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ABSTRACT image features. Likewise, entropy-constrained trellis-coded
guantization (ECTCQ) [2],[9], when applied in a transform

We address the choice of encoder for conditional entropy- coding context , jointly encodes the samples of the co-
constrained trellis-coded quantization (CECTCQ), applied efficient “source” at each spatial frequency. The former
to image transform coefficients. The optimal CECTCQ en- (JPEG) scheme only exploits statistical dependencies in the
coder requires an (utterly intractable) exhaustive search ancquantized source within each transformed block, while the
the standard method of greedy, sequential encoding of thejatter (ECTCQ) approach only captures statistical homo-
coefficient “sources” is suboptimal. Alternatively, we sug- geneity and redundancy of like coefficiersisross blocks,
gest docally optimal encoding algorithm, guaranteed toim-  without exploiting intra-block redundancy. However, intra-
prove performance over greedy encoding, and yet with man-plock joint entropy coding and inter-block trellis coding are
ageable increases in encoding complexity. This method usesomplementary, which motivates coding schemes based on
dynamic programming as a local optimization encoding “stephoth paradigms. One such approachdsditional ECTCQ
repeatedly applied until convergence. Simulations demon-(CECTCQ) of block-transformed images, with conditioning
strate up to 1.5 dB gain over greedy CECTCQ encoding of ysed to capture both intra-bloakd inter-block redundancy.
block-transformed images. Conditional entropy-constrained (CEC) encoding has been
effectively applied in several coding contexts [4],[5]. How-
ever, for CEC coding of images, one difficulty is the choice
of the encoder -eptimal CEC encoding for typical condi-
tioning contexts is utterly intractable, while standard greedy
In virtually all practical, high-performance image coding encoding methods may be quite suboptimalhe fact that
systems, a transform or subband filtering operation is ap-there are few techniques which bridge the gap between these
plied, with the aim of achieving data compaction, as well extremes motivates the present work, which introdudes a
as decorrelation, of the resulting image features. When cally optimal CECTCQ encoder, applied to image transform
scalar quantization is separately applied (based on a bit al-coefficients. This technique provides performance gains of
location strategy) to each transformed feature, the result-up to 1.5 dB over greedy encoding at a cost of increased,
ing system is a constrained form of high-dimensional vec- albeit manageable implementation complexity. In the next
tor quantization (VQ). Although this is a heuristic form of section we describe the joint feature encoding problem and
VQ, it achieves good performance, and unlike full-search then develop our locally optimal encoding algorithm. In sec-
VQ, it is quite practically feasible for the (rate, vector di- tion 3, experimental results are presented.
mension/block size) pairs (e.g. (1 bpp, 64 dimensions))
that are typically considered. While both transform and
subband coding mitigate the suboptimality of scalar quan-
tization, significant rate-distortion performance gains can
still be achieved through some form gint feature en-
coding, rather than individual feature encoding. In partic-

ular, the lossy JPEG standard (and, in a more ambitious This |_ntra_ctab|I|ty is actuallpot attrlbutable_ to the choice of TCQas
the quantization method. Even if scalar quantizers are used, optimal CEC

way, hierarchical WaVe|eF ?Oders (1]) app!y efficient t?Ch' encoding of transformed images is intractable for typical conditioning con-
nigues for approximate, joint entropy coding of quantized texts, as will be further indicated in the sequel.

1. INTRODUCTION




2. CONDITIONAL ENTROPY-CONSTRAINED 2.2. Formulation
ENCODING FOR A COLLECTION OF SOURCES
The objective of the CEC encoder is to select an array of
quantization indices to minimize the Lagrangian cost func-

2.1. Preliminaries tionJ = D+ AB, with D the quantizer distortion anéd the
source coding description length in bits. We find it useful to

Consider a collection of source sequenfes sz, . . ., sm represent/ as a sum ofource-wise costs, i.e.

wheres,, = (Smi,Sm2,---,5mN), Smn € R. FOr trans-

form coding of images, this collection is obtained by divid- M

ing the image into blocks (e.g.»88), applyinga lineartrans- = (D1(i1)+ABu1(i1))+ Y _ (D (im)+ABm (im, im-1))-
form (e.g. 2D DCT) to each block, and then grouping to- m=2 )
gether all coefficients at a common frequency, effectively cre- N
ating a “source” at each spatial frequency. Thus, the numberHere, D, (i) = > d(Smn, q(imn)) With d(-,-) a speci-
of sourcesM, is given by the block size, witiV the num- . =
ber of blocks in the image. Each source is represented as
1D sequence by using a fixed scan order for visiting trans- s~ (;, .- i1,n—1), ANAB (im, im—1) = U(im1;9m-1,1) +
formed blocks, e.g. row-by-row. Moreover, the sources are n=2 —
themselves ordered, usually according to increasing spatial% I
frequency, e.g. via a zig-zag scan defined for coefficients ,,=2

within a block. The resulting collection of sources can be or- involvingi,, andi,,—, emphasizes that the bit length associ-
ganized as a 2D array, with sourgg given by rowm (see  ated with thenth source { > 2) depends on the encoding

n=1
‘,;ied scalar distortion measuB; (i1) = [(i11) +

(tmn; fm—1,m, tm,n—1), m > 2. In(1), notationinB,,(-)

Figure 1). choices for botls,, ands,,_;. Itis this dependence which
The encoding paradigm we suggest can be applied to Sysfnakes optimal CEC encodlr)g only achievable by an exhaus-

tems using either scalar or trellis quantization. In the experi- tive search over all possible]( (L,,)") image encodings.
mer_1ts, we will evaluate our method for the (more powerfl_JI) Since this exhaustive encod
trellis coding framework. However, for clarity and conci-

sion, we develop the method in this section assuming scala _
quantizers. The description for trellis quantizers follows nat- Greedy CEC Encoding

uraIIy from this development, and will thus be omitted. 1. Use dynamic programming (\ﬁterb| a|gorithm) to mini-

Denote the quantization index used for samplg, by mize Dy (i1)+AB (1) overi;. Letz‘go) denote the solution.
imn, With the associated quantization level given by the dis- 5 For m=2to M o
crete mapping, (i,.»)2. Furthermore, we will need to rep- Use dynamic programming to minimiz@,, (i) +
resent thesequence of encoded indices for each source, i.e. . (0) , .(0) R
im = (im1sims,--rimy). The difficulties with optimal ~ *Dm(im;fm_1) OVETin. Letin_denote the solution.
CEC encoding arise due to the statistical dependencies asEnd
sumed to exist between the quantizationindices. While even  While this procedure istep-wise optimal in the sense
more complex models can be considered, it will suffice in of choosing the best sequenigg given fixedigzll, it does
this section (to illustrate both difficulties and our new paradigrp), guarantee evenlacally op_timal collection{i,,, m =
to assume second-order Markov model (see Figure 1), with (0

. -~ ‘SO) .
the probability ofi,,,,, conditionallyindependent of its causal 1’ e ’_M}' In partlcular, after determiningy,” giveni,, ;.
support given botfi,,, 1 andi,, 1., i.e. the model will itis quite possible that some indéx_4 , could be re-chosen

be based 0KProblimn|imn_1, im_1.4]}3. These probabili- to rgduce the Lagrangign cost'. In fact, such “revisiting".of
ties, which capture both intra-source and inter-source statis-PreViously made encoding choices is what forms the basis of

tical dependency, drive formation of the Huffman code ta- OUr Néw paradigm.

=1
er is quite infeasible, a practical,
ralbeitgreedy alternative must typically be used, e.g. [3].

bles. Accordingly, the variable length codewordd#gy, will Crucial to our method is a new “source-wise” cost to be
be a function of,,, ,—1 andi,,—1 », as will its length in bits, minimized in choosing,,, m < M. Note in particular that
[(mm; tmon—1, bm—1n)- the sequence,, affectsD,, (im ), Bm (im;im—1), and

Bpt1(im41,%m). Thus, suppose we have already used the

greedy encodingtechniqueto determ{nﬁ, m=1,...,M}.
(0)

2The indeXiy,» will have range{0, 1,2, . .., Ly, — 1}, whereL,, is L L . L .
the number of levels allocated for sourgg. Re-selectmgﬂto minimizeD,, (Zﬂ)"‘)‘Bm (Zﬂv mel) will

3This reduces to first order at the left and upper array borders and to ze; i i (0) i
. : simply lead again to the solutiay,’. However, suppose in-
roth order in the upper left corner, i.e. we h&®®b[i n|i1 n—1],n > 2, Py 9 o —{;h ] E)F))
Problim,1]im—1,1], m > 2, andProbli1]. stead that we now minimizB,,, (ix,) + ABum (b 4y 1) +




ABimi1 (z‘gll,i_my This minimization camlso be achieved
via dynamic programming, simply by adding the terms

Al( m+1 s Bmons i52>+1 _1) tothe branch metrics usedin the

dynamlcprogrammlngalgorithmforminimizirigm(iﬁﬂ-
ABy, (i, fn 1)- Since this new “source-wise” cdgd,, (im )+
AB, (im i )+)\Bm+1(z’fnl1,z‘ﬂ)) is composed of

(D (im) + ABi (im, iy

tm;,? m—1

im, i 1)) Plus anadditional term from
J, and since dynamic programming is guaranteed to find the
global minimum solution, the resulting sequem‘&]é must
be at least as good in the sense/ddis the initial onez( ),
Moreover, in practice, such minimizations are likely to pro-
vide at least some reduction ih Thus, we suggest such
minimizations as the basis for the following iterative encod-
ing algorithm.
Iterative, Locally Optimal CEC Encoding
1. Implement the greedy encoding procedure to determine
(0 m=1,...,M}. Sett = 0.
2. Do{
t—t+1
Choose;; ) to minimize Dy (") + ABy (i{") +
ABy ( (=1 (t)) via dynamic programming.

For m=2 to M-1

Chooseilt) to minimizeD,,, (i) + AB,, (i)
>‘Bm+1( gn-l—l)’
End
Choose’M( )to m|n|m|zeDM(
dynamic programming.

Zv(vt%)? 1(7? 1

)+
&) in’ ) Via dynamic programming.

t) -(t)

)+>‘B (ZMaZM 1) via

(e.g. a single mean, gain, or shape index) with all the
remaining ones fixed, whereas in our approach a long
sequenceof indices is re-optimized together, given the
remaining ones fixed.

. If TCQ, rather than scalar quantization is used, the
“pseudocode” description remains the same. Note in
particular that dynamic programming can still be used
to optimize each sequengg, albeitagain by suitably
modifying the branch metrics (used by dynamic pro-
gramming), this time to account for the constrained
set of TCQ trellis quantization choices.

. Our iterativeencoding method can also be directly ap-
plied to the problem of joint source-chanrgcod-
ing for quantization information transmitted across
a noisy channel (again, using a Markovian index
model). In this context, the algorithm iteratively
maximizes the joint likelihood of transmitted indices
given received ones.

3. EXPERIMENTAL RESULTS

We have evaluated our method for transform coding, in com-
parison with greedy CECTCQ encoding and with ECTCQ
(where no conditioning was used). We used 8 image
blocks, the 2-D DCT transform, and a zig-zag scan for 1-D
ordering of the sources. Four-state TCQ was used on each
source, with the trellis as given in the original TCQ paper
[7]. The codebook size for each source was determined by
a standard bit allocation strategy. A training set of 8 images
was used for designing the coders (the TCQ codebooks and

} (Until (There are no encoding changes) OR (a convergencethe Huffman code tables). One Huffman code was designed

criterion is met))

2.3. Algorithm Summary

1. Each iteration#) has complexity roughly equivalent
to that of greedy encoding. Thus, the encoding com-
plexity is roughly (number of iterations + 1) times
greater than greedy encoding. In practice, most of the
cost reduction is gleaned after 4-5 iterations.

. Each dynamic programming “step” is non-increasing
inJ.

. The algorithm is an extension of an iterative encoding
technique first proposed in [6] for product code VQ,
e.g. for mean-gain-shape VQ. Our method extends
this technique, a) by jointly optimizing over a much
larger encoding space (a full image) and b) by taking
optimization steps that are substantially less greedy
in [6], one encoder index was re-optimized at a time

foreach (TCQ state, conditioning context) pair. ForECTCQ,
the standard design algorithm was used, based on set par-
titioning for code initialization and an entropy-constrained
version of Stewart and Gray'’s trellis-based Lloyd algorithm
[8], to refine the quantization levels and entropy codes [2],[9].
For standard greedy CECTCQ, a sequential design algorithm
(paralleling the encoder’s operation) was employed, with the
coders for each individual source designed sequentially (in
zig-zag scan order), with eachin turnthen used to create con-
ditioning context for the next source coder design. Finally,
for our new CECTCQ coder, we also devised a design al-
gorithm matched to the encoder’s operation. First, the (just
described) standard CECTCQ design was used to obtain ini-
tial coders. Then, paralleling the iterative encoder, we im-
plemented an iterativdesign algorithm, with each source
coder in turn rechosen to minimize its associated “source-
wise” Lagrangian cost, with the minimization over both the
quantizers and the entropy codes. Cycling through the coder

—designs continues until either there are no further changes

or until a stopping condition is reached. Mirroring the en-



coder’s operation, this design algorithm is non-increasing in
the (training set) cosl.

Our results, shown in Figure 3, are for the 582512
Lena image. We have evaluated performance both for i) 1D
source dependencies (based on zig-zag scan order) and ii)
2D source dependencies, as indicated for a transformed block
inFigure 2. Fori), our method us€Brob[imn |imn—1, im—1,n]}
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and iteratively encodes sources in zig-zag scan order. Forii),Fig. 3. PSNR vs Rate result on Lena: a) 2-D case, with Lena

our method usefProbli(x,y) x[i(x,y),n—1,i(x—1,y)m ix,y—1),n] } *-0Utside the training set. b) 1-D case, with Lena outside the
Inthis case, we iteratively encode sources row-by-row, from training set.

left-to-right within each row (see Figure 1).

The performance curves were obtained by designing the
various coders for a sequence of/alues, to sweep out a
rate/distortion curve. Note that the new CECTCQ encoder

of Wavelet Coefficients,/EEE Trans. on Signal Processing,
Vol. 41, No. 12, pp. 3445-3462, December 1993.

achieves gains (at selective rates) greater than 1.5 dB over [2] T. R. Fischer and M. Wang, “Entropy-Constrained Trellis-

greedy CECTCQ and greater than 3.0 dB over standard
ECTCQ.
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Fig. 1. Sources,, is represented by the!" row; arrows
show assumed statistical dependencies both within and be-
tween sources.

<—x

Fig. 2. A transformed block, with arrows showing 2-D de-
pendencies between sources. For sources in the first row and
first column, only 1-D dependency is used. Note that the
intra-source dependency is not shown in this figure.
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