EFFICIENT IMPLEMENTATION OF A SET OF LIFTING BASED WAVELET
FILTERS

Kishore Andra’, Chaitali Chakrabarti *,

Tinku Acharya’ ™

" Arizona State University, Tempe, Arizona, 85287, USA.
" Intel Corporation, Chandler, Arizona, USA.

ABSTRACT

Lifting based wavelet transform implementation not only helps
in reducing the number of computations but also achieves lossy
to lossless performance with finite precision. In this paper we
first do a precision analysis for the set of seven filters proposed
by the JPEG2000 verification model. We determine the
precision required to implement the filters using fixed point 2's
complement arithmetic for lossless as well as lossy coding. Next
we propose a unified architecture for implementing this set of
filters for both the forward and the inverse transform.

1. INTRODUCTION

Wavelet based image codecs are being used extensively because
of their capabilities to support transmission by progressive
quality and resolution, region of interest coding, ease of
compressed image manipulation etc. The conventiona
convolution based implementation of the Discrete Wavelet
Transform (DWT) has high computational and memory
requirements. Recently, the lifting based implementation of
DWT [1,2] has been proposed to overcome these drawbacks. In
addition, it supports in place computation, symmetric inverse
transform and even lossless performance with finite precision.

The main feature of the lifting based DWT scheme is to
break up the high pass and low pass filters into a sequence of
upper and lower triangular matrices, and thus convert the filter
implementation into banded matrix multiplications. Such a
scheme makes it possible to achieve an integer-to-integer
transform [4,5] where, if the input data is in integer format then
data can be maintained in the same format through out the
transform by introducing a rounding function. Due to this
property, the transform is reversible (i.e. lossless) and is called
the Integer Wavelet Transform (IWT). It should be noted that
filter coefficients need not be integers for IWT.

In this paper, we consider the lifting based implementation
of the filters proposed in the JPEG 2000 Verification Model [3]:
(5,3), C(13,7), S(13,7), (2,6), (2,20), (6,10) and (9,7). We
determine the precision required for signals and the filter
coefficients to implement the above filters using the Single
Sample Overlap Wavelet Transform (SSOWT) in fixed point,
2's complement arithmetic. We find that a 14 bit precision is
required for a satisfactory lossy performance and 16 bit precision
for lossless performance. Next, we propose an architecture for
these filters that produces an output every cycle for the
JPEG2000 default filters [(5,3) for lossless mode and (9,7) for
lossy mode]. The architecture is capable of carrying out
DWT/IDWT in row-column fashion. It consists of two row
processors, two column processors and two memory modul es.

The rest of the paper is organized as follows. In section 2 we
give a brief introduction to lifting based DWT. In section 3 we
determine the precision that is required for fixed point
implementation. In section 4 we briefly describe the proposed
architecture.

2. LIFTING SCHEME - PRELIMINARIES

The basic principle of the lifting scheme [1,2] is to factorize the
polyphase matrix of a wavelet filter into a sequence of
aternating upper and lower triangular matrices and a diagonal
matrix with constants. The factorization is obtained by using an
extension of the Euclidean algorithm. The resulting formulation
can be implemented by means of banded matrix multiplications.
Let ﬁ(z) and g(z) be the low and high pass analysis filters and
h(z) and g(2) be the low and high pass synthesis filters. The
filters can be divided into even and odd parts as

h(z)-h(z)+zlh(z) h@@) = e(z)+z 1h(z)
9= ge(22)+z go(z) 92 -ge(z)+z go(z)
The polyphase matrices are then defined as -
é he(2) ho(Z)u éhed geU
sge(z) go(Z)H S ho(2 go(Z)H

It has been shown in [2] that if (ﬁ, g) isacomplementary filter

P2 = P@) =

pair, then p(z) can always be factored into lifting steps as shown
below : (K; and K, are constants)

ek, Oumé s@ué1 o
80 K2u|—1g-) 1 H&i@ 1§

Pl(Z) = or

0 61 0gél §Qu

- 0UBe
D=0 kISED W6 1 H

= ’@ I

S || °@

T S

Fig.1Lifting Schemebased on 'F?l(z) factorization

Scheme 1 corresponds to the p,(z) factorization, and is shown

in Fig.1. Here the low-pass samples (even terms) are multiplied
by the time domain equivalent of t (2), and are added to the high

pass samples (odd terms) in the first step. In the second step, the
updated high pass samples are multiplied by the time domain

equivalent of 3(z) and are added to the low-pass samples. In
Scheme 2 which corresponds to the p,,(; factorization, the low-
pass terms are calculated in the first step (s(z) is used) and the

high pass terms are calculated in the second step (f(z) is used).

For IWT, in each lifting step, the result of the filtering operation
has to be rounded right before addition or subtraction.

In both the schemes, if a diagonal matrix is present in the
factorization, the low pass coefficients are multiplied with K,
and the high pass coefficients are multiplied with K,. In such
cases, the IWT cannot be achieved just by rounding. Then IWT
can be achieved by splitting the diagonal matrix into extralifting
steps [4] and then applying rounding. We do not explore this
option in this paper.

The wavelet filters are classified into (i) Case 1 filters which
consists of (5,3), C(13,7), S(13,7) and can be factorized into two
matrices; (2,6) and (2,10) which can be factorized into three
matrices (ii) Case 2 filters which consists of (9,7) and (6,10) and
can be factorized into four matrices and a diagonal matrix.

3. PRECISION ANALYSIS

We have carried out a comparison study between the floating
point and fixed point implementations to determine the number
of bits required in a fixed point implementation for satisfactory
lossy performance and also for lossless performance. We have
used three gray scale images, Baboon, Barbara and Fish, each of

3.3 Rounding

We have considered a method for rounding wherein, both +ve
and -ve numbers are rounded towards +co i.e. the numbers
would be rounded to next higher integer (for ex. 965.50 ® 966
and -965.50 ® -965). To achieve this, a‘1’ should be added for
both, +ve and —ve numbers whenever the MSB of the bits being
truncatedisa‘'l’. If MSB = ‘0’ the number can be just truncated.
It should be noted that instead of applying rounding on the
result of the filter operation (which results in bigger
accumulators) as in [4], it is applied to the individua terms of
the filter result.

Example: Consider the general lifting structure. Let a= 0.2345,
b = 1.4567, x1 = 24, x2 = 43, x3 = 156, x4 = 56 and x5 = 10.
The floating point implementation result isy = 334.5319. Let us
assume that coefficients are shifted left by 8 bits (and rounded to
nearest integer) and number of ABs = 2. Then a= 60, b = 373,
x1 = 96, x2 = 172, x3 = 624, x4 = 224 and x5 = 40. The
products are 60(96+172) = 16080 and 373(624+224) = 316304.
Shifting the product right by 8 bits and rounding will yield 63
and 1236. Soy = 63 + 1236 + 40 = 1339. This should be
interpreted as round[(1337>>2)+two bits|=round[334.75]=335.

3.4 Results
All through this work we define SNR as

a |Sgnal| 0

size 513x513 and carried out the study for 5 levels of R(GB) =20 | x
decomposition. We have verified the results from the study with NR(dB) =20 og10§

Sgnal - fixed point implementation| gy

a

15 gray scale images from the USC-SIPI image database.
3.1 Lifting Coefficients

The magnitude of the lifting coefficients for the filters we have
considered range from 0.046875 to 1.58613. In order to convert
al the filter coefficients to integers, the coefficients are
multiplied by 256 (i.e. shifted left by 8 hits). The range of
coefficients is now 12 to 406. This implies that we require 10
bits (2's complement representation) for the lifting coefficients.
At the end of each multiplication, the product is shifted right by
8 to get the required result. Thisis implemented in hardware by
rounding the 8 least significant bits.

3.2 Signal values

The signal values have to be shifted left too in order to increase
the precision; the extent of the shift is determined using image
quality analysis. In this work we have experimented with a shift
ranging from 0 to 5 bits (we call them the Additiona Bits, ABS).
It should be noted that, filters (5,3) and (2,6) can be implemented
with just shifts as their lifting coefficients are multiples of 2. But
we have carried out the analysis by multiplications for
comparison purposes. If the filters are implemented with shifts,
additional bits are not required.

In conventional fixed point implementation, instead of
shifting the input samples, the coefficients are shifted by
required number of extra bits. Consider the general structure of
alifting based filter implementation with SSOWT -

y=a(xl+x2)+ b (x3+ x4) + x5
where a and b are the filter coefficients, x's are the signal
samples and y is the transform value. If the filter coefficients
alone are shifted, an extra shifting operation has to be performed
on the x5 term to maintain the data alignment.

For forward transform, Sgnal corresponds to the val ues obtained
by the floating point implementation. For forward transform
followed by the inverse transform, Sgnal corresponds to the
origina image data.

The SNR values for the Baboon image after 5 levels of
forward transform with the product terms formed by truncating
and rounding the 8 LSB’s are given in Table 1. We see that the
SNR for the forward transform is not degraded by truncation.

The SNR vaues for the Baboon image after 5 levels of
forward and inverse transform with truncation and rounding are
givenin Table 2. From Table 2, we see that except for (5,3) and
(2,6) filters and to some extent (2,10) filter, truncation severely
degrades the performance of the filters. But if (5,3) and (2,6)
filters have to be implemented with multiplications, then
truncation will be sufficient to achieve the lossless performance.

From Table 1 it is clear that more the number of ABs better
the performance of the fixed point implementation. However,
having more than 2 ABs has little effect on (6,10) and (9,7)
filters. From Table 2 we see that with 2 ABs the SNR for dl the
filtersis > 30 dB with rounding. So we can conclude from Table
1 and Table 2, that 2 ABs are enough for satisfactory lossy
performance. Further from Table 2, we see that with 5 ABs all
the filters except for (6,10) and (9,7) filters are lossless with
rounding. So we conclude that 2 ABs are needed for a
satisfactory lossy performance and 5 ABs for lossless
performance. A similar trend was observed for the other two
images.

Once the number of ABs are fixed, we need to determine the
width of the data path. This can be done by observing the
maximum (minimum) values for the transformed values at the

ABs (5.3 C(13,7) S$(13,7)

6) (2,10) (6,10 9,7

Trunc. | Round | Trunc. | Round | Trunc. | Round | Trunc.

Round | Trunc. | Round| Trunc. | Round | Trunc. | Round

28458 | 29.788 | 19.801 | 27.870 | 21.678 | 28.120 | 28.478

30.654 | 22.725 | 29.349 | 18.154 | 24.858 | 18.225 | 24.861

36.190 | 37.536 | 25.866 | 33.758 | 27.800 | 34.116 | 34.991

37.553 | 28.759 | 36.011 | 23.989 | 30.364 | 24.219 | 28.458

44.380 | 45.687 | 32.048 | 39.590 | 34.046 | 39.962 | 41.945

43,677 | 34.861 | 42.324 | 29.502 | 35.068 | 28.759 | 30.376

52.357 | 52.974 | 38.449 | 45264 | 40.520 | 45.843 | 50.631

52.368 | 41.060 | 48.391 | 34.257 | 38.140 | 30.864 | 31.103

63.513 | 64.674 | 45.379 | 53.146 | 47.603 | 53.616 | 61.063

63.508 | 47.425 | 54.234 | 37.525 | 39.560 | 31.478 | 31.358

QW N|F|O

69.761 | 70.924 | 51.587 | 59.133 | 53.751 | 59.630 | 70.097

71.087 | 54.124 | 59.531 | 39.193 [40.042 | 31.574 | 31430

Table 1 SNR values after forward tr

ansform for the Baboon image

ABs (5.3) C(137) S(13.7)

(2,6) (2,10) (6,10) (9,7

Trunc. | Round| Trunc. | Round | Trunc. | Round| Trunc.

Round | Trunc. | Round| Trunc. | Round | Trunc. | Round

12,985 | 18.949 | 3.990 | 27.399 | 1.783 | 27.090 | 18.800

18977 | 18157 | 18983 | 5.069 | 28.859 | -6.602 | 24.561

19.614 | 24.405 | 10.159 | 31.042 | 7.944 | 30.857 | 26.338

24525 | 25114 | 24.565 | 11.322 | 32.727 | -0.571 | 30.527

25811 | 30.208 | 16.176 | 37.478 | 13.928 | 36.480 | 32.680

31.245 | 31.627 | 31.325 | 17.457 | 36.164 | 5.449 | 36.374

32.797 | 34507 | 22.244 | 48.720 | 20.016 | 48.213 | 39.825

36.821 | 38.793 | 36.803 | 23.806 | 37.876 | 11.495 | 43.620

36.964 | 77.467 | 28.013 [113.224| 26.322 [110.302| 70.646

73.633 | 48550 | 70.892 | 30.333 | 38.883 | 17.490 | 56.711

QB IWIN|FL|O

inf inf 33.094 inf 32.896 inf

inf 99.819 | inf 36.070 | 39.312 | 23.479 | 77.581

Table 2 SNR values after forward and inver setransform for the Baboon image

end of each level of decomposition and taking the largest
(smallest) among them. The maximum and minimum values
with ABs=2and 5 aregivenin Table 3 and Table 4.

From Table 3 and Table 4 we see that the (9,7) filter
generates both maximum and minimum values in case of
Baboon and Barbara images, while the (6,10) filter generates
maximum and minimum values for the Fish image. Based on
these results, we need 13 hits to represent the transform values
with 2 ABs. However in some stray cases, the internal precision
is of 14 bits magnitude. So the width of the data path required
for lossy transform is 14 bits. Similarly we can deduce, from
Table 4, that a 16 bit wide data path is required for lossless
performance. All the above results have been verified with USC-
SIPl database images - 5.2.08-10, 7.1.01-04, 7.1.06-10, boat,
elaine, ruler and gray21 from the Miscellaneous directory.

Filter Baboon Barbara Fish
M ax Min M ax Min M ax Min
(5,3) 1080 -951 746 -662 609 -654
C(13,7) 781 =772 742 -629 519 -512
S(13,7) 785 -744 723 -657 486 -514
(2,6) 904 -1062 783 -729 571 -645
(2,10) 1153 -1377 930 -1087 706 -737

(610) | 1107 | -760 | 1273 | -903 | 1025 | -1403

(9,7) 3116 -2421 | 2390 -2442 864 -1127

Table 3 Maximum and minimum valuesfor ABs=2

Filter Baboon Barbara Fish

Max Min Max Min Max Min

(5,3) 8642 -7611 | 5950 -5296 | 4876 | -5253

C(13,7) | 6250 -6183 | 5930 -5036 | 4147 | -4096

S(13,7) | 6287 -5951 5778 -5261 | 3887 -4097

(2,6) 7216 -8487 6269 -5837 | 4556 -5171

(2,10) 9226 | -11008 | 7429 -8705 | 5664 -5891

(6,10) 8877 -6077 | 10192 | -7231 | 8175 | -11248

(9,7 24920 | -19370 | 19073 | -19524 | 6871 | -8991

Table 4 Maximum and minimum valuesfor ABs=5
4. PROPOSED ARCHITECTURE
The proposed architecture calculates DWT/IDWT in the

row-column fashion on a block of data of size NxN. It is an
extension of the DWT architecture proposed in [6]. The
architecture consists of a Row module (two Row Processors RP1
and RP2), a column module (two Column Processors CP1,CP2)
and two memory modules (MEM1, MEM2). To perform
DWT(IDWT), data has to be written into MEM1 along the
rows(columns). In the rest of the paper, we assume that data is
stored in transposed form for IDWT and discuss all the details in
terms of rows for both DWT and IDWT.

To perform the DWT, the architecture reads in the block of
data, carries out the transform, and outputs the LH, HL, HH data
a each level of decomposition. The LL datais used for the next
level of decomposition. To perform the IDWT, all the sub bands
from the lowest level are read in. At the end of the inverse
transform, the LL values of the next higher level are obtained.
The transform values of the three bands (LH,HL and HH) are
then read in and the IDWT is carried out on the new data set.

For the Case 1 filters (i.e. when lifting is implemented by
two /three factorization matrices), processors RP1 and RP2 read
the data from MEM1 perform the DWT/IDWT along the rows,
and write the data into MEM2. To reduce the latency and the
memory requirements, the column processors calculate the
column wise transforms along the rows. Processor CP1 reads the
data from MEM2, performs the column wise DWT/IDWT along
aternate rows, and writes the data into MEM2 and
MEM1/ExtMEM. Processor CP2 also reads the data from
MEM2 and writes to MEM Y/extermanl memory, and performs
the column wise DWT/IDWT aong the rows that CP1 did not
work on. Fig. 2 describes the data flow for the Case 1 filters.

For the Case 2 filters (i.e. when lifting is implemented by
four factorization matrices), there are two passes. In each of the
passes, RP1 and RP2 read in the data, execute the first two
matrix multiplications and write the result into MEM2. CP1 and
CP2 execute the next two matrix multiplications. In the first
pass, both CP1 and CP2 write the results into MEM1 in column
major fashion and in the second pass, CP2 writes the LL
subband data to MEM1, while other three subbands are written
to Ext.MEM.

4.1 Row and Column processor design

Each filter requires a different configuration of adders,

multipliers and shifters in the data path in order to generate an
output every cycle. We have considered a configuration that
generates an output every clock cycle for the default JPEG2000
filters (5,3) (lossless) and (9,7) (lossy) filters. The proposed
architecture consists of four processors, where each processor
consists of 2 adders, 1 multiplier and 1 shifter.

Ext.MEM

Row
Module

MEM2

Fig. 2 Data flow for Case 1filters

For lossy (lossless) coding, adders and shifters have to handle 14
(16) bits data, while multipliers have to multiply 14 (16) bit data
with a 10 bit coefficient.

4.2 Memory

The proposed architecture consists of two memory modules,
(MEM1 and MEM2). Data in MEM1 is written by Ext.MEM,
CP1 and CP2, and is read by RP1 and RP2. The datain MEM2
is written by RP1, RP2 and CP1, and read by CP1 and CP2.
Each module consists of 4 banks with a maximum of 4 ports
(read and write ports combined) per bank. The memory design
and management is significantly different from that in [6].

MEM1 module— It consists of 4 banks (MEM1,, MEM1,,
MEM1, and MEM1,). For the Case 1 filters, for the forward
transform, we need 2 banks (MEM1,, MEM 1,), while for the
inverse transform we need 3 banks (MEM 15, MEM1;, MEM 1,).
For the Case 2 filters, we need dl the 4 banks for both the
forward and inverse transforms. Each bank contains either odd
samples or even samples of arow or column. The memory banks
in MEM1 module read in the whole block in the beginning
during the forward transform, and read in the whole block at the
last level during the inverse transform. As a result al the four
memory banks are of size NxéN/20.

Filter MEM 2,4 MEM2,| MEM2, | MEM2;
(5,3) 1row 1row 1row 1row
C(13,7) 2rows 2rows | 1lrow 3rows
S(13,7) 2rows 2rows | 1lrow 3rows
(2,6) 1row 1row 1row 2 rows
(2,10 2rows 2rows | 1lrow 4rows
(6,10 2Ta+3Tm+5 (elements) - -
9,7) 2Ta+3Tm+3 (elements) - -

Table5 Size of MEM 2 module banks

MEM2 Module- It aso consists of 4 banks (MEM2,, MEM2;,
MEM2, and MEM 2;). We require all the 4 banks for the Case 1
filters and each bank contains complete row(s)/column(s) of
data. For the Case 2 filters, we require 2 banks (MEM2,
MEM2;).and each bank contains the odd or even samples. The
total memory required for the filtersin MEM2 banks is given in

Table 5 (Tais adder/shifter delay and Tm is multiplier delay, a
multiple of Ta).

4.3 Control

Control signals are needed primarily to maintain the steady flow
of datato and from the processors. Our design consists of local
controllers in each of the processors which communicate with
each other by with hand shaking signals. Each local controller
consists of three components — Counter, Memory signal
generation unit and Address generation unit.

4.4Timing

The total time required, for one level of decomposition of an
NxN block, for al the filtersis given in Table 6. Here, Taisthe
delay of the adder, Tsis the delay of the shifter, and Tm is the
delay of the multiplier. Timing is based on the vaues obtained
by hand scheduling.

Filter Timing
(5,3) [2aN20+2Ta+2Ts+N+3+NR2IN

(13,7) | 7N+6Ta+2Tm+4+EN/202N
(2,6) | 3@NRt+6TarTm+3+aN2N
(2,10) [BN+7TarTm+ 3+N/2@N
9,7 2(4Ta+6Tm+6+NaN/2()
(6,10) | 2(3Ta+6TmM+6+2NaN2()
Table6 Timerequired for a NxN block (onelevel)

4.5 Implementation

The architecture has been implemented in behavioral VHDL and
simulated using Mentor Graphics VHDL compiler and Model
Sim simulator running on Solaris on Ultra Sparc 10 machine.
The adder and shifter are assumed to have a one clock cycle
delay, where as the multiplier has a four cycle delay and is
pipelined to 4 levels. The VHDL simulation results match
exactly with C code simulations. The code is available at -
http://www.public.asu.edu/~kishorea/lifting.

REFERENCES

1. |. Daubechies and W. Sweldens, “ Factoring wavelet
transforms into lifting schemes’, The J. of Fourier Analysis
and Applications, Vol. 4, 247-269, 1998.

2. W. Sweldens, “The lifting scheme: A new philosophy in
biorthogonal wavelet constructions’, Proceedings of SPIE,
2569, 68-79, 1995.

3. JPEG2000 Verification Model 6.0.

4. A.R. Calderbank, |I. Daubechies, W. Sweldens and B-L.
Yeo, “ Wavelet transforms that map integers to integers’,
Applied and Computational Harmonic Analysis, Val. 5,
332-369, July, 1998.

5. M. D. Adams and F. Kossentini, “Reversible Integer-to-
Integer Wavelet Transforms for Image Compression:
Performance Evaluation and Anaysis”, |IEEE Trans. on
Image Processing, vol. 9, 1010-1024, Jun. 2000.

6. K. Andra, C. Chakrabarti and T. Acharya, “A VLS
architecture for lifting based wavelet transform”, IEEE
workshop on Signal Processing Systems (SiPS 2000), 70-
79, Oct. 2000.

