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ABSTRACT
By exploiting the received signal’s second-order cyclostationary
statistics, blind algorithms have been recently proposed for joint
estimation of the frequency offset and the symbol timing delay of
a linearly modulated waveform transmitted through a flat-fading
channel. The goal of this paper is to establish and analyze the
asymptotic (large sample) performance of the Gini-Giannakis [4]
and Ghogho-Swami-Durrani [3] estimators as a function of the
pulse shape bandwidth and the oversampling factor. It is shown
that the performance of these estimators improves as the pulse
shape bandwidth increases, and the best performance is obtained
by selecting small values for the oversampling factor.

1. INTRODUCTION

In mobile radio channels the loss of synchronization often occurs
[5], and re-acquisition must be performed in a fast and reliable way
without sacrificing bandwidth for periodic re-training. Therefore,
developing optimal blind synchronization architectures appears as
an important problem. Recently, blind carrier frequency offset and
symbol timing delay estimators that exploit the second-order cy-
clostationary (CS) statistics, introduced by oversampling the re-
ceived waveform, have been proposed in [3], [4], [7].

The goal of this paper is to analyze and design criteria for im-
proving the performance of the existing blind carrier frequency
offset and symbol timing delay estimators [3], [4] with respect
to (w.r.t.) the pulse shape bandwidth and the oversampling fac-
tor. The theoretical asymptotic performance of the Gini-Giannakis
(GG) [4] and Ghogho-Swami-Durrani (GSD) [3] estimators is es-
tablished, and it is shown that significant performance improve-
ment can be obtained by selecting small values for the oversam-
pling factor (P = 2, 3) and pulse shapes with larger bandwidths.
Both experimental and theoretical results show that larger over-
sampling factors (P = 4, · · · , 8) are not justifiable from a compu-
tational and performance analysis viewpoint. By dividing the re-
ceiver samples into several disjoint subsets and by exploiting sep-
arately the resulting subsets, it is shown that the performance of
the GG estimator can be improved by averaging the corresponding
estimates that are obtained from each subset.

2. MODELING ASSUMPTIONS

Consider the baseband representation of a linearly modulated sig-
nal transmitted through a flat-fading channel. The receiver output
can be expressed as1:

xc(t) = µc(t)e
j2πfet

∑
l

w(l)hc(t− εT − lT ) + vc(t) , (1)

1We use the subscript c to denote continuous-time signals.

where µc(t) is the fading-induced noise, w(l)’s are zero-mean unit
variance independent and identically distributed (i.i.d.) symbols,
hc(t) denotes the convolution of the transmitter’s signaling pulse
and the receive filter, vc(t) is the additive noise, T is the symbol
period, fe and ε stand for the frequency offset and the timing delay,
respectively, which are the parameters to be estimated by exploit-
ing the second-order CS-statistics of the received waveform.

By oversampling the received signal xc(t) (see eq. (1)) with
the sampling period Ts := T/P (P ≥ 2), the following discrete-
time model is obtained:

x(n) = µ(n)ej2πfeTn/P
∑

l

w(l)h(n− lP ) + v(n) , (2)

with x(n) := xc(nTs), µ(n) := µc(nTs), v(n) := vc(nTs), and
h(n) := hc(nTs − εT ). In order to simplify the derivation of the
asymptotic performance of estimators [3], [4], we assume the fol-
lowing:
(AS1) w(n) is a zero-mean i.i.d. sequence with σ2

w = 1.
(AS2) µ(n) is a constant fading-induced noise with unit energy.
(AS3) v(n) is a zero-mean white process independent of w(n),
with variance σ2

v .
(AS4) the combined filter hc(t) is a raised cosine pulse of band-
width [−(1 + ρ)/2T, (1 + ρ)/2T ], where the parameter ρ repre-
sents the rolloff factor (0 ≤ ρ < 1) [6, Ch. 9].
(AS5) frequency offset fe is small enough so that the mismatch
of the receive filter due to fe can be neglected [4]. Generally,
feT < 0.05 is assumed.

3. BLIND CARRIER FREQUENCY OFFSET
AND TIMING DELAY ESTIMATORS

In this paper, the time-varying correlation of x(n) is defined as
c2x(n; τ ) := E{x∗(n)x(n + τ )}, where τ is an integer lag.
Straightforward calculations show that c2x(n; τ ) = c2x(n+P ; τ ),
∀n, τ . Being periodic, c2x(n; τ ) admits a Fourier Series (FS)
expansion whose FS-coefficients, termed cyclic correlations, are
given by the following expression for P ≥ 3 [3], [4]:

C2x(k; τ ) =
σ2

w

P
ej2πfeTτ/P e−j2πkεG2(k; τ )e

jπkτ/P

·e−j2πkt0/T + σ2
vδ(τ )δ(k) , (3)

whereG2(k; τ ) := (P/T )
∫ P/2T

−P/2T
Hc(F−k/2T )Hc(F+k/2T )

exp (j2πFτT/P )dF ,Hc(F ) denotes the Fourier Transform (FT)
of hc(t), and t0 is a known time delay chosen to ensure causality
of hc(t).



In practice, the cyclic correlations C2x(k; τ ) have to be esti-
mated from a finite number of samples N . The standard sample
estimate of C2x is given by (see e.g., [2] and [4]):

Ĉ2x(k; τ ) =
1

N

N−τ−1∑
n=0

x∗(n)x(n+τ )e−j2πkn/P , τ ≥ 0 . (4)

The GG estimator determines the frequency offset fe and the tim-
ing delay ε from the following eqs. [4, eqs. (10), (11)]:

f̂e =
P

4πTτ
arg{Ĉ2x(1; τ )Ĉ2x(−1; τ )} , (5)

ε̂= − 1

2π
arg{Ĉ2x(1; τ )e−

j2πf̂eT τ
P e−

jπτ
P e

j2πt0
T } . (6)

As described in [3], the accuracy of the estimators in (5) and
(6) does not vary significantly with τ . In this paper, we choose τ =
1 for the GG estimator. One can see that in this case, the frequency
offset estimators corresponding to GSD [3, eq. (7)] and GG [4,
eq. (10)] algorithms coincide. However, the timing delay estimator
corresponding to the GSD algorithm [3, eq. (8)] is different from
the GG estimator (6) and is given by the following relation:

ε̂ = − 1

2π
arg{Ĉ2x(1; 0)e

j2πt0
T } . (7)

4. PERFORMANCE ANALYSIS

The estimators of fe and ε are asymptotically unbiased and consis-
tent [3], [4]. In this section, we will establish the asymptotic vari-
ances of f̂e and ε̂, which are defined as limN→∞NE{(f̂e −fe)

2}
and limN→∞NE{(ε̂ − ε)2}, respectively. Because of lack of
space, only the results for P ≥ 4 are presented here. If we define
the normalized unconjugated/conjugated asymptotic variances of
the cyclic correlations by means of the following relations [2]:[

Γ(k,m)
]

u,v
:= lim

N→∞
NE

{(
Ĉ2x(k, u) − C2x(k, u)

)
·

(
Ĉ2x(m, v) − C2x(m,v)

)∗}
,[

Γ̃(k,m)
]

u,v
:= lim

N→∞
NE

{(
Ĉ2x(k, u) − C2x(k, u)

)
·

(
Ĉ2x(m, v) − C2x(m,v)

)}
,

where k, m = ±1, then the following proposition, which is an
extension of the result presented in [2], can be established:
Proposition 1. The asymptotic variances of the cyclic correlations
are given by:[
Γ(−1,−1)

]
u,v

=
∑

τ

C2x(0; τ + u− v)C∗
2x(0; τ )ej2πτ/P

+ κPC2x(−1;u)C∗
2x(−1; v) ,[

Γ(1,1)
]

u,v
=

∑
τ

C2x(0; τ + u− v)C∗
2x(0; τ )e−j2πτ/P

+ κPC2x(1;u)C∗
2x(1; v) ,[

Γ(1,−1)
]

u,v
=

∑
τ

C2x(1; τ + u− v)C∗
2x(−1; τ )ej2π(v−τ)/P

+ κPC2x(1;u)C∗
2x(−1; v) ,[

Γ(−1,1)
]

u,v
=

[
Γ∗(1,−1)

]
v,u
,

where κ stands for the kurtosis of symbol sequence w(n).
SinceC2x(k; τ ) = ej2πkτ/PC∗

2x(−k;−τ ) [1], it follows that:[
Γ̃(k,m)

]
u,v

= ej2πmv/P
[
Γ(k,−m)

]
u,−v

.

4.1. GG Estimator

By exploiting Proposition 1 and the eqs. (5) and (6), the asymp-
totic variances of f̂e and ε̂ can be obtained and are given by:
Proposition 2. The asymptotic variance of the frequency offset
estimator (5) is given by:

lim
N→∞

NE{(f̂e − fe)
2} = ζ21 ·

(
V11

α2
1

+
V12

β2
1

− 2V13

α1β1

)
,

where2:

ζ1 :=
P

4πT
· tan(4πTfe/P )

1 + tan2(4πTfe/P )
,

α1 := C2x(1; 1)C2x(−1; 1) −C∗
2x(1; 1)C∗

2x(−1; 1) ,

β1 := C2x(1; 1)C2x(−1; 1) +C∗
2x(1; 1)C∗

2x(−1; 1) ,

V11 = 2re
(
C2

2x(1; 1)Γ̃
(−1,−1)
1,1

)
+ 2re

(
C2

2x(−1; 1)Γ̃
(1,1)
1,1

)
+ 4re

(
C2x(1; 1)C2x(−1; 1)Γ̃

(−1,1)
1,1

)
− 4re

(
C2x(1; 1)C∗

2x(−1; 1)Γ
(−1,1)
1,1

)
− 2C2x(1; 1)C∗

2x(1; 1)Γ
(−1,−1)
1,1

− 2C2x(−1; 1)C∗
2x(−1; 1)Γ

(1,1)
1,1 ,

V12 = 2re
(
C2

2x(1; 1)Γ̃
(−1,−1)
1,1

)
+ 2re

(
C2

2x(−1; 1)Γ̃
(1,1)
1,1

)
+ 4re

(
C2x(1; 1)C2x(−1; 1)Γ̃

(−1,1)
1,1

)
+ 4re

(
C2x(1; 1)C∗

2x(−1; 1)Γ
(−1,1)
1,1

)
+ 2C2x(1; 1)C∗

2x(1; 1)Γ
(−1,−1)
1,1

+ 2C2x(−1; 1)C∗
2x(−1; 1)Γ

(1,1)
1,1 ,

V13 = j2
{

im
(
C2

2x(1; 1)Γ̃
(−1,−1)
1,1

)
+ im

(
C2

2x(−1; 1)Γ̃
(1,1)
1,1

)
+ 2im

(
C2x(1; 1)C2x(−1; 1)Γ̃

(−1,1)
1,1

)}
.

Proposition 3. The asymptotic variance of the timing delay esti-
mator (6) is given by:

lim
N→∞

NE{(ε̂− ε)2} = ζ22

(
V21

α2
2

+
V22

β2
2

− 2V23

α2β2

)
,

where:

ζ2 :=
1

2π
· tan(2πε)

1 + tan2(2πε)
, ψ1 := ejπ(2t0/T−1/P ) ,

α2 := ψ1C2x(1; 1)e−j2πfeT/P − ψ∗
1C

∗
2x(1; 1)ej2πfeT/P ,

β2 := ψ1C2x(1; 1)e−j2πfeT/P + ψ∗
1C

∗
2x(1; 1)ej2πfeT/P ,

2“re” and “im” stand for the real and imaginary part, respectively.



V21 = 2re
(
ψ2

1e
−j4πfeT/P Γ̃

(1,1)
1,1

)
− 2Γ

(1,1)
1,1

+ 4re
(
ψ2

1e
−j2πfeT/Pλ2C2x(1; 1)

)
− 4re

(
e−j2πfeT/Pλ1C

∗
2x(1; 1)

)
− 4im

(
− j2πT

P
e−j2πfeT/Pψ1C2x(1; 1)

)2

· avar(fe) ,

V22 = 2re
(
ψ2

1e
−j4πfeT/P Γ̃

(1,1)
1,1

)
+ 2Γ

(1,1)
1,1

+ 4re
(
ψ2

1e
−j2πfeT/Pλ2C2x(1; 1)

)
+ 4re

(
e−j2πfeT/Pλ1C

∗
2x(1; 1)

)
+ 4re

(
− j2πT

P
e−j2πfeT/Pψ1C2x(1; 1)

)2

· avar(fe) ,

V23 = j2im

((
− j2πT

P
e−j2πfeT/Pψ1C2x(1; 1)

)2
)

· avar(fe)

+ j2im
(
ψ2

1e
−j4πfeT/P Γ̃

(1,1)
1,1

)
+ j4im

(
ψ2

1e
−j2πfeT/Pλ2C2x(1; 1)

)
,

λ :=

(
1

α1
− 1

β1

)[
C2x(1; 1)Γ̃

(1,−1)
1,1 + C2x(−1; 1)Γ̃

(1,1)
1,1

]

−
(

1

α1
+

1

β1

)[
C∗

2x(1; 1)Γ
(1,−1)
1,1 +C∗

2x(−1; 1)Γ
(1,1)
1,1

]
,

λ1 := λζ1
j2πT

P
ej2πfeT/P , λ2 := −λζ1 j2πT

P
e−j2πfeT/P ,

and avar(fe) denotes the asymptotic variance of f̂e.

4.2. GSD Estimator

When compared with the GG algorithm (6), the symbol timing de-
lay estimator corresponding to the GSD algorithm is obtained from
the eq. (6) by fixing τ = 0. Note that such a choice of τ decouples
the symbol timing delay estimator (6) from the frequency offset
estimator (5) in the sense that the estimation of ε does not require
an initial estimate of fe [3]. The following result holds:
Proposition 4. The asymptotic variance of the timing delay esti-
mator (7) is given by:

lim
N→∞

NE{(ε̂ − ε)2} = ζ22

(
V31

α2
3

+
V32

β2
3

− 2V33

α3β3

)
,

with:

V31 = 2re(ψ2
2Γ̃

(1,1)
0,0 ) − 2Γ

(1,1)
0,0 , ψ2 := ej2πt0/T

V32 = 2re(ψ2
2Γ̃

(1,1)
0,0 ) + 2Γ

(1,1)
0,0 , V33 = j2im(ψ2

2Γ̃
(1,1)
0,0 ),

α3 := ψ2C2x(1; 0) − ψ∗
2C

∗
2x(1; 0) = j2im(ψ2C2x(1; 0)) ,

β3 := ψ2C2x(1; 0) + ψ∗
2C

∗
2x(1; 0) = 2re(ψ2C2x(1; 0)) .

5. SIMULATION EXPERIMENTS

In this section, the experimental results and theoretical asymptotic
bounds are compared. The experimental results are obtained by
performing a number of 400 Monte Carlo trials assuming that the

transmitted symbols are i.i.d. QPSK symbols. The transmit and
receive filters are square-root raised cosine filters and the additive
noise is generated as Gaussian white noise. To render the discrete-
time noise uncorrelated, a front end filter with two-sided band-
width P/T is used [3]. All the simulations are performed with
feT = 0.011 and εT = 0.37.
1) Performance w.r.t. the oversampling rate P : By changing the
oversampling rate P , we compare the MSEs of GG and GSD es-
timators with their theoretical asymptotic variances. The number
of symbols N is set to 400 and the rolloff factor of the filter is
ρ = 0.5. SNR is fixed at 20 dB. The results are depicted in Figures
1–2. Both frequency offset and timing delay estimators show that
increasing the oversampling rate will impair the performance. This
is due to the fact that for larger P , less cyclic correlation informa-
tion is obtained. Moreover, although more samples are collected
as P increases, their correlation increases too, which is known to
increase the estimators’ variance [4].
2) Performance w.r.t. the filter bandwidth: By varying the rolloff
factor ρ, we can obtain different bandwidths for the combined filter
hc(t). Larger values of ρ correspond to wider bandwidths. Con-
sider the parameters P = 8, N = 400 and SNR= 20 dB. From
Figures 3–4, one can see that a smaller ρ causes a poorer perfor-
mance. This is due to the small values of the second-order cyclic
correlations. In fact, since x(n) is given by the equation (2), it is
well known that under assumption (AS2), the cyclic spectrum of
x(n), which is defined as the FT of C2x(k; τ ) w.r.t. τ [4], can be
expressed for k 
= 0 as (cf. [8]):

S2x(k; f) =
1

P
H(f−feTs)H

∗(f−feTs−k/P )e−j2πkε , (8)

whereH(f) is the discrete-time FT of h(·). Based on (8) and since
hc(t) is bandlimited, it follows that as the bandwidth decreases,
the supports of the functions f → H(f−feTs) and f → H∗(f−
feTs − k/P ) become more and more disjoint, which leads to less
cyclic correlation information. Also, it turns out that the timing
delay estimator corresponding to the GG method performs slightly
better than the GSD estimator.
3) Averaging improves the performance of the GG estimator: As-
sume that the received waveform and a time delayed replica of
the received waveform are both oversampled with the oversam-
pling factor P = 2. In addition, assume that the GG estimator
is applied separately on the two resulting sets of samples and that
the resulting frequency and timing delay estimates are averaged.
Surprisingly, Figures 5–6 reveal the fact that this new estimator
improves significantly the performance of the GG estimator even
in the presence of a very small rolloff factor (ρ = 0.1, N = 400).

6. CONCLUSIONS

In this paper, we have analyzed the asymptotic performance of the
blind carrier frequency offset and timing delay estimators [3], [4],
which rely on the second-order cyclostationary statistics generated
by oversampling the output of the receive filter. We have derived
the asymptotic variance expressions of f̂e and ε̂ and shown that a
smaller oversampling rate (P = 2, 3) and a wider pulse shape
bandwidth (ρ ∈ [0.6, 0.9]) can improve the estimation accuracy
as well as reduce the computational complexity of the estimators.

Due to space constraints, we have only illustrated the perfor-
mance analysis for circular input sequences (QPSK) and oversam-
pling rates P ≥ 4. The analysis of the more general estimators that
consider arbitrary oversampling factors P and arbitrary input con-
stellations, in the presence of time-varying fading effects, together
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with a rigorous performance analysis of the proposed estimator,
which relies on the averaging of the estimates obtained by apply-
ing the GG estimator on different subsets of samples, have already
been implemented and are to be reported in a future paper.
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