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ABSTRACT

We consider the direction finding problem in time-varying arrays
composed of identically oriented subarrays displaced by unknown
vector translations. A new eigenstructure-based estimator is pro-
posed for such a class of partly calibrated sensor arrays.

1. INTRODUCTION

The problem of direction finding using time-varying sensor arrays
is important in several practical applications [1]. Existing solu-
tions to this problem [1]-[2] require the exact knowledge of sensor
positions during the whole observation time. However, there exist
many situations where such a knowledge remains unavailable be-
cause of prohibitively high complexities of calibration techniques
and fast variations of array geometry.

In this paper, we present a new eigenstructure-based approach
to direction finding with partly calibrated arrays which may in-
volve several calibrated subarrays displaced by unknown time-
varying vector translations. Our method (referred to as the RAnk
REduction (RARE) estimator) enjoys simple implementation wh-
ich entails computing the eigendecomposition of the sample array
covariance matrix and polynomial rooting.

2. PROBLEM FORMULATION

Consider an array ofM omnidirectional sensors which receives
L < M narrowband signals impinging from the sources with the
unknown Directions Of Arrival (DOA’s)�1; : : : ; �L. The parame-
terL is assumed to be known [3]. Let this array consist ofK iden-
tically oriented linear subarrays whose interelement spacings are
integer multiples of the knownshortest baseline�. An example of
such an array composed of three subarrays is shown in Fig. 1. The
geometry of each subarray is assumed to be known, whereas the
inter-subarray displacementsare assumed to be unknown. Note
that in Sections 3 and 4.1, these displacements are considered to be
time-invariant, whereas in Section 4.2 the case of unknown time-
varying inter-subarray displacements will be treated. LetMk �
1 be the number of sensors of thekth subarray, so thatM =PK

k=1Mk. We stress thatMk may take different values for vari-
ous subarrays.

For the sake of simplicity, it is convenient to define each sub-
array by means of a certain planar translation of a part of sensors
of anM -elementnominal (virtual) uniform linear array (ULA).
This representation is illustrated in Fig. 2, where the second and
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third subarrays of Fig. 1 are interpreted as a result of two unknown
vector translations�k, k = 1; 2. In the general case ofK subar-
rays, theK � 1 translation vectors�

1
; �

2
; : : : ; �K�1 are required

to determine the array geometry (�
0
= 0).

The problem is to estimate the DOA vector

� = [�1; �2; : : : ; �L]
T

where(�)T denotes the transpose.

3. SIGNAL MODEL

Using the nominal ULA representation described above, it can be
readily shown that the narrowband model for theM � 1 steering
vector may be written as

a(�;�) = Q(�)Th(�;�) (1)

where the2(K � 1) � 1 vector� = vec f
g, the (K � 1) �

2 matrix
 =
�
�1; �2; : : : ; �K�1

�T
, andvecf�g is the operator

stacking the columns of a matrix on top of each other. The vector
� combines all unknown inter-subarray displacement parameters,

h(�;�) =
h
1; expfj(2�=�)�T1 �g : : : ; expfj(2�=�)�

T
K�1�g

iT

Q(�) = diag f1; expfj(2�=�)� sin �g

: : : ; expfj(M � 1)(2�=�)� sin �ggT (2)

� = [sin �; cos �]T , �k = [�x;k; �y;k]
T , and� is the wavelength.

TheM � K selection matrixT consists of zeros and ones and
“distributes” the sensors of the nominal ULA among the subarrays.
That is, the(m; k)th element ofT is equal to one if, after the
translation by�k�1, themth virtual ULA sensor becomes a part
of thekth subarray, and equal to zero otherwise.

For example, for the array configuration depicted in Fig. 2,

T
T =

2
4 1 0 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0 1 1
0 1 0 1 0 0 0 1 0 0

3
5 (3)

Using (1), the array snapshots can be modeled as

x(t) = A(�;�)s(t) + n(t) (4)

whereA(�;�) = [a(�1;�); : : : ;a(�L;�)] is theM � L direc-
tion matrix,s(t) is theL� 1 vector of the signal waveforms, and
n(t) is theM � 1 vector of white sensor noise.

The sample covariance matrix is given by

R̂ =
1

N

NX
n=1

x(t)xH(t) (5)
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Fig. 1. A particular example of the considered type of sensor array:
first subarray (+), second subarray (�), third subarray (�).
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Fig. 2. An interpretation of the array structure of Fig. 1 using the
concept of a nominal ULA (o) and two vector displacements�
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where(�)H denotes the Hermitian transpose. The eigendecompo-
sition of (5) yields

R̂ = ÊS�̂SÊ
H

S + ÊN�̂N Ê
H

N (6)

where theL�L and(M�L)�(M�L) diagonal matriceŝ�S and
�̂N contain theL andM �L signal and noise-subspace eigenval-
ues, respectively, and the columns of theM�L andM�(M�L)

matricesÊS andÊN contain the signal and noise-subspace eigen-
vectors, respectively. Note that (6) is the sample estimate of the
true covariance matrix

R = Efx(t)xH(t)g = ES�SE
H
S +EN�NE

H
N

4. DOA ESTIMATION

4.1. Time-Invariant Arrays

We make the following assumptions, which are required for the
formulation of our technique:
(A1) The selection matrixT has a full column rank and at most
one nonzero entry in each row.
(A2) The number of subarraysK is chosen so thatK �M � L.

We start our derivation from the consideration of the conven-
tional spectral MUSIC algorithm which estimates the signal DOA’s
from theL deepest minima of the function [3]

fMUSIC(�;�) = a
H(�;�)ÊNÊ

H

Na(�;�) (7)

In particular, in the ideal case of exactly knownR, the DOA’s can
be found from the equation [3]

a
H(�;�)ENE

H
Na(�;�) = 0 (8)

However, the vector parameter� is unknown and, therefore, the
minimization of (8) requires an exhaustive2(K�1)+1-dimensio-
nal search which becomes totally impractical forK > 1. Using
(1), we can rewrite (7) as

fMUSIC(�;�) = h
H(�;�)T T

Q
H(z)ÊNÊ

H

NQ(z)Th(�;�)

= h
H(�;�)B̂(z)h(�;�) (9)

where

B̂(z) = T T
Q
H(z)ÊNÊ

H

NQ(z)T (10)

is theK �K Hermitian matrix, andz = exp fj(2�=�)� sin �g.
An important observation following from (9) and (10) is that the
vector parameter� is contained inh(�;�) only, so that the matrix
B̂(z) is independent of�. Also, it is worth noting that the matrix
Q in (9) and (10) is reformulated in terms ofz, so that

Q(z) = diag
n
1; z; : : : ; zM�1

o
(11)

In the ideal case of exactly knownR, we can rewrite equation (8)
as

h
H(�;�)B(z)h(�;�) = 0 (12)

where
B(z) = T T

Q
H(z)ENE

H
NQ(z)T

Note thath(�;�) 6= 0 and, therefore, (12) holds true iff

rankfB(z)g < K (13)

or, equivalently, iff the polynomial

P (z) = detfB(z)g = 0 (14)

Note that according to assumptions A1 and A2 the matrixB(z)
will in the general case be of full rankK. However, its rank would
reduce ifz becomes equal to one of the roots ofP (z). Hence,
the signal DOA’s can be obtained by rooting the polynomialP (z)
without needing any knowledge of the inter-subarray displacement
parameters�!

Now, we apply these results to the realistic case when only the
sample covariance matrix̂R is known. In this case, we can for-
mulate the following algorithm, which is referred to as the RAnk
REduction (RARE) estimator:

� Step 1. Compute the eigendecomposition ofR̂ and find
ÊN .

� Step 2.Root the polynomial̂P (z) = detfB̂(z)g. Find the
signal DOA estimateŝ�l, l = 1; 2; : : : ; L from theL signal
roots1 ẑl, l = 1; 2; : : : ; L located inside the unit circle.

Remark 1:The polynomial root-finding step is similar to that
of root-MUSIC [4]. However, the forms of the RARE and root-
MUSIC polynomials are completely different. Furthermore, the
application of root-MUSIC is restricted by the fully calibrated ULA

1TheL roots closest to the unit circle are referred to as the signal roots.



case, whereas RARE is applicable to the case of nonuniform partly
calibrated arrays.

Remark 2:Interestingly, the idea behind the RARE algorithm
is related to the approach [5] which extends root-MUSIC to di-
versely oriented velocity hydrophone ULA’s. Also, the criterion
similar to (14) was used in [6] to extend root-MUSIC to the case
of fully-calibrated arrays with multiple invariances. However, it
is important to stress that our problem and signal model are com-
pletely different from that exploited in [5] and [6].

Remark 3:Fast algorithms for computing the coefficients of
P̂ (z) are available, so that the major computational load of RARE
is due to the eigendecomposition ofR̂ (see [7] for details).

Remark 4:In the particular caseK = 1, the array becomes a
fully calibrated ULA, and we have thatT = [1; 1; : : : ; 1]T and,
therefore,B̂(z) becomes a scalar. In this case, the RARE polyno-
mial is identical to the conventional root-MUSIC polynomial [4],
i.e.

P̂ (z)
���
K=1

= aH(z)ÊN Ê
H

Na(z) = fMUSIC(z) (15)

wherea(z) = [1; z; : : : ; zM�1]T .

4.2. Time-Varying Arrays

In this section, the case of unknown time-varying inter-subarray
displacements� = �(t) is considered. Similarly to [1] and [2],
we assume thatthe signal DOA’s remain fixed within the whole
observation interval ofN snapshots. Let us divide this interval
into J nonoverlapping subintervals of the length~N = N=J and
assume w.l.g.the piecewise time-invariance of the inter-subarray
displacements within each of such subintervals. In other words,
the subinterval length~N is assumed to be so short that the varia-
tion of the array geometry remains negligible within a subinterval.
Applying RARE to each subinterval, we obtain the polynomials

P̂i(z) = detfB̂ig i = 1; 2; : : : ; J (16)

where
B̂i(z) = T

T
i Q

H(z)ÊN;iÊ
H

N;iQ(z)T i

Here,T i andÊN;i are the selection and noise-subspace eigenvec-
tor matrices, respectively, computed at theith observation subin-
terval. It is worth noting that we not only allow the inter-subarray
displacements to vary in a completely unknown way between any
two different time subintervals, but, due to the time-varying struc-
ture of the matrixT i, it also becomes possible to rearrange sensors
dynamically between subarrays (for example, partition or merge
subarrays), provided that the assumptions A1 and A2 are not vio-
lated.

To combine the results of the application of RARE to each
observation subinterval, let us average the polynomialsP̂i(z) over
the whole observation length

P(z) =
JX
i=1

P̂i(z) (17)

Then, the signal DOA’s can be obtained from the signal roots of
P(z). Clearly, the averaging operation will enhance the signal
roots and improve the performance compared to that at each par-
ticular subinterval (see [7] for the formal proof of this fact). In
Section 6, it will be demonstrated by computer simulations that the
averaged RARE algorithm achieves the performance nearly iden-
tical to the corresponding Cram´er-Rao bound (CRB).

5. CRAMÉR-RAO BOUNDS

Let in the case of time-varying arrays the observations satisfy the
following deterministic model

xi(t) � N
�
A(�;�i)si(t); �

2
I
	

(18)

wherexi(t) = [xi;1(t); : : : ; si;M (t)]T andsi(t) = [si;1(t); : : : ;
si;L(t)]

T are the observation and source waveform vectors, re-
spectively, corresponding to thetth sample of theith subinterval.
As before, the inter-subarray displacements are treated asunknown
parameterstogether with the signal DOA’s, deterministic source
waveforms, and the sensor noise variance. Then, the following
closed-form expression for the DOA-related block of the CRB ma-
trix can be obtained

CRB�� =
�2

2

(
JX
i=1

�
F i �M iG

�1

i M
T
i

�)�1
(19)

Ai = A(�;�i) , [ai;1; : : : ;ai;L]

F i =

~NX
t=1

Re
n
D

H
i (t)�

?

Ai
Di(t)

o

M i =

~NX
t=1

Re
n
D

H
i (t)�

?

Ai
Hi(t)

o

Gi =

~NX
t=1

Re
n
H

H
i (t)�

?

Ai
Hi(t)

o

�
?

Ai
= I �Ai(A

H
i Ai)

�1
A
H
i

Di(t) =

�
Æai;1
Æ�1

si;1(t); : : : ;
Æai;L
Æ�L

si;L(t)

�

Hi(t) =
h
~Hi(t); �Hi(t)

i
~Hi(t) = j(2�=�) ~T i � (Ai�si(t)1

T )

�Hi(t) = j(2�=�) ~T i � (Ai	si(t)1
T )

where the matrix~T i is formed fromT i by deleting its first column,
1 is the(K�1)�1 vector of ones,� = diagfsin �1; : : : ; sin �Lg,
	 = diagfcos �1; : : : ; cos �Lg, and� is the Schur-Hadamard
matrix product.

In the case of time-invariant arrays, the CRB can be obtained
from (19) by assumingJ = 1 and ~N = N . This bound is given
by

CRB�� =
�2

2

n
F �MG

�1
M

T
o�1

(20)

where the matricesA, T , F , M , andG become independent of
the indexi. Proofs of equations (19) and (20) are presented in [7].

Comparing (20) to the CRB on DOA estimation in the case
of a fully calibrated array [3], we obtain that the latter bound is
given byCRBC;�� = �2

2
F�1. It can be readily proven that

MG�1MT is nonnegative definite. Therefore, from (20) we
haveCRB�� � CRBC;��. This result will be verified by a
numerical example in the next section.

6. SIMULATIONS

We consider an array ofM = 10 sensors which includes three
subarrays ofM1 = 6,M2 = 3, andM3 = 1 sensors, respectively.
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Fig. 3. RMSE’s of benchmark spectral MUSIC, RARE, and the
CRB’s versus the SNR.N = 100.

The first subarray corresponds to the sensors# 1, 3, 5, 7, 9, and 10
of the nominal ULA with the interelement spacing� = �=2. The
second subarray corresponds the sensors# 2, 4, and 6 of the same
ULA translated by�

1
, and the third subarray involves a single sen-

sor corresponding to the sensor# 8 of the virtual ULA translated
by �

2
. We assume two uncorrelated equi-powered sources with

the DOA’s �1 = 5Æ and�2 = 11Æ. The number of snapshots is
N = 100, the Signal to Noise Ratio (SNR) is varied, and all results
are averaged over 100 simulation runs.

In the first example, the time-invariant array geometry is as-
sumed, with the fixed displacements�1 = [7:56�; 25:43�] and
�
2
= [0:93�;�12:27�]. In the second example, the time-varying

array case is considered, where the interval ofN = 100 snap-
shots is divided into ten nonoverlapping subintervals of the length
~N = 10. For each subinterval, the elements of the displacement

vectors�
1

and�
2

have been drawn from the uniform random gen-
erator with the mean zero and the standard deviation30�. In
Fig. 3, the DOA estimation Root-Mean-Square Errors (RMSE’s)
of RARE and the so-calledbenchmarkspectral MUSIC algorithm
are shown versus the SNR for the first example. We stress that,
in contrast to RARE, benchmark MUSIC exploits thecomplete
knowledge of array geometry, including the knowledge of inter-
subarray displacements. Additionally, two different determinis-
tic CRB’s are displayed in Fig. 3: the first one is the conven-
tional bound derived under the assumption of the full knowledge
of the array geometry [3], whereas the second one corresponds to
the case of unknown inter-subarray displacements and is given by
(20).

Fig. 4 displays the RMSE’s of the averaged RARE algorithm
(taking the average (17) of ten polynomials corresponding to all
subintervals) and the unaveraged RARE technique (using only the
single polynomialP1(z) which corresponds to the first subinter-
val) versus SNR for the second example. Additionally, the deter-
ministic CRB is shown. The latter bound is computed using (19)
for the time-varying array with unknown inter-subarray displace-
ments.

From Fig. 3 we see that in the time-invariant array case, RARE
performs asymptotically close to the benchmark spectral MUSIC.
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Fig. 4. RMSE’s of RARE and averaged RARE, and the CRB ver-
sus the SNR.N = 100, ten subintervals,~N = 10.

However, RARE clearly outperforms MUSIC in having a remark-
ably lower SNR threshold. It is important to note that, in con-
trast to MUSIC,RARE does not require any knowledge of inter-
subarray displacements and has much simpler implementation.
Fig. 4 clearly demonstrates that in the time-varying array case,
the proposed averaging of RARE polynomials appears to be aco-
herent operationsince the performance of averaged RARE is very
close to the corresponding CRB.
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