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ABSTRACT third subarrays of Fig. 1 are interpreted as a result of two unknown
vector translationg,,, k = 1,2. In the general case & subar-
rays, thel — 1 translation vector§,, &,, ... ,&€,_, are required
to determine the array geometg,(= 0).

The problem is to estimate the DOA vector

0=1[01,0,...,0]"
1. INTRODUCTION where(-)” denotes the transpose.

We consider the direction finding problem in time-varying arrays
composed of identically oriented subarrays displaced by unknown
vector translations. A new eigenstructure-based estimator is pro-
posed for such a class of partly calibrated sensor arrays.

The problem of direction finding using time-varying sensor arrays
is important in several practical applications [1]. Existing solu-

tions to this problem []-{2] require the exact knowledge of sensor Using the nominal ULA representation described above, it can be

positions during the whole observation time. However, there exist ; .
many situations where such a knowledge remains unavailable be_readlly shown that the narrowband model for #x 1 steering

cause of prohibitively high complexities of calibration techniques vector may be written as
and fast variations of array geometry. a(f,a) = Q(A)Th(h, ) (1)

In this paper, we present a new eigenstructure-based approach
to direction finding with partly calibrated arrays which may in- Where the2(K — 1) x 1 vectorar = vec {2}, the (K — 1) x
volve several calibrated subarrays displaced by unknown time-2 matrix @ = [£,,€,,. .. ,5K_1]T, andvec{-} is the operator
varying vector translations. Our method (referred to as the RAnk stacking the columns of a matrix on top of each other. The vector
REduction (RARE) estimator) enjoys simple implementation wh- a combines all unknown inter-subarray displacement parameters,
ich entails computing the eigendecomposition of the sample array T
covariance matrix and polynomial rooting. h(8,a) = [Lexp{j(2n/NE] o} .., explj2m/NER 1 6}]

3. SIGNAL MODEL

2. PROBLEM FORMULATION Q) = diag{l,exp{j(27/A\)Asin8}

. . T
Consider an array o/ omnidirectional sensors which receives yexp{j(M —1)(2r/A)Asin6}}  (2)
L < M narrowband signals impinging from the sources with the ¢ = [sinf,cos0]T, &, = [€.r,Eyx])7, @andA is the wavelength.

unknown Directions Of Arrival (DOASY, ... , 0. The parame-  The A/ x K selection matrixI’ consists of zeros and ones and
ter L is assumed to be known [3]. Let this array consiskoiden- “distributes” the sensors of the nominal ULA among the subarrays.
tically oriented linear subarrays whose interelement spacings areThat is, the(m, k)th element ofT is equal to one if, after the

integer multiples of the knowshortest baselin. Anexample of  transation byg, ,, the mth virtual ULA sensor becomes a part
such an array composed of three subarrays is shown in Fig. 1. They the kth subarray, and equal to zero otherwise.

geometry of each subarray is assumed to be known, whereas the  For example, for the array configuration depicted in Fig. 2,
inter-subarray displacementre assumed to be unknown. Note

that in Sections 3 and 4.1, these displacements are considered to be . 10 0 0 1 01 00O
time-invariant, whereas in Section 4.2 the case of unknown time- T"=]0 0 1 0 0 1 0 0 1 1 (3)
varying inter-subarray displacements will be treated. A&t > 0101 00 0 1 0O

1 be the number of sensors of tli¢h subarray, so thad/ =

Zszl M;.. We stress thad/,, may take different values for vari- Using (1), the array snapshots can be modeled as

ous subarrays. 2(t) = A6, a)s(t) + n(t) )
For the sake of simplicity, it is convenient to define each sub- ) )

array by means of a certain planar translation of a part of sensors¥hereA(6, a) = [a(61, @), ... ,a(fr, )] isthe M x L direc-

of an M-elementnominal (virtual) uniform linear array (ULA).  tion matrix, s(t) is the L x 1 vector of the signal waveforms, and

This representation is illustrated in Fig. 2, where the second and”(f) is the M x 1 vector of white sensor noise.
The sample covariance matrix is given by
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subarray? In particular, in the ideal case of exactly kno#) the DOAs can

. 3A 3A » N\ = be found from the equation [3]
a”(,)ExENa(d,a) =0 (8)
However, the vector parameter is unknown and, therefore, the
subarrayl minimization of (8) requires an exhausti?€k — 1)+ 1-dimensio-
N N = DN+ nal search which becomes totally impractical #ér > 1. Using

(1), we can rewrite (7) as

fuusic(8, @) = b (6,0)TT Q" (2) Ex ExQ(2)Th(6, )
0 2)h

subarray3 et
= h"(0,0)B(2)h(0, ) )

o< 2/ =0 4N
where

Fig. 1. A particular example of the considered type of sensor array: R o e e
first subarray ), second subarray), third subarray). B(2) =T Q" (:)ENExQ(2)T (10)

kﬁ
ERVAY

Fig. 2. An interpretation of the array structure of Fig. 1 using the

concept of a nominal ULA (0) and two vector displacemefits ~ Where
andé,. B(2) =T"Q" (2)ENENQ(2)T

Note thath (¢, a) # 0 and, therefore, (12) holds true iff

[m]

*

A is the K x K Hermitian matrix, andt = exp {j(27/A\)Asin 0}.
An important observation following from (9) and (10) is that the
g £ vector parametett is contained irh (6, ) only, so that the matrix
1 1 P

B(z) is independent ofx. Also, it is worth noting that the matrix
Q in (9) and (10) is reformulated in terms of so that
s

\Ei
[S2]
’ Q(z) = diag {1,2,... , 2"} (11)
E2 E 2 EZ In the ideal case of exactly knowR, we can rewrite equation (8)
a

h7 (8, )B(z)h(8, ) = 0 (12)

where(-)" denotes the Hermitian transpose. The eigendecompo- rank{B(2)} < K (13)
sition of (5) yields

. " n AH A oA AH or, equivalently, iff the polynomial

R=EsAsEs + ExNANEy (6)

. P(z) =det{B(z)} =0 (14)
where thel, x L and(M — L) x (M — L) diagonal matriceA s and
A x contain thel, and M — L signal and noise-subspace eigenval- Note that according to assumptions Al and A2 the maBix)
ues, respectively, and the columns of flex L and M x (M — L) will in the general case be of full rank’. However, its rank would
matricesZs andEy contain the signal and noise-subspace eigen- reduce ifz becomes equal to one of the roots Bfz). Hence,
vectors, respectively. Note that (6) is the sample estimate of thethe signal DOA's can be obtained by rooting the polynonfték)

true covariance matrix without needing any knowledge of the inter-subarray displacement
o - o parametersx!
R=E{z(t)z" (1)} = EsAsEs + ExANEY Now, we apply these results to the realistic case when only the

sample covariance matrig is known. In this case, we can for-
mulate the following algorithm, which is referred to as the RAnk

4. DOA ESTIMATION REduction (RARE) estimator:

4.1. Time-Invariant Arrays e Step 1. Compute the eigendecomposition Bf and find
We make the following assumptions, which are required for the En. . R _
formulation of our technique: e Step 2.Root the ponrJomlaP(z) = det{B(z)}. Find the
(A1) The selection matri’ has a full column rank and at most signal DOA estimate;, [ = 1,2,... , LfromtheL signal
one nonzero entry in each row. roots' 3,1 = 1,2, ..., L located inside the unit circle.

(A2) The number of subarrays is chosen so thak’ < M — L. Remark 1:The polynomial root-finding step is similar to that

. We start our derivation from the_ consi_deration of Fhe conver,1- of root-MUSIC [4]. However, the forms of the RARE and root-
tional spectral MUSIC algorithm which estimates the signal DOA's MUSIC polynomials are completely different. Furthermore, the

from the L deepest minima of the function [3] application of root-MUSIC is restricted by the fully calibrated ULA

—a¥ I
fuusic(f, @) =a” (§,) ExnEya(f, @) 7 1The L roots closest to the unit circle are referred to as the signal roots.



case, whereas RARE is applicable to the case of nonuniform partly 5. CRAMER-RAO BOUNDS
calibrated arrays.
Remark 2:Interestingly, the idea behind the RARE algorithm Let in the case of time-varying arrays the observations satisfy the
is related to the approach [5] which extends root-MUSIC to di- following deterministic model
versely oriented velocity hydrophone ULA's. Also, the criterion 2
similar to (14) was used in [6] to extend root-MUSIC to the case i(t) ~ N{A(O, o;)si(t), o I} (18)
of fully-calibrated arrays with multiple invariances. However, it wherez; (t) = [i1(t),. .. ,si ()]7 ands:(t) = [si(t), ...
is import'ant to stress that our p_robl_em and signal model are com-g. . (1)]” are the observation and source waveform vectors, re-
pletely different from that exploited in [5] and [6]. . spectively, corresponding to tlith sample of theth subinterval.
_ Remark 3:Fast algorithms for computing the coefficients of g pefore, the inter-subarray displacements are treatedkaown
P(z) are available, so that the major computational load of RARE parameterstogether with the signal DOA', deterministic source

is due to the eigendecomposition Bf(see [7] for details). waveforms, and the sensor noise variance. Then, the following
Remark 4:In the particular cas&” = 1, the array becomes a  closed-form expression for the DOA-related block of the CRB ma-
fully calibrated ULA, and we have thaf = [1,1,...,1]” and, trix can be obtained
therefore,B(z) becomes a scalar. In this case, the RARE polyno- o (7 -1
irr;al is identical to the conventional root-MUSIC polynomial [4], CRBoy = % { (Fz _ MiGi—lM;F)} (19)
.e. i=1
]5(2) P aH(z)ENEﬁa(z) = fumusic(z) (15) A, = A0,o) = [@i,...,a:L]
wherea(z) =[1,2,...,2M ", F, = ZRe{Df(t)HﬁiDi(t)}
t=1
4.2. Time-Varying Arrays N
In this section, the case of unknown time-varying inter-subarray M = ZRe {Di (t)HAiHl(t)}

displacementsx = «(t) is considered. Similarly to [1] and [2],

we assume thahe signal DOA’s remain fixed within the whole N o n
observation interval ofV snapshots Let us divide this interval Gi = ) Re {Hz (t)Ig, Hi(t)}
into J nonoverlapping subintervals of the length= N/.J and t=1
assume w.l.gthe piecewise time-invariance of the inter-subarray Oi, = I-A;(A7A) AT
displacements within each of such subintervals other words, Saiq Sai 1
the subinterval lengtlV is assumed to be so short that the varia- Di(t) = [ 691, sia(t),. .., ﬁsm(t)]
tion of the array geometry remains negligible within a subinterval. ! L
Applying RARE to each subinterval, we obtain the polynomials H,(t) = [ffi(t), fIi(t)]

Pi(z) =det{Bi}  i=12,...,J (16) H(t) = jr/NT:o (A:i®si(t)17)
where _P_Il (t) = ](27T/A)Tl ® (Ai\I’Si(t)lT)

7 T ~H 2 ~H

Bf(z) T:Q (Z)?N’IEN’lQ(Z)Tl _ where the matri@’; is formed fromiT’; by deleting its first column,
Here,T'; andE v,; are the selection and noise-subspace eigenvec- 1 js the( K —1) x 1 vector of ones@ = diag{sin 1, ... ,sin 6.},
tor matrices, respectively, computed at fife observation subin- g — diag{cosé,,... , cosfr}, and® is the Schur-Hadamard
terval. Itis worth noting that we not only allow the inter-subarray - matrix product.
displacements to vary in a completely unknown way between any | the case of time-invariant arrays, the CRB can be obtained
two different time subintervals, but, due to the time-varying struc- from (19) by assuming’ = 1 and N = N. This bound is given
ture of the matrixr’;, it also becomes possible to rearrange sensors |,
dynamically between subarrays (for example, partition or merge
subarrays), provided that the assumptions A1 and A2 are not vio-
lated.

To combine the results of the application of RARE to each

2 -1
CRBgp = "7 {F - MG_IMT} (20)

where the matriced\, T', F', M, andG become independent of

observation subinterval, let us average the polynonitals) over the indexi. Proofs of equations (19) and (20) are presented in [7].
the whole observation length Comparing (20) to the CRB on DOA estimation in the case
J of a fully calibrated array [3], we obtain that the latter bound is

P(z) = Zﬁi(z) a7 given by CRBc 00 = "—22F‘1. It can be readily proven that
i=1 MG M7 is nonnegative definite. Therefore, from (20) we

Then, the signal DOAs can be obtained from the signal roots of have CRBgo > CRBc ¢e. This result will be verified by a

P(z). Clearly, the averaging operation will enhance the signal humerical example in the next section.

roots and improve the performance compared to that at each par-

ticular subinterval (see [7] for the formal proof of this fact). In 6. SIMULATIONS

Section 6, it will be demonstrated by computer simulations that the

averaged RARE algorithm achieves the performance nearly iden-We consider an array o/ = 10 sensors which includes three
tical to the corresponding CramnRao bound (CRB). subarrays of\f; = 6, M> = 3, andM3 = 1 sensors, respectively.
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Fig. 3. RMSE's of benchmark spectral MUSIC, RARE, and the Fig. 4 RMSE’s of RARE and averaged RARE, and the CRB ver-
CRB’s versus the SNRYV = 100. sus the SNRNN = 100, ten subintervalslN = 10.

The first subarray corresponds to the sengbfis 3,5,7,9,and 10 ~ However, RARE clearly outperforms MUSIC in having a remark-
of the nominal ULA with the interelement spacidg= A/2. The ~ ably lower SNR threshold. It is important to note that, in con-
second subarray Corresponds the Sen#02$4, and 6 of the same trast to MUS'C,RARE does not require an_y knOW}edge of Intgr-
ULA translated by¢ ,, and the third subarray involves a single sen- Subarray displacements and has much simpler implementation
sor corresponding to the sensr8 of the virtual ULA translated ~ Fig. 4 clearly demonstrates that in the time-varying array case,
by £,. We assume two uncorrelated equi-powered sources withthe proposed averaging of RARE polynomials appears todee a
the DOAs#; = 5° andf, = 11°. The number of snapshots is herent operatiorsince th_e performance of averaged RARE is very
N = 100, the Signal to Noise Ratio (SNR) is varied, and all results Close to the corresponding CRB.
are averaged over 100 simulation runs.
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