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ABSTRACT

Differential operatorshave beenwidely usedfor multiscalege-
ometric descriptionsof images. Efficient computationof these
differentialoperatorscanbe obtainedby taking advantageof the
spline techniques.In this paper, we make useof a specialclass
of theseoperatorsfor imageenhancement,with a particularappli-
cationto chromosomeimageenhancement.Theseoperatorscon-
stitutea translationinvariantwavelettransformwell suitedfor the
structuraldescriptionof chromosomegeometry. Basedon thefact
thatthegeometricalfeatureslikeedgesarecorrelatedbetweendif-
ferentscalesin the representation,a novel algorithmis designed
to enhancethesalientfeaturesof the image.Comparisonsof this
algorithmwith otherapproachesarepresented.

1. INTR ODUCTION

Thegeometryof imagesis usuallycharacterizedusingdifferential
or differenceoperatorssuchas the gradientoperator, Laplacian
operatorandcompassoperator[1]. It is well known from both
psychophysicalandphysiologicalexperimentsthat edgesof im-
agesare capturedin the visual context of mammalsat different
resolutionlevels. A classof waveletsfor multiscaledifferential
representationsof imageswasproposedin [2, 3].

Theobjective of imageenhancementis to improve thevisibil-
ity of low-contrastfeatureswhile suppressingthe noise. Among
variousenhancementmethods,sharpeningtechniquesareusually
designedby using gradientinformation derived from the Sobel
operator, Robertsoperator, or the compassoperator. The adap-
tive enhancementmethod,exploiting thefirst derivative, hasbeen
usedfor mammographicimageenhancement[4]. Sincedifferen-
tial operatorscanberegardedashighpassfilters,thesetechniques
actuallysharpenthe imageby extrapolationof its high frequency
information. The Laplacianpyramid, asoneof its variants,has
alsobeenusedfor imageenhancement[5].

Motivatedby boththecloseapproximationsof � -splinebases
to the Gaussianand the wavelet theory, Wanget. al. provide a
moreformal framework for multiscalerepresentationsusingdif-
ferentialoperatorsin [2, 3, 6]. By takingadvantageof thespline
properties,fastalgorithmsarederived. Moreover, theserepresen-
tationsaredifferentfrom theusualwaveletmodelsin thatthey are
translation-invariant. As shown in [7], thresholdingin the trans-
lation invariantwaveletdomaineliminatessomeof theunpleasant
artifactsintroducedby modificationof orthogonalwaveletexpan-
sion coefficients. Therefore,theseover-completerepresentations
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providemoreflexibility , andthey outperformtheorthogonalbases.
They arevery suitablefor geometric-basedprocessing.

This papermakesuseof thesedifferentialrepresentationsfor
imageenhancementapplicationsby exploiting thegeometriccor-
relation of image featuresin thesedomains. The resultingen-
hancementschemeis particularlyappliedto chromosomeimage
enhancement.

2. MULTIRESOLUTION DIFFERENTIAL
REPRESENTATIONS OF IMA GES

A family of waveletswasdesignedin [3] whicharethederivatives
of splines.An imagecanbesynthesizedfrom its derivative com-
ponentsat multiple scales. Thesedifferential operatorsinclude
the gradientoperator, theLaplacian,the secondderivative opera-
tor andmulti-directionaloperators.At eachscale,theseoperators
resemblethe Sobel,Robertsandcompassoperators.In this sec-
tion, we review themainresultsfor thesecondderivative operator
case,which is usedin this paper. More detailscanbe found in
[2, 3].

2.1. Decompositionand reconstruction of an image fr om its
dir ectionalderivative components

The multiscalesmoothingof imagesis obtainedby convolution
of imageswith the2-D � -splinefunctiondefinedas �����	��

������ � �	����� � �	��� at differentscales,where � is theorderof � -spline.
After takingtheseconddirectionalderivative of thesmoothedim-
age ���������� �	��

��� alongthegradientorientations,the threedirec-
tionalderivative components,or wavelettransforms,aregivenby������ ���	��
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By takingadvantageof therefinablepropertiesof splines,we
can obtain a recursive algorithm for the computationsof these
threelocal partial derivative componentsalongthe dyadicscales687:9<; 91=<> [3]. Alternatively, we have the following discrete de-
compositionformula:?@@A @@B C ��� � � C ���
DFE �G���IHJ
KHL�(M ���
DFE������ � � C ���
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where TG�U�IHJ

P�� M ���
DFE representstheseparableconvolution of the
rows andcolumnsof the imagewith the1-D filters V H�WXM ���KDFE and



V P<WXM ���
DFE respectively. Thesymbol Q denotestheDiracfilter whose
impulseis 1 at theorigin and0 elsewhere.Theup-samplingoper-
ationof a sequence

6 H��	�J� ; by anintegermultiple Y is definedasV H�W M:Z .
6 H ; arethebinomialfilters.

6 P " � 0 ; , 6 P " � 0 ; arethefirst and
secondorderdifferenceoperators.

Under the perfectreconstructioncondition,an imagecanbe
reconstructedfrom its waveletscomponents(2) usingthe follow-
ing discretereconstructionformula:C ���
DFE ��� � ���� �G�O�:[P " � 0 
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where \��%_<�N� �� !�)8`�!ba � �*c �9ed<

fhgi_jg 7 � ] 7 , arethe FIRs of

the transferfunction kG�ml^���on � �ml^� . 6 [P " � 0 ; and
6 [P " � 0 ; arethe

reconstructionfilters correspondingto
6 P " � 0 ; and

6 P " � 0 ; respec-
tively.

It canbe furtherverified thatan image ���	��

��� canberecov-
eredfromits threedirectionalderivativecomponents

6 �4p��� ; p5q � - � - 391=<>
in thecontinuousform as���	��
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where v�� - � 
Kv�� - � and v�� - 3 are the 3 reconstructionfilters along
horizontal,verticalanddiagonaldirectionsrespectively.

2.2. Discretefilters for both decompositionand reconstruction

Weonly giveall thefilters for bothdecompositionandreconstruc-
tion in theaboveformulain thecaseof �z�|{ , asshown in table1.
Thederivation of thesefilters andgeneralformulasfor any order
of splinescouldbefoundin [3].
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Table 1. Filters of both decompositionand reconstructionsfor
cubicsplines.

2.3. Fastand parallel implementation

Sinceall thefilters
6 H " 9 0 ; 
 6 P " 9 0 ; arelinearcombinationsof bino-

mials,thecomputationalefficiency canbefurtherimprovedusing
thePascal triangular algorithm [3]. In detail,dueto thefollowing
identity � � �F� � � �������� ] � ������ �j� �
the convolution with a � th binomial can be realizedusing only
addition operationsrecursively from the 0th binomial (unit im-
pulse).Thelastnormalizationfactor

�� ).` E canbeimplementeddi-
rectlyby bit shift operationratherthanmultiplication.Wecancall

this methodthemoving averagesum technology, which leadsto
an easyhardwarerealization. The complexity of the approachis� �I��� , andhencean improvementover the recursive algorithms
(2) and(3) which have complexity

� �I���m��P � �z� . In addition, it
is easyto show that thesefilters allow integer implementationof
thesewavelettransforms.

As a result,onecanaccomplisha fastandparallelimplemen-
tation of the dyadic wavelet transformswithout resortingto the
recursive pyramid-like algorithms. The smoothapproximations6 C ��� ; �
� 9 ��� andthewavelet transforms

6 � ��� ; �
� 9 �L� alongdif-
ferent scalescan be computedsimultaneouslyanddirectly from
thefinestscaleapproximation,

C �(� � , usingthefollowing formula� C � � ��� C �(� �w��H " 9 0 
� � � ��� C �(� �G�xP " 9 0 
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 7 
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Thebinomialfilter
6 H " 9 0 ; canbeobtainedeasilyfrom thefollow-

ing iterative relationH " 9 0 V �LW�� �7 �*c � �.c �t � q � � � ] �� � H " 9 u � 0 V ��� 7 9 u � �XWI
�����  (6)

and
6 P " 9 0 ; isobtainedby takingthefirst or secondorderdifference

of the
6 H " 9 u � 0 ; with a spacing

7 9 u �
.

3. ENHANCEMENT ALGORITHMS

3.1. The correlation acrossdiffer ent scales

As edgesexist acrossmultiple scales,theremustbe somecorre-
lation acrossdifferentscales[8]. Before the advent of wavelets,
multiscalepoint-wiseproducts(MPP) hadbeenusedto enhance
themultiscalepeaksdueto edgeswhile suppressingnoise,by ex-
ploiting the multiscalecorrelationof the desiredsignal [9]. The
MPPis definedby ¡�¢ �	���£�

¢
¤9 q � � � � ���	��� (7)

where ¥ is the maximumnumberof scalesusedfor computing
correlations.Thiscriteriahasbeenusedfor detection,localization
[8] andfiltering of magneticresonanceimages[10]. An example
is shown in Fig. 1. As maximaof

� ��� ���	�J� dueto edgesin signal���	�J� tendtopropagateacrossscales,whereasmaximadueto noise
do not,

¡ ¢
will reinforcethe signal responseandnot the noise.

In [11] we have proved that thedensityof maxima, ¦G§ , of white
noisewill follow thefollowing formula:¦w§¨�ª© {7�« �¬ �© � ] � (8)

where ¬ is thescaleof smoothingand � is theorderof spline. In
other words, the numberof local maximadueto noisedecrease
quickly with increasingscaledueto increasedsmoothing. If we
take dyadicscales,the averagenumberof local maximaat ¬ �7 9 c � will behalf of thatatscale¬ � 7 9 .

Thestatisticsof

¡L¢
is characterizedin [8]. Theresultingprob-

ability densityfunctions(pdf’s) are generallynon-Gaussianand
heavy tailed. MPP couldbeusedfor detectionandestimationof
stepchangelocations.

In theabovediscussion,weonlydealwith theone-dimensional
case.For 2-D images,MPPshouldbe sensitive to direction. For
threedifferentdirections,thecorrelationquantityMPPis different
alongthreedifferentdirections.



Fig. 1. Wavelet Decompositionsof a simulatedsignalusingcu-
bic splinewavelets.Top row is theblock signaladdedwith white
noise. From 2nd row to 4th row are the wavelet decomposition
coefficients. 5th row is the smoothcomponent.6th row and7th
row arethe multiscalepoint-wiseproducts(MPP) betweenadja-
centtwo scales.8th row is theMPPamong3 scales.

3.2. The enhancementalgorithm

Basedon the above observation, we proposethe following algo-
rithm for edgeenhancementin 2-D images.

1. Performthe multiscaledifferential decompositionof im-
agesusingthesplinewavelets.Thuswehaveasequenceof wavelet
decompositions

6 �®­��� �F
KQG�4�.
 7 
K{R¯°fw±O�²_N±O�®�b¯ C �K³ � ; along
thehorizontal,verticalanddiagonaldirections.

2. Sortthevaluesof

¡ ­ ¢ �	�J�:

QG�i�8
 7 
°{ ateachpixel from low
to high valuesandthennormalizethemto V fR
1�:W . Let theuserset
the thresholdas ´ . Thenthresholdandmodify the imagesusing
thefollowing formula:[� ­��� ���	�J�x� �¶µ �®­� � ���	���:
 if

¡ ­ ¢¸· ´f¹
 if

¡ ­ ¢ ±j´ (9)

where
µ

is anadjustableconstant.Thelow-frequency components
of images

C � ³ � arekeptunchanged.
3. Do the inversewavelet transformusingreconstructionfor-

mula(3) to gettheenhancedimages.
Thechoiceof ´º�»V fR
1��W dependson thenoiselevel of theim-

age.Sincetheimageswe acquiredfor chromosomeenhancement
containlittle noise,weusuallyset́ below 0.1.Themainobjective
is contrastenhancement.Theuserhastheoptionto inputdifferent
valueof

µ
for differentdegreeof enhancementashedesires.An

exampleresultusingtheabove algorithmis shown in Fig. 2. We
choose

µ �¼{Ry 7 and ´²�¼fRy fR� for this figureaswell asfor other
imagesusedin theexperiments.

4. RESULTS AND COMPARISONS

Commontechniquesfor contrastenhancementgenerallycan be
categorizedinto two classes[5]. In thefirst one,techniquessuchas
histogramequalization,modify thebrightnessof eachpixel based
on the statisticalinformationof an image. In the secondone, it
separatesthe high and/or low-frequency componentsof images,

manipulatingthemseparatelyandre-combinethem,for example,
asin theunsharpmaskingmethod.

Thequantitative measurementof thecontrastimprovementis
often very difficult. Moreover, thereis no universalstandardfor
measuringboth objective and subjective performanceof the en-
hancement.Thecontrastis oftendefinedasthedifferencein mean
luminancesbetweenan object and its surroundings. There are
many definitionsof contrastmeasures.Weadoptthemeasurepro-
posedin [12] and the local contrastdefinedby the differenceof
meanvaluesin two rectangularwindows centeredon a pixel. In
detail,thelocal contrast½8�	��

��� is definedasfollows:½.�	��

���r�¿¾

¡ �»À ¾¾
¡ ] À ¾ (10)

where

¡
and À are the averagevaluesof pixels within a {�Á²{

region anda Â�Á�Â surroundingneighborhoodrespectively . The
performancemeasureof contrastimprovementratio, i.e., CIR, is
definedastheratioof theenhancedimageandun-enhancedimage
within theregion of interestÃ (ROI)

½.�	��
����£� Ä",+.- /10 =*Å ¾ ½.�	�J
K�F����[½.�	��
(�F� ¾ �Ä"Æ+.- /10 =*Å ½8�	��
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where½ and [½ arethelocalcontrastvaluesof originalandenhanced
images,respectively. In our experiment,we assumethat Ã is the
wholeimage.

For theobjective evaluationof thecontrastimprovement,the
proposedmethodwascomparedwith threeconventionalenhance-
mentmethodssuchasthecontraststretching(CS),adaptive con-
trastenhancement(ACE),contrastgaintransform(CGT) [13] and
the methodcurrently usedin Macktype,a commercialsoftware
product[14]. We have tested10 chromosomespreadimagesand
list the correspondingCIRs in Table2. Our methodconsistently
givesthehighestCIRsamongthefivemethodsevaluated.

Image CS ACE CGT Macktype Wavelets
case1 .0868 .3487 .1874 0.2016 3.6877
case2 .0270 .0435 .1440 0.6257 4.0704
case3 .0246 .5017 .3183 0.7224 4.4152
case4 .0230 .0523 .3163 0.7339 3.4430
case5 .0233 .0753 .3221 0.6828 4.1676
case6 .0276 .0369 .2849 0.5132 2.7958
case7 .0275 .0755 .2389 0.4831 2.9241
case8 .0244 .0470 .3092 0.7012 5.0110
case9 .0311 .0371 .2345 0.4895 2.1790
case10 .0151 .1257 .4973 1.7959 7.1507
Average .0310 .1344 .2853 0.6949 3.9845

Table 2. A comparisonof theCIRsfor differentmethods.

5. DISCUSSIONSAND CONCLUSIONS

In this paper, we apply a classof differentialwavelets[3] to im-
ageenhancement.Theproposedwaveletshaveseveraladvantages.
First, they arederived from splinesandcanbe implementedeffi-
ciently. Secondly, this classof representationsareshift-invariant
andthusfacilitatethe measurementof correlationsof imagefea-
turesin thesedomains.In addition,theserepresentationscharac-
terizethehigh-frequency edgeinformationalonghorizontal,ver-
tical anddiagonaldirections.We cantake into accountthedirec-
tional informationin designingtheenhancementalgorithms.



Our enhancementalgorithmactuallymakesuseof the infor-
mationin thedifferentialwaveletdomainsfor extrapolation.Due
to suchwavelet representations,high frequency featuressuchas
edgesarewell characterized.Therefore,we candesignour algo-
rithm to enhancethe images. Preliminaryresultsshow that our
methodsignificantlyoutperformsotherconventionaltechniquesin
termsof thecontrastimprovementratio. We planto carryout hu-
manassessmentof theenhancementperformanceof theseimages
by cliniciansin thenearfuture.

Fig. 2. An exampleof chromosomeimageenhancement.The
original chromosomespreadimageis on thetopandtheenhanced
resultis on thebottom.
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