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ABSTRACT

When automatic speech recognition (ASR) is applied to
hands-free or other adverse acoustic environments, endpoint
detection and energy normalization can be crucial to the en-
tiresystem. Inlow signal-to-noise (SNR) situations, conven-
tional approaches of endpointing and energy normalization
often fail and ASR performances usually degrade dramati-
cally. The goal of this paper isto find a fast, accurate, and
robust endpointing algorithm for real-time ASR. We pro-
pose a novel approach of using a specid filter plus a 3-state
decision logic for endpoint detection. The filter has been
designed under severa criteria to ensure the accuracy and
robustness of detection. The detected endpoints are then
applied to energy normalization simultaneously. Evaluation
resultsshow that the proposed algorithm significantly reduce
the string error rates on 7 out of 12 tested databases. The
reduction rates even exceeded 50% on two of them. The
algorithm only uses one-dimensional energy with 24-frame
lookahead; therefore, it has alow complexity and issuitable
for real-time ASR.

1. INTRODUCTION

Speech processing is based on the premise that the signal in
an utterance consists of speech, silence or other background
noise. The detection of the presence of speech embedded
in various types of non-speech events and background noise
is called endpoint detection or speech detection. Real-time
endpoint detection is a continuous time process requiring a
short time delay.

As is well known, endpoint detection is crucia to au-
tomatic speech recognition (ASR) because it can affect the
performance of an ASR system in terms of accuracy and
speed for several reasons. First, cepstral mean subtraction
(CMS), asapopular algorithm for robust speaker and speech
recognition, needs accurate endpoints to compute the mean
of voice frames precisely in order to improve recognition
accuracy. Second, if silence frames can be removed prior

to recognition, the accumulated utterance likelihood scores
will focus more on the speech portion of an utteranceinstead
of scoring both noise and speech. Therefore it has the po-
tential to increase the recognition accuracy. Third, it ishard
to model noise and silence accurately. This effect can be
limited by removing background noise frames in advance.
Last, one can significantly reduce the computation time by
removing non-speech frames.

A problem related to endpoint detection is real-time en-
ergy feature normalization. In ASR, we usually normalize
the energy level such that the largest energy level in agiven
utterance is close to or dightly below zero. Thisis not a
problem in batch-mode processing, but it can be a crucial
problem in real-time mode since it is difficult to estimate
the maximal energy within a limited data buffer while the
acoustic environment is changing. It is especialy hard in
adverse acoustic environments.

Endpoint detection has been studied for several decades
and many papers have been published about various appli-
cations(e.g. [1, 2, 3, 4]). A lookahead approach on energy
normalization can be found in [5]. In recent years, ASR is
applied to hands-free, wireless, | P phone, and other adverse
acoustic environments. The source speech is often with
very low signal-to-noise ratio (SNR). In these cases, the
ASR performance often degrades dramatically due to un-
reliable endpoint detection and energy normalization. This
paper is to propose a combined approach for both endpoint
detection and energy normalizationto benefit real-time ASR
in adverse environments.

2. THE PROPOSED ALGORITHM

To ensure the low complexity requirements, we choose the
one-dimensional (1-D) short-term energy in dB from cep-
stral feature as the feature for endpoint detection. We first
design a filter to detect all possible endpoints on the en-
ergy feature, then develop a 3-state decision logic for final,
reliable decisions.



2.1. Optimal Filter for Endpoint Detection

We need to design afilter with the following criteria: (i) in-
variant outputs to various background energy levels; (ii) ca-
pability to detect both beginning and ending points; (iii) lim-
ited length or short lookahead; (iv) maximum output SNR at
endpoints; (v) accurate location of detected endpoints; and
finally, (vi) maximum suppression of false detection.

Fortunately, the last three criteria are very similar to
the criteria in optimal edge detection in image processing.
The foundation of the theory of the optimal edge detector
was first set by Canny [6]. He derived an optimal step-
edge detector. Petrou and Kittler then extended the work
to ramp-edge detection [7]. Since the edges corresponding
to endpoints in the energy feature are closer to the ramp
edge than the ideal step edge, Li and Tsai applied Petrou
and Kittler’'sfilter to batched-mode endpoint detection for
speaker verification [1]. We now need to extend the batch-
mode algorithm to real-time mode and add real-time energy
normalization in the task.

Assume that the beginning edge in the energy is aramp
edge that can be modeled by the function
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where s is some positive constant. The problemisto find a
filter profile f(x) which maximizes a mathematic represen-
tation of the Criteria(iv), (v), and (vi) [7][1]. By optimizing
the criteriawith the boundary conditions as discussed in [7]
and in above Criterion (i), asolution for thefilter profileis:

fz) = e [Kisin(Az) + K, cos(Az)]
+ 747 [K3sin(Az) + Kqco8(Az)]
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where A and K; are filter parameters. Since f(z) is only
half of the filter from —w to O, the actual function of the
filter for the edge detection is

h(t) ={-f(rw<i<0), f(-1<i<—w)}. (3

For afilter with s = 1 and w = 7, its parametersare A =
0.41, and (K1, ... Kg) = (1.583, 1.468, —0.078, —0.036,

—0.872,—-0.56) [7]. In our case, we need to chose a sin-
glefilter to obtain reliable responses to both beginning and
ending points. After investigating the beginning and end-
ing edges of afew utterances, we chose w = 13. We then
rescaled the original filter by s = 7/13and A = 0.41s =
0.2208. All other parameters are the same. The profile of
the designed filter isshown in Fig. 1, with asimple normal-
ization, h/13. The profile indicates that the filter response
will be positive to a beginning edge, negative to an ending
edge, and closeto zero to silence. The responseis basically
invariant to background noise at different energy levels. For

o1 ‘ il ‘ ‘ ‘
-15 -10 -5 0 5 10 15

Figure 1: The profile of designed optimal filter.

real-time detection, let H (i) = h(i — 13), and the filter ac-
tually has a 24-frame lookahead. So far, we have met all 6
criteria.

2.2. Decision Logic
Thefilter operates as a moving-average filter:

Ww=25

F(ty= Y H@E(t+i-1), (4)

i=1

where E(.) isthe energy feature, and ¢ is the current frame
number. The output F'(t) is then evaluated in a 3-state
transition diagram for final endpoint decisions.

AsshowninFig. 2, thediagram hasthreestates: silence,
in-speech and leaving-speech states, respectively. Either the
Silence or the In-Speech state can be a starting state, and
any state can be a final state. In this paper, we assume the
Silencestateisthestarting state. Theinputis 7'(¢) € R, and
the output is the detected frame numbers of beginning and
ending points. The transition conditions are labeled on the
edgebetween states, and the actionsarelisted in parentheses.
“Count" is aframe counter, 7y, and 7y are two thresholds,
and “Gap" is an integer indicating the required number of
frames from a detected endpoint to the actual end of speech.

We use Fig. 3 as an example to illustrate the state tran-
sition. Theraw energy isin Fig. 3 (A) (bottom line) and the
filter output isin Fig. 3 (B) (solid line). The diagram stays
in the Silence state until F'(¢) reachespoint A in Fig. 3 (B),
where F'(t) > Ty meansthat abeginning point is detected.
The actions are to output a beginning point (corresponding
totheleft vertical solidlinein Fig. 3 (C)) and to moveto the
In-Speech state. It staysin the In-Speech sate until reaching
point B in Fig. 3 (B), where F'(t) < Tr. The diagram then
movesto the L eaving-Speech state and sets Count = 0. After
it stays in the Leaving-speech state for Gap = 30 frames, an
actual endpoint is detected and the diagram moves back to
the Silence state at point C (corresponding to the left vertical
dashed linein Fig. 3 (C)).

2.3. Energy Normalization

Suppose the maximal energy value in an utterance is Fmax.
Energy normalization is to normalize the utterance energy
E(t), such that the largest value of energy is close to zero
by performing E'(t) = E(t) — Ema. In rea-time mode,
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Figure2: The statetransition diagram for endpoint decision.

we have to estimate the maximal energy Emax Sequentialy
while the data collection is going on. Here, the estimated
maximum energy becomes a variable, i.e. Emax(t). Nev-
ertheless, we can use the detected endpoints to perform a
better estimation.

We first initialize the maximal energy to be Fyp, and
use it for normalization until we detect the first beginning
point A, i.e. Emax(t) = Eo,Vt < A. If the average energy
Et)=E{E®),A<t< A4+ W} > E, wheeFE, isa
pre-selected threshol d, we then estimate the maximal energy
as Emex(t) = max{E(t); A <t < A+ W}, where W = 25
is thg length of the filter. From now on, we update Emax(t)
as, Emax(t) = max{E(t + W — 1), Emax(t — 1); ¥t > A},
recursively.

For the example in Fig. 3, the energy features of two
utterances with 20 dB SNR (bottom) and 5 dB SNR (top)
are plotted in Fig. 3 (A). The 5 dB one is generated by
artificially adding car noise to the 20 dB one. The filter
outputs are shown in Fig. 3 (B) for 20 dB (solid line) and 5
dB (dashed line) SNRs, respectively. Thedetected endpoints
and normalized energy for 20 and 5 dB SNRs are plotted in
Fig. 3(C)andFig. 3(D), respectively. Wenotethat thefilter
outputs to 20 and 15 dB cases are almost invariant around
T, and Ty, although their background energy levels have a
15 dB difference. This ensures the robustness in detection.
We also note that the normalized energy profiles are almost
the same as the original one, although the normalization is
donein areal-time mode.

3. LARGE DATABASE EVALUATION

Theproposed algorithm wasfurther evaluated on 12 databases
collected from the tel ephone networkswith 8 KHz sampling
rates in various acoustic environments. LPC feature and
short-term energy were used. The HMMsare consisted of 1
silence model, 41 mono-phone models, and 275 head-body-
tail unitsfor digit recognition. It has atotal of 79 phoneme
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Figure 3: (A) Energy features of “4-327-631-2214" from
original utterance (bottom, 20 dB SNR) and after adding car
noise (top, 5 dB SNR). (B) Filter outputs to 5 dB (dashed
line) and 20 dB (solid line) SNR cases. (C) Detected end-
points and normalized energy for the 20 dB SNR case, and
(D) for the 5 dB SNR case.

symbols, 33 of which arefor digit units. Twelve databases,
DB1 - DB12, were used for the evaluation, where DB6
— DB11 contain digit strings, and DB12 contains al phabet
strings. Nodigit or al phabet string length constraint hasbeen
applied to the experiments. All the other databases contain
digits, aphabet, and word strings. Finite-state grammars
were used to specify the valid forms of recognized strings.
In the evaluation, both endpoint detection and energy nor-
malization were performed in real-time mode and only the
detected voice portions of an utterance were sent to the
recognition back-end.

In the baseline system, endpoints are detected by a 6-
state diagram with multiple absol ute thresholds on absolute
energy values. The energy normalization in the baseline
system is done separately by estimating the maximal and
minimal energy values, then comparing their differenceto a
fixed threshold for decision. Sincethe energy valueschange
with acoustic environments, the baseline approach causes
an unreliable endpoint detection and energy normalization
inlow SNR cases.

In the proposed system, we set the parameters as Fy =
80.0, E,, = 60.0, Ty = 3.6, 71, = —3.0, and Gap = 30.
These parameters were selected by investigating the energy
and filter output of a few utterances. The parameters were
unchanged throughout the evaluation on all 12 databases
to show the robustness of the algorithm, although the pa-
rameters can be adjusted according to signal conditions in
different applications. The evaluation results are listed in
Tab. 1. It showsthat the proposed algorithm provided sig-
nificant string error reduction in 7 out of 12 databases. The



Table 1: DATABASE EVALUATION RESULTS (%)

Database IDs Word Error Rate String
(Number of strings, Base- Pro- Error

Number of words) line posed | Reduction
DB1 (232, 1393) 13.7 113 10.8
DB2 (671, 1341) 14.6 6.9 50.9
DB3 (1957,1957) 45 4.8 -6.7
DB4 (272, 1379) 10.0 10.1 85
DBS5 (259, 2632) 15.8 16.0 2.1
DB6 (576, 1738) 28 11 51.5
DB?7 (583, 1743) 17 15 12.2
DB8 (664, 2087) 0.9 0.6 27.6
DB9 (619, 8194) 1.0 15 117
DB10 (651, 8452) 5.7 6.8 -6.2
DB11 (707, 9426) 16 19 -4.3
DB12 (661, 3681) 40.7 385 0.0

string error reductions even exceeded 50% on two of them.

To analyze the improvement, the original energy feature
of an utterance, “1 24 0 582", in DB6 is plotted in Fig.
4 (A). The detected endpoints and normalized energy using
conventional approach are shown in Fig. 4 (B) while the
results of the proposed agorithm are shown in Fig. 4 (C).
The filter output is plotted in Fig. 4 (D). From Fig. 4 (B),
we can observe that the normalized maximal energy of the
conventional approach was about 10 dB below zero, which
gave a wrong recognition result: “1Z2 4 0O 5 8". On the
other hand, the proposed algorithm normalized the maxi-
mal energy close to zero, and the utterance was recognized
correctly as“17240582".

The above evaluation is based on telephone data which
haveover 15dB SNR. In aseparate eval uation using adataset
with 10 and 5 dB SNRs, the baseline system failed to work
duetoitsreal-time energy normalizationalgorithmwhilethe
proposed real-time al gorithm still gave the same recognition
accuracy as using the batch-mode energy normalization.

4. CONCLUSIONS

We have proposed a real-time algorithm for combined end-
point detection and energy normalization with a 24-frame
lookahead. All possibleendpointsarefirst detected by anop-
timal filter designed to provide accurate and robust response
to endpoints. The output from the filter isthen evaluated by
a3-statetransition diagramfor final endpoint decisions. The
energy normalization utilizesthe endpoint detection results.
Since the entire algorithm only uses 1-D energy feature, it
has very low complexity and is fast in computation. Fur-
thermore, since the decision is made on the filter output,
which is amost invariant to background noise levels, the
endpoint detection is reliable and robust, even in very low
SNR situations. The evaluation on 12 databases showed that
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Figure 4: (A) Energy feature of the 523th utterancein DB6:
“1Z240582". (B) Endpoints and normalized energy
from the baseline system. It wasrecognizedas“1Z2 405
8". (C) Endpointsand normalized energy from the proposed
system. It was recognized correctly as“1Z240582". (D)
Thefilter output.

7 of them have significant string error rate reduction and 2
of them exceed 50% string error reduction.
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