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ABSTRACT

We address the choice of encoder for conditional entropy-
constrained trellis-coded quantization (CECTCQ), applied
to image transform coefficients. The optimal CECTCQ en-
coder requires an (utterly intractable) exhaustive search and
the standard method of greedy, sequential encoding of the
coefficient “sources” is suboptimal. Alternatively, we sug-
gest alocally optimal encoding algorithm, guaranteed to im-
prove performance over greedy encoding, and yet with man-
ageable increases in encoding complexity. This method uses
dynamic programmingas a local optimizationencoding “step”,
repeatedly applied until convergence. Simulations demon-
strate up to 1.5 dB gain over greedy CECTCQ encoding of
block-transformed images.

1. INTRODUCTION

In virtually all practical, high-performance image coding
systems, a transform or subband filtering operation is ap-
plied, with the aim of achieving data compaction, as well
as decorrelation, of the resulting image features. When
scalar quantization is separately applied (based on a bit al-
location strategy) to each transformed feature, the result-
ing system is a constrained form of high-dimensional vec-
tor quantization (VQ). Although this is a heuristic form of
VQ, it achieves good performance, and unlike full-search
VQ, it is quite practically feasible for the (rate, vector di-
mension/block size) pairs (e.g. (1 bpp, 64 dimensions))
that are typically considered. While both transform and
subband coding mitigate the suboptimality of scalar quan-
tization, significant rate-distortion performance gains can
still be achieved through some form ofjoint feature en-
coding, rather than individual feature encoding. In partic-
ular, the lossy JPEG standard (and, in a more ambitious
way, hierarchical wavelet coders [1]) apply efficient tech-
niques for approximate, joint entropy coding of quantized

image features. Likewise, entropy-constrained trellis-coded
quantization (ECTCQ) [2],[9], when applied in a transform
coding context , jointly encodes the samples of the co-
efficient “source” at each spatial frequency. The former
(JPEG) scheme only exploits statistical dependencies in the
quantized source within each transformed block, while the
latter (ECTCQ) approach only captures statistical homo-
geneity and redundancy of like coefficientsacross blocks,
without exploiting intra-block redundancy. However, intra-
block joint entropy coding and inter-block trellis coding are
complementary, which motivates coding schemes based on
both paradigms. One such approach isconditional ECTCQ
(CECTCQ) of block-transformed images, with conditioning
used to capture both intra-blockand inter-block redundancy.
Conditional entropy-constrained (CEC) encoding has been
effectively applied in several coding contexts [4],[5]. How-
ever, for CEC coding of images, one difficulty is the choice
of the encoder –optimal CEC encoding for typical condi-
tioning contexts is utterly intractable, while standard greedy
encoding methods may be quite suboptimal1. The fact that
there are few techniques which bridge the gap between these
extremes motivates the present work, which introduces alo-
cally optimal CECTCQ encoder, applied to image transform
coefficients. This technique provides performance gains of
up to 1.5 dB over greedy encoding at a cost of increased,
albeit manageable implementation complexity. In the next
section we describe the joint feature encoding problem and
then develop our locally optimal encoding algorithm. In sec-
tion 3, experimental results are presented.

1This intractability is actuallynot attributable to the choice of TCQ as
the quantization method. Even if scalar quantizers are used, optimal CEC
encoding of transformed images is intractable for typical conditioning con-
texts, as will be further indicated in the sequel.



2. CONDITIONAL ENTROPY-CONSTRAINED
ENCODING FOR A COLLECTION OF SOURCES

2.1. Preliminaries

Consider a collection of source sequences{s1, s2, . . . , sM},
wheresm ≡ (sm1, sm2, . . . , smN ), smn ∈ R. For trans-
form coding of images, this collection is obtained by divid-
ing the image into blocks (e.g. 8×8), applyinga linear trans-
form (e.g. 2D DCT) to each block, and then grouping to-
gether all coefficients at a commonfrequency, effectivelycre-
ating a “source” at each spatial frequency. Thus, the number
of sources,M , is given by the block size, withN the num-
ber of blocks in the image. Each source is represented as a
1D sequence by using a fixed scan order for visiting trans-
formed blocks, e.g. row-by-row. Moreover, the sources are
themselves ordered, usually according to increasing spatial
frequency, e.g. via a zig-zag scan defined for coefficients
within a block. The resulting collection of sources can be or-
ganized as a 2D array, with sourcesm given by rowm (see
Figure 1).

The encoding paradigmwe suggest can be applied to sys-
tems using either scalar or trellis quantization. In the experi-
ments, we will evaluate our method for the (more powerful)
trellis coding framework. However, for clarity and conci-
sion, we develop the method in this section assuming scalar
quantizers. The description for trellis quantizers follows nat-
urally from this development, and will thus be omitted.

Denote the quantization index used for samplesmn by
imn, with the associated quantization level given by the dis-
crete mappingqm(imn)

2. Furthermore, we will need to rep-
resent thesequence of encoded indices for each source, i.e.
im ≡ (im1, im2, . . . , imN). The difficulties with optimal
CEC encoding arise due to the statistical dependencies as-
sumed to exist between the quantization indices. While even
more complex models can be considered, it will suffice in
this section (to illustrate both difficulties and our new paradigm)
to assume asecond-order Markov model (see Figure 1), with
the probability ofimn conditionally independentof its causal
support given bothim,n−1 andim−1,n, i.e. the model will
be based on{Prob[imn|im,n−1, im−1,n]}3. These probabili-
ties, which capture both intra-source and inter-source statis-
tical dependency, drive formation of the Huffman code ta-
bles. Accordingly, the variable length codeword forimn will
be a function ofim,n−1 andim−1,n, as will its length in bits,
l(imn; im,n−1, im−1,n).

2The indeximn will have range{0, 1, 2, . . . , Lm − 1}, whereLm is
the number of levels allocated for sourcesm.

3This reduces to first order at the left and upper array borders and to ze-
roth order in the upper left corner, i.e. we haveProb[i1,n|i1,n−1],n ≥ 2,
Prob[im,1|im−1,1],m ≥ 2, andProb[i11].

2.2. Formulation

The objective of the CEC encoder is to select an array of
quantization indices to minimize the Lagrangian cost func-
tionJ ≡ D+λB, withD the quantizer distortion andB the
source coding description length in bits. We find it useful to
representJ as a sum ofsource-wise costs, i.e.

J = (D1(i1)+λB1(i1))+
M∑

m=2

(Dm(im)+λBm(im, im−1)).

(1)

Here,Dm(im) =
N∑

n=1
d(smn, q(imn)) with d(·, ·) a speci-

fied scalar distortion measure,B1(i1) = l(i11) +
N∑

n=2
l(i1n; i1,n−1), andBm(im, im−1) = l(im1; im−1,1) +

N∑
n=2

l(imn; im−1,n, im,n−1), m ≥ 2. In (1), notation inBm(·)
involvingim andim−1 emphasizes that the bit length associ-
ated with themth source (m ≥ 2) depends on the encoding
choices for bothsm andsm−1. It is this dependence which
makes optimal CEC encoding only achievable by an exhaus-

tive search over all possible (
M∏

m=1

(Lm)N ) image encodings.

Since this exhaustive encoder is quite infeasible, a practical,
albeitgreedy alternative must typically be used, e.g. [3].

Greedy CEC Encoding

1. Use dynamic programming (Viterbi algorithm) to mini-
mizeD1(i1)+λB1(i1) overi1. Let i(0)1 denote the solution.

2. For m=2 to M
Use dynamic programming to minimizeDm(im) +

λBm(im, i
(0)
m−1) overim. Let i(0)m denote the solution.

End

While this procedure isstep-wise optimal in the sense
of choosing the best sequenceim given fixedi(0)m−1, it does
not guarantee even alocally optimal collection{im, m =

1, . . . ,M}. In particular, after determiningi(0)m giveni(0)m−1,
it is quite possible that some indexim−1,n could be re-chosen
to reduce the Lagrangian cost. In fact, such “revisiting” of
previously made encoding choices is what forms the basis of
our new paradigm.

Crucial to our method is a new “source-wise” cost to be
minimized in choosingim,m < M . Note in particular that
the sequenceim affectsDm(im), Bm(im, im−1), and
Bm+1(im+1, im). Thus, suppose we have already used the

greedy encoding technique to determine{i(0)m ,m = 1, . . . ,M}.

Re-selectingim to minimizeDm(im)+λBm(im, i
(0)
m−1)will

simply lead again to the solutioni(0)m . However, suppose in-

stead that we now minimizeDm(im) + λBm(im, i
(0)
m−1) +



λBm+1(i
(0)
m+1, im). This minimization canalso be achieved

via dynamic programming, simply by adding the terms
λl(i

(0)
m+1,n; im,n, i

(0)
m+1,n−1) to the branch metrics used in the

dynamic programmingalgorithm for minimizingDm(im)+

λBm(im, i
(0)
m−1). Since this new “source-wise” cost(Dm(im)+

λBm(im, i
(0)
m−1) + λBm+1(i

(0)
m+1, im)) is composed of

(Dm(im) + λBm(im, i
(0)
m−1)) plus anadditional term from

J , and since dynamic programming is guaranteed to find the
global minimum solution, the resulting sequencei

(1)
m must

be at least as good in the sense ofJ as the initial one,i(0)m .
Moreover, in practice, such minimizations are likely to pro-
vide at least some reduction inJ . Thus, we suggest such
minimizations as the basis for the following iterative encod-
ing algorithm.

Iterative, Locally Optimal CEC Encoding

1. Implement the greedy encoding procedure to determine
{i(0)m ,m = 1, . . . ,M}. Sett = 0.

2. Do{
t ← t+ 1

Choosei1
(t) to minimizeD1(i

(t)
1 ) + λB1(i

(t)
1 ) +

λB2(i
(t−1)
2 , i

(t)
1 ) via dynamic programming.

For m=2 to M-1
Choosei(t)m to minimizeDm(i

(t)
m ) + λBm(i

(t)
m , i

(t)
m−1) +

λBm+1(i
(t−1)
m+1 , i

(t)
m ) via dynamic programming.

End

ChooseiM
(t) to minimizeDM (i

(t)
M )+λBM(i

(t)
M , i

(t)
M−1) via

dynamic programming.

} (Until (There are no encodingchanges) OR (a convergence
criterion is met))

2.3. Algorithm Summary

1. Each iteration (t) has complexity roughly equivalent
to that of greedy encoding. Thus, the encoding com-
plexity is roughly (number of iterations + 1) times
greater than greedy encoding. In practice, most of the
cost reduction is gleaned after 4-5 iterations.

2. Each dynamic programming “step” is non-increasing
in J .

3. The algorithm is an extension of an iterative encoding
technique first proposed in [6] for product code VQ,
e.g. for mean-gain-shape VQ. Our method extends
this technique, a) by jointly optimizing over a much
larger encoding space (a full image) and b) by taking
optimization steps that are substantially less greedy –
in [6], one encoder index was re-optimized at a time

(e.g. a single mean, gain, or shape index) with all the
remaining ones fixed, whereas in our approach a long
sequence of indices is re-optimized together, given the
remaining ones fixed.

4. If TCQ, rather than scalar quantization is used, the
“pseudocode” description remains the same. Note in
particular that dynamic programming can still be used
to optimize each sequenceim, albeitagain by suitably
modifying the branch metrics (used by dynamic pro-
gramming), this time to account for the constrained
set of TCQ trellis quantization choices.

5. Our iterativeencoding method can also be directly ap-
plied to the problem of joint source-channeldecod-
ing for quantization information transmitted across
a noisy channel (again, using a Markovian index
model). In this context, the algorithm iteratively
maximizes the joint likelihood of transmitted indices
given received ones.

3. EXPERIMENTAL RESULTS

We have evaluated our method for transformcoding, in com-
parison with greedy CECTCQ encoding and with ECTCQ
(where no conditioning was used). We used8 × 8 image
blocks, the 2-D DCT transform, and a zig-zag scan for 1-D
ordering of the sources. Four-state TCQ was used on each
source, with the trellis as given in the original TCQ paper
[7]. The codebook size for each source was determined by
a standard bit allocation strategy. A training set of 8 images
was used for designing the coders (the TCQ codebooks and
the Huffman code tables). One Huffman code was designed
for each (TCQ state, conditioningcontext) pair. For ECTCQ,
the standard design algorithm was used, based on set par-
titioning for code initialization and an entropy-constrained
version of Stewart and Gray’s trellis-based Lloyd algorithm
[8], to refine the quantization levels and entropycodes [2],[9].
For standard greedy CECTCQ, a sequential design algorithm
(paralleling the encoder’s operation)was employed, with the
coders for each individual source designed sequentially (in
zig-zag scan order), with each in turn then used to create con-
ditioning context for the next source coder design. Finally,
for our new CECTCQ coder, we also devised a design al-
gorithm matched to the encoder’s operation. First, the (just
described) standard CECTCQ design was used to obtain ini-
tial coders. Then, paralleling the iterative encoder, we im-
plemented an iterativedesign algorithm, with each source
coder in turn rechosen to minimize its associated “source-
wise” Lagrangian cost, with the minimization over both the
quantizers and the entropy codes. Cycling through the coder
designs continues until either there are no further changes
or until a stopping condition is reached. Mirroring the en-



coder’s operation, this design algorithm is non-increasing in
the (training set) costJ .

Our results, shown in Figure 3, are for the 512× 512
Lena image. We have evaluated performance both for i) 1D
source dependencies (based on zig-zag scan order) and ii)
2D source dependencies, as indicated for a transformedblock
in Figure 2. For i), our method uses{Prob[imn|im,n−1, im−1,n]}
and iteratively encodes sources in zig-zag scan order. For ii),
our methoduses{Prob[i(x,y),n|i(x,y),n−1, i(x−1,y),n, i(x,y−1),n]}4.
In this case, we iteratively encode sources row-by-row, from
left-to-right within each row (see Figure 1).

The performance curves were obtained by designing the
various coders for a sequence ofλ values, to sweep out a
rate/distortion curve. Note that the new CECTCQ encoder
achieves gains (at selective rates) greater than 1.5 dB over
greedy CECTCQ and greater than 3.0 dB over standard
ECTCQ.

Fig. 1. Sourcesm is represented by themth row; arrows
show assumed statistical dependencies both within and be-
tween sources.

Fig. 2. A transformed block, with arrows showing 2-D de-
pendencies between sources. For sources in the first row and
first column, only 1-D dependency is used. Note that the
intra-source dependency is not shown in this figure.
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