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ABSTRACT

Differential operatorshave beenwidely usedfor multiscalege-
ometric descriptionsof images. Efficient computationof these
differential operatorscan be obtainedby taking advantageof the
spline techniques.In this paper we make useof a specialclass
of theseoperatordor imageenhancementyith a particularappli-

cationto chromosomémageenhancementTheseoperatorson-
stitutea translationinvariantwavelettransformwell suitedfor the
structuraldescriptionof chromosomgeometry Basedon thefact
thatthegeometricafeaturedik e edgesarecorrelatedbetweerdif-

ferentscalesin the representationa novel algorithmis designed
to enhancehe salientfeaturesof theimage. Comparison®f this

algorithmwith otherapproachearepresented.

1. INTRODUCTION

Thegeometryof imagess usuallycharacterizedisingdifferential
or differenceoperatorssuch as the gradientoperator Laplacian
operatorand compassoperator[1]. It is well knovn from both
psychophysicalnd physiologicalexperimentsthat edgesof im-
agesare capturedin the visual context of mammalsat different
resolutionlevels. A classof waveletsfor multiscaledifferential
representationsf imageswasproposedn [2, 3].

Theobjectie of imageenhancemeris to improve thevisibil-
ity of low-contrastfeatureswhile suppressinghe noise. Among
variousenhancementnethods sharpeningechniquesareusually
designedby using gradientinformation derived from the Sobel
operatoy Robertsoperatoy or the compassoperator The adap-
tive enhancemenmnethod,exploiting the first derivative, hasbeen
usedfor mammographiémageenhancemerd]. Sincedifferen-
tial operatorcanberegardedashigh pasfilters, thesetechniques
actuallysharpertheimageby extrapolationof its high frequeny
information. The Laplacianpyramid, asone of its variants,has
alsobeenusedfor imageenhancemerib].

Motivatedby boththe closeapproximation®f B-splinebases
to the Gaussiarandthe wavelet theory Wanget. al. provide a
moreformal framework for multiscalerepresentationssing dif-
ferentialoperatorsn [2, 3, 6]. By taking adwantageof the spline
propertiesfastalgorithmsarederived. Moreover, theserepresen-
tationsaredifferentfrom the usualwaveletmodelsin thatthey are
translation-iwariant. As showvn in [7], thresholdingin the trans-
lationinvariantwaveletdomaineliminatessomeof theunpleasant
artifactsintroducedby modificationof orthogonalwaveletexpan-
sion coeficients. Therefore theseover-completerepresentations
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provide moreflexibility, andthey outperformtheorthogonabases.
They arevery suitablefor geometric-basegrocessing.

This papermalesuseof thesedifferentialrepresentationtor
imageenhancemerdpplicationsby exploiting the geometriccor
relation of image featuresin thesedomains. The resultingen-
hancemenschemeis particularly appliedto chromosomemage
enhancement.

2. MULTIRESOLUTION DIFFERENTIAL
REPRESENTATIONS OF IMA GES

A family of waveletswasdesignedn [3] which arethederiatives
of splines.An imagecanbe synthesizedrom its derivative com-
ponentsat multiple scales. Thesedifferential operatorsinclude
the gradientoperator the Laplacian,the secondderivative opera-
tor andmulti-directionaloperators At eachscale theseoperators
resemblethe Sobel,Robertsand compassperators.In this sec-
tion, we review the mainresultsfor the secondderivative operator
case,which is usedin this paper More detailscanbe foundin
[2,3].

2.1. Decompositionand reconstruction of an image from its
dir ectional derivative components

The multiscalesmoothingof imagesis obtainedby convolution
of imageswith the 2-D B-splinefunctiondefinedass” (z,y) =
B™(x)B™ (y) atdifferentscaleswheren is the orderof B-spline.
After takingthe seconddirectionalderivative of the smoothedm-
agef = 33; (x,y) alongthe gradientorientationsthe threedirec-
tional derivative componentsor wavelettransformsaregivenby
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By taking adwantageof therefinablepropertiesof splineswe
can obtain a recursve algorithm for the computationsof these
threelocal partial derivative componentslongthe dyadic scales
{27}jez [3]. Alternatively, we have the following discrete de-
compositionformula:

Sy f = Soi—1 f* (hy h)pai—1

W21.7f = S2j_1f * (9(2)) d)']“Zj_l (2)
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wherel * (h, g);0i-1representshe separableconvolution of the
rows andcolumnsof theimagewith the 1-D filters [A];,;-1 and



[g]12i—1 respectiely. Thesymbold denotegheDiracfilter whose
impulseis 1 attheorigin and0 elsevhere. The up-samplingoper
ationof asequencgh(n)} by anintegermultiple m is definedas
[h];,,- {h} arethebinomialfilters. {g"'}, {g*} arethefirstand
secondrderdifferenceoperators.

Underthe perfectreconstructiorcondition, an imagecanbe
reconstructedrom its waveletscomponentg2) usingthe follow-
ing discretereconstructionformula:

Spic1 f=Wai f (G, u) 051 + Wos f# (1, §) 4051
AW (G, 3" ) 1051 + Soi f# (Ayh)gs1,  (3)

whereu(j) = gz (*/?),0 < j < 2n + 2, arethe FIRs of

the transferfunction U (w) = H?(w). {§V'} and{3®} arethe
reconstructiorfilters correspondingdo {g"’} and{g‘®’} respec-
tively.

It canbe further verified thatanimage f (z, y) canberecos-
eredfromits threedirectionalderivative componentg W3; }5Z >
in thecontinuoudorm as

fle,y) = D Wy f+x" (z,y) +
j=—o0
W3 fxx"(@,y) + Wi f = x">(2,y)). @)

wherex™!, x™? andx™? arethe 3 reconstructiorfilters along
horizontal,verticalanddiagonaldirectionsrespectiely.

2.2. Discretefilters for both decompositionand reconstruction

We only give all thefilters for bothdecompositiorandreconstruc-
tion in theabove formulain thecaseof n = 3, asshavnin tablel.
The derivation of thesefilters and generafformulasfor ary order
of splinescouldbefoundin [3].
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Table 1. Filters of both decompositiorand reconstructiongor
cubicsplines.

2.3. Fastand parallel implementation

Sinceall thefilters {h)}, {g") } arelinearcombinationsf bino-
mials,the computationakfficiency canbe furtherimprovedusing
thePascal triangular algorithm[3]. In detail,dueto thefollowing
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the cornvolution with a nth binomial can be realizedusing only
addition operationsrecursvely from the Oth binomial (unit im-
pulse).TheIastnormalizatiorfactor2"% canbeimplementedli-
rectly by bit shift operatiorratherthanmultiplication. We cancall

this methodthe moving averagesumtechnology, which leadsto

an easyhardwarerealization. The compleity of the approachs

O(N), and hencean improvementover the recursve algorithms
(2) and(3) which have compleity O(Nlog2N). In addition, it

is easyto shav thatthesefilters allow integer implementatiorof

thesewavelettransforms.

As aresult,onecanaccomplisha fastandparallelimplemen-
tation of the dyadic wavelet transformswithout resortingto the
recursve pyramid-like algorithms. The smoothapproximations
{Sai }1<j<s andthewavelettransforms{Wy; }1<;<, alongdif-
ferent scalescan be computedsimultaneouslyand directly from
thefinestscaleapproximationSyo f, usingthefollowing formula

S5i f = Spo f x b, (5)
W2j.f=520f*g(J)7 J=17271J

Thebinomialfilter {h)} canbe obtainedeasilyfrom thefollow-
ing iterative relation

1) L S- (n+1) G-y, gimt
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and{g")} is obtainedby takingthefirst or secondrderdifference
of the {n =1} with aspacing2’~?.

3. ENHANCEMENT ALGORITHMS

3.1. The correlation acrossdiffer ent scales

As edgesexist acrossmultiple scalestheremustbe somecorre-
lation acrossdifferentscaleg8]. Beforethe adwent of wavelets,
multiscalepoint-wise products(MPP) had beenusedto enhance
the multiscalepeaksdueto edgeswhile suppressingoise,by ex-
ploiting the multiscalecorrelationof the desiredsignal[9]. The
MPPis definedby

p(n) =[] Was f(n) ()

where K is the maximumnumberof scalesusedfor computing
correlationsThis criteriahasbeenusedfor detectionjocalization
[8] andfiltering of magneticresonancémages[10]. An example
is shavn in Fig. 1. As maximaof W,; f(n) dueto edgesn signal
f(n) tendto propagatacrosscalesyhereasnaximadueto noise
do not, px will reinforcethe signal responseand not the noise.
In [11] we have proved thatthe densityof maxima, D,, of white
noisewill follow thefollowing formula:

p,=Y31l_1 ®
2w s+/n+1

wheres is the scaleof smoothingandn is the orderof spline. In
otherwords, the numberof local maximadueto noisedecrease
quickly with increasingscaledueto increasedsmoothing. If we
take dyadic scales the averagenumberof local maximaat s =
27+1 will behalf of thatatscales = 27.

Thestatisticsof px is characterizeth [8]. Theresultingprob-
ability densityfunctions (pdf's) are generallynon-Gaussiaand
heary tailed. MPP could be usedfor detectionand estimationof
stepchangdocations.

In theabove discussionwe only dealwith theone-dimensional
case.For 2-D images,MPP shouldbe sensitve to direction. For
threedifferentdirections the correlationquantityMPPis different
alongthreedifferentdirections.
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Fig. 1. Wavelet Decomposition®f a simulatedsignal using cu-

bic splinewavelets. Top row is the block signaladdedwith white

noise. From 2nd row to 4th row are the wavelet decomposition
coeficients. 5th row is the smoothcomponent.6th row and 7th

row are the multiscalepoint-wiseproducts(MPP) betweenadja-

centtwo scales8throw is the MPPamong3 scales.

3.2. The enhancementalgorithm

Basedon the above obseration, we proposethe following algo-
rithm for edgeenhancemenh 2-D images.

1. Performthe multiscaledifferential decompositiorof im-
ageausingthesplinewavelets. Thuswe have asequencef wavelet
decomposition§Wg; f,d = 1,2,3;0 <= j <= J; S,s f} along
thehorizontal,verticalanddiagonaldirections.

2. Sortthevaluesof p% (n), d = 1, 2, 3 ateachpixel from low
to high valuesandthennormalizethemto [0, 1]. Let the userset
the thresholdas . Thenthresholdand modify the imagesusing
thefollowing formula:

AWy f(n),

~ H d
i ={ ) VR SO

if pk <p

where) is anadjustableconstant.Thelow-frequeny components
of imagesS,s f arekeptunchanged.

3. Do theinversewavelettransformusingreconstructiorfor-
mula(3) to gettheenhancedmages.

Thechoiceof i € [0, 1] depend®n thenoiselevel of theim-
age. Sincetheimageswe acquiredfor chromosome&nhancement
containlittle noise we usuallysetu belav 0.1. Themainobjective
is contrasenhancemeniThe userhastheoptionto input different
valueof X for differentdegreeof enhancemerdshe desires.An
exampleresultusingthe above algorithmis shavn in Fig. 2. We
choose\ = 3.2 andu = 0.01 for this figure aswell asfor other
imagesusedin theexperiments.

4. RESULTS AND COMPARISONS

Commontechniquedfor contrastenhancemengenerallycan be
catgyorizedinto two classe$5]. In thefirstone,techniquesuchas
histogramequalizationmodify the brightnessof eachpixel based
on the statisticalinformation of animage. In the secondone, it

separateshe high and/orlow-frequeng componentf images,

manipulatingthemseparatelyandre-combinethem,for example,
asin theunsharpmaskingmethod.

The quantitatve measuremenaf the contrastmpraovementis
often very difficult. Moreover, thereis no universalstandardor
measuringboth objective and subjectve performanceof the en-
hancementThecontrasis oftendefinedasthedifferencean mean
luminancesbetweenan object and its surroundings. There are
mary definitionsof contrastmeasuresWe adoptthe measurepro-
posedin [12] andthe local contrastdefinedby the differenceof
meanvaluesin two rectangulamwindows centeredon a pixel. In
detail,thelocal contrasic(z, y) is definedasfollows:

) = T (10)
wherep anda are the averagevaluesof pixels within a3 x 3
regionanda7 x 7 surroundingneighborhoodespectiely . The
performancemeasureof contrastimprovementratio, i.e., CIR, is
definedastheratio of theenhancedmageandun-enhancednage
within theregion of interestR (ROI)

E |C(.’L‘,y)—5(.’b,y)|2
(z,y)ER

(z,y) = 5

(z,y)ER

@y )

wherec andé arethelocal contraswaluesof originalandenhanced
images respectiely. In our experiment,we assumehat R is the
wholeimage.

For the objective evaluationof the contrastimprovement,the
proposednethodwascomparedvith threecorventionalenhance-
mentmethodssuchasthe contraststretching(CS), adaptve con-
trastenhancemer(fACE), contrastgaintransform(CGT) [13] and
the methodcurrently usedin Macktype,a commercialsoftware
product[14]. We have tested10 chromosomespreadmagesand
list the correspondindCIRs in Table2. Our methodconsistently
givesthe highestCIRsamongthefive methodsevaluated.

Image CS | ACE | CGT | Macktype | Wavelets
casel | .0868| .3487 | .1874| 0.2016 | 3.6877
case2 | .0270| .0435| .1440| 0.6257 | 4.0704
case3 | .0246 | .5017 | .3183| 0.7224 | 4.4152
cased | .0230| .0523 | .3163| 0.7339 | 3.4430
cases | .0233| .0753| .3221| 0.6828 | 4.1676
case6 | .0276| .0369 | .2849| 0.5132 | 2.7958
case/ | .0275| .0755| .2389| 0.4831 | 2.9241
case8 | .0244| .0470| .3092| 0.7012 | 5.0110
case9 | .0311| .0371| .2345| 0.4895 | 2.1790
casel0 | .0151 | .1257| .4973| 1.7959 | 7.1507
Average| .0310| .1344| .2853| 0.6949 | 3.9845

Table 2. A comparisorof the CIRsfor differentmethods.
5. DISCUSSIONSAND CONCLUSIONS

In this paper we apply a classof differentialwavelets[3] to im-
ageenhancemeniTheproposedvaveletshave severaladwantages.
First, they arederived from splinesand canbe implementecdeffi-
ciently. Secondly this classof representationare shift-invariant
andthusfacilitate the measuremenf correlationsof imagefea-
turesin thesedomains.In addition,theserepresentationsharac-
terizethe high-frequeng edgeinformationalonghorizontal,ver
tical anddiagonaldirections.We cantake into accountthe direc-
tional informationin designinghe enhancemerslgorithms.



Our enhancemeralgorithmactually makes useof the infor-
mationin the differentialwaveletdomainsfor extrapolation.Due
to suchwavelet representationshigh frequeng featuressuchas
edgesarewell characterizedTherefore we candesignour algo-
rithm to enhancethe images. Preliminaryresultsshov that our
methodsignificantlyoutperformstherconventionaltechniquesn
termsof the contrasimprovementratio. We planto carry out hu-
manassessmertf the enhancemergerformancef theseimages
by cliniciansin the nearfuture.

Fig. 2. An example of chromosomédmage enhancement.The
original chromosomepreadmageis onthetop andtheenhanced
resultis on the bottom.
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