythe M -variateHermitian covariance
matrix R is linked to the M, -variateToeplitzcovariancematrix T’

for the M ,-elementUJLA by thelineartransformation

R=LTL" (12)
with
T = AG)PAO)" +poln, . 12)
Thephilosophyof the DAA [6] is to estimatethe Toeplitzma-
trix covariancdags
T = {tj‘_k};\ydk’;] (13)

by simply averagingoverthesetof correspondingpossiblyredun-
dant)covariancdagstakenfrom R:

M al N
— R k é K, d _dk)
bikmw = Zf”“;j i (s, d; —, i>k (14
Zj,k:l (k, dj—dx)

whered(a, b) is thegeneralize&roneckerdeltafunction. Clearly
theaugmentedtovariancematrixi” is notnecessarilp.d.,andthe
distribution of its ( M, —m) smalles{noise-subspacejgervalues
is of majorconcern.

Detectioncannotbe basedon the direct testingof the equal-
ity of the (M., — ) smallesteigervaluesof the DAA matrix 7",
sincethesenoise-subspareigervaluesfluctuateconsiderablhyand,
moreover, 7' is generallynot p.d. for arny reasonableamplesize
N. We requiresomenew techniquethat exploits the sufficient
statistic/z in amoreappropriateashion.

3. ESTIMATION OF T"WITH A GIVEN RANK

Giventhe DDC matrix R, we now wish to computea p.d. Toeplitz
matrix 7., whose(M, — u) smallesteigervaluesare equal,that
is “sufficiently close”to R, via thetransformation?,, = LT, L7,
in theML sense.

The main idea behindour algorithmis quite simple. Since
small perturbationsn the samplecovariancelagsof R (with re-
spectto the exact valuesin R) leadto significantfluctuationsin
the noise-subspaceigenvaluesa,, of thematrix 7', “inverseper
turbations’in 7" thatequalizeup to the (M. — m) smallesteigen-
valuesshouldnot involve significantchangedo the samplelags.
Thusfor 4 = m we expectthematrix R, = 1.1, 1.7 to beclose
to R, asmeasuredy the likelihood ratio (LR). On the contrary
if somesignaleigervaluewasattemptedo be equalizedwith the
noiseeigervaluegfor 1« > m), therewould bea noticeabledegra-
dationin LR.

SincetheDAA matrix7" is (generally)notp.d.,we cannotuse
it asaninitial valuedirectly; ratherthe covariancelagsgenerated
by the DDC matrix 2 shouldbe modifiedappropriatelyin aman-
nerascloseaspossibleto £ in theML sensd8]. For example the
simplestideais to properlyloadthe DAA matrix:

To=T—6m,Ium, . (15)

Ontheotherhand,evenif the DAA matrix 7" is p.d.,it could still
be far away from the ML Toeplitz estimatefor the given suffi-
cientstatisticR. For thisreasonit would beappropriateo instead
chooseheinitial pointto bea*“locally optimal” ML estimatef s,

To = Tur . (16)

Thematrix Tz, is definedasthatwhichhasmaximumLR, andby
“locally optimal”, we meanthatthis appliesin the neighborhood
of the DAA matrix 7.

In principle,for sufficiently smallperturbationsn 7, we may
applyafirst-orderexpansionof the LR

n N
WT,) = (M) (17)
(47 (R. ™" R)]

thendirectly maximizethe LR in this neighborhood Instead we
suggesta slightly different optimizationcriterion that is closely
relatedto theML one.Let

G(R)= R~

=
=

RR™ (18)

with
R=LTL" = LH"QHL" (19)



thenthe LR canbeexpressedsy (1) = [yo(1)]", where

M -
[T A

M 1M
[ﬁ Zk:] )‘k 1]
where ;. is the k'™ eigervalueof G(R). It shouldnow be clear
thatthe LR reachests maximumof vo(7) = 1 only whenG/(R)
is theidentity matrix,sothatA; = A2 = ... = Aas. Thus,instead
of directly maximizingthe LR ~o (7"), we proposeminimizing the
differencebetweerthe eigervaluesfor boththe direct(G) andin-
verse(G—!) matrices. Specifically in a sufficiently small neigh-

borhoodof theinitial p.d. Toeplitzmatrix Ty, we iteratively solve
two separat@roblems:

20(T) = (20)

Find min(A1 — Anr) (21)

and

Find  min(Ay —ATY) (22)
wherethe eigervaluesaresortedin descendingrderA; > A2 >
... > Am > 0; thensimply selectthe solutionwith greaterLR.
Thenumeratoof (20) makeshis dualapproachmecessarysincea
“one-sided"minimization(suchas(21) alone)would not preclude
Am — 0 andacorrespondinglyiny LR.

Insteadof thesetwo separat@roblemg21)and(22), we could
considerthe simultaneousninimizationof the eigenspectraf ¢
andG~', or somealternatingrule. While suchoptionscould be
exploredin thefuture, we have found the above dual approachto
be quitesatisfactory

Sincethe optimizationcriteria (21) and (22) are not exactly
the ML criteria,we musttreatour resultsassuboptimalin the ML
sense;neverthelessfor simplicity we call the resultthe “locally
optimal ML Toeplitzestimate” basedn efficiency shovnin [2].

Let usnow describetheiterative routinethatsolvesthe direct
problem(21). We startfrom someadmissible(p.d.) M, -variate
Toeplitz matrix Ty (thattransformsinto the M-variatep.d. Her
mitian matrix R via (19)), andat eachiterationt solve the LP
problem:

Find min(a — 3) subjectto (23)

0< XN +Dix <al (24)

At + Dz > 81 (25)

—e<zp<e for k=1,...,2(Ms—1) (26)

M (G(Th)) < o, B < o0 (27)

where), is the M -variatevectorof eigervaluesof G, with
2(Ma—1)

Gin=Git+ > sk RTILHP R HLY 2. (28)

k=1

Theinequalitieg26) ensureheperturbationsiresufiiciently small,
sothatthefollowing first-orderexpansionis valid

2(Ma—1)
~ . ~ A_ 1 A—L
M (Gin) = MG+ Y wprg] RTELHTFHLT B3,
k=1

A (29)
whereg; is the ;*" eigervector of the matrix ;. The M x
2(M,—1) matrix D, is definedaccordingto the first-orderex-
pansion(29) as

h

ool = gl k=1,...,2(Mq—1)
D, = [g] R=LH"FHL R 2g, . . (30)

J=1,...,

The inequalities(27) do not allow the minimum eigervalue of
G(T) tofall belowitsinitial valueAar (G(Ts)). Theoverallresult
of this (direct problem)optimizationis that the minimum eigen-
valueof ¢, (andhenceR;) remainspositive, while the eigervalue
spreadh; (G;) — Aar(G,) is minimized.

It is importantto notethatthe controlledpositive-definiteness
of R, does not guaranteahatthe M, -variate Toeplitz matrix T;
remainsp.d.throughouthis optimizationprocedureln fact, con-
trolledperturbationsn 7y canleadto ahigherLR for R, while T;
itself canbecomenon-p.d.Interestinglythis propertyallows usto
determinavhetherthe DAA matrix 7" is thebest(in the LR sense)
non-positive Toeplitz estimate.In orderto find a properML esti-
mate,we have to ensurethe positive-definitenessf the optimized
Toeplitzmatrix,andsowe mustaugmenthelinearinequalitiesof
our directoptimizationproblem(23)—(27)with thefollowing:

—A'(:m)m — o(mt) < —po]. (31)
whereA'(x,) is definedoy

\ \ k=1, .,2(Me—1)
A(zo) = {v] (20) Fi vj(mo)}FL i (32)
andwherepy is theminimumeigervalueof theinitial matrix 7.

Finally, step-sizenanagemeris now definedby whichever of
thefirst-orderexpansions

0< op(®r) ~op(xo) + A(xo)a™ . (33)

or (29) is mostsensitve (typically the former).

The “inverse” optimization problemconcerning; = (1) in
(22)is solvedin a similar fashion[2].

As wasmentionedabove, the final stepis to simply selectthe
fully iteratedsolution from the “direct” (23)—(27)+(31)and the
“inverse”LP problemswith thegreaterLR asthebestapproxima-
tion to the locally optimal ML estimateTy, for the M, -variate
Toeplitz covariancematrix, given the M -variate sufficient statis-
tics R andtheinitial solutionT5.

It shouldbeclearthatin mary applicationghis estimatecould
beimportantin its own right. Moreover, it couldbedirectlytreated
by the traditional AIC/MDL criteria[3]. In [2], we describedn
detail a methodof subsequetly minimizing the greatestof the
setof noise-subspaeeigervalues,n otherwords,noise-subspae
equalizationby alinear programming(LP) technique.This gen-
eratesthe desiredsequenceof p.d. Toeplitz matrices?,, (u =
1,..., M,—2), eachof theproperu-plane-waes-plus-noisstruc-
ture, thatthenpermitsdetectionof the correctnumberof sources
m basedn informationtheoreticcriteria.

4. SIMULATION RESULTS

Fig. 1 shavs the sampleLR distribution ~(7") correspondingo
thesimulationof ds = [0, 2, 5, 8, 9] conducteaverasetof 1000
Monte-Carlotrials. We indicatethe LR distributions for (a) the
DAA matrix T', (b) thedirectly loadedDAA matrix (“loadedT™),
(c)the“unconstrained’{notnecessarilyp.d.)solutionT}y;,, (d) the
“constrained’p.d. ToeplitzML estimatel s, and(e)theexactco-
variancematrix R. Strictly speakingthe distribution v(7") should
notbecalculatedsincein 988outof our 1000Monte-Carlatrials,
the DAA matrix 7" wasnot p.d. Neverthelessthe corresponding
“contracted’matrix L7 L¥ maywell bep.d.



W, = [-0.90, -0.68, —0.46, -0.24, -0.02], SNR =20dB, N =100, 1000 trials
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Fig. 1. Sampleprobabilitydistribution of thelikelihoodratio.

First, comparisorof v (7T}, ) with 4(T') provesthatwithin the
classof non-p.d.Toeplitzmatrices(thatyield A -variatep.d. Her-
mitian matricesLT L"), LR maximizationgives a resultthatis
usually even higher thanthe LR of the true covariancematrix,
v(R), andsignificantly betterthanthat of the DAA matrix or its
variants. We canseethaty(7") spills over into the inappropriate
negative domain,andevenwhenthelLR is positive, it liesin are-
gion of very small valuescomparedwith v(R). Direct diagonal
loadingbringsthe LR distribution backinto the positive domain,
butalsohassmallLR valuescomparedvith v( R). Thisonceagain
demonstratethat both redundang averaginganddirect augmen-
tationareactuallyverypoorestimategin the ML sensepf astruc-
tured(Toeplitz) covariancematrix.

FurtherLR maximizationis shovnby thedistributiony (7. ),
which leadsto the remarkableobsenationthat, while «( R) is not
surprisinglyin the high range0.80to 0.95,local ML optimization
generallyexceedsthis by a significantmaigin. Indeed,v(7 )
hasanoticeablyright-skeveddistribution thatapproachetheulti-
matelimit of unity. Notethatthis v(7az) > v(R) behaior does
not necessarilymeanthat 75, really is a betterestimatethanthe
true matrix R; it is simply a betterestimatethatthe ML criterion
cansuggestThusdespitethelocal natureof our optimizationsand
the useof anindirectoptimizationcriterion, ary further attempts
to improve the LR beyond v(7'vr.) would not necessarilygive a
significantperformancamprovementin either detectionor esti-
mation. Effectively, comparisorof (73 ) andy(R) allows us
to conclude,from a practicalviewpoint, thatthe problemof ML
estimationof a structured(Toeplitz) covariancematrix hasbeen
solvedby the proposedechnique.

5. SUMMARY AND CONCLUSIONS

We haveintroduceda new techniquefor computinga ML estimate
of a Toeplitzcovariancematrix 7. Ratherthanthe trueandexact
ML estimate(thatis unknown asyet), we have proposeda tech-
niquethatyields a “local ML estimate”T,,, . This techniqueis
initialized by the directaugmentatiompproach{DAA), thenuses
aniteratedinearprogrammingLP) optimization with sufficiently
smallperturbationsat eachiterationproviding sufficient accuray
in thefirst-orderexpansionof the eigervalues.This schemeguar

anteedocal optimality of the perturbationst eachiteration.

We stressthat this proposedechniqueis applicablefor the
generalcaseM., = M, thatmakesit usefulfor a rangeof prob-
lemsfar beyondthelimited scopeof NLA processing9].
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