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ABSTRACT

Lifting based wavelet transform implementation not only helps
in reducing the number of computations but also achieves lossy
to lossless performance with finite precision. In this paper we
first do a precision analysis for the set of seven filters proposed
by the JPEG2000 verification model. We determine the
precision required to implement the filters using fixed point 2’s
complement arithmetic for lossless as well as lossy coding. Next
we propose a unified architecture for implementing this set of
filters for both the forward and the inverse transform.

1. INTRODUCTION

Wavelet based image codecs are being used extensively because
of their capabilities to support transmission by progressive
quality and resolution, region of interest coding, ease of
compressed image manipulation etc. The conventional
convolution based implementation of the Discrete Wavelet
Transform (DWT) has high computational and memory
requirements. Recently, the lifting based implementation of
DWT [1,2] has been proposed to overcome these drawbacks. In
addition, it supports in place computation, symmetric inverse
transform and even lossless performance with finite precision.

The main feature of the lifting based DWT scheme is to
break up the high pass and low pass filters into a sequence of
upper and lower triangular matrices, and thus convert the filter
implementation into banded matrix multiplications. Such a
scheme makes it possible to achieve an integer-to-integer
transform [4,5] where, if the input data is in integer format then
data can be maintained in the same format through out the
transform by introducing a rounding function. Due to this
property, the transform is reversible (i.e. lossless) and is called
the Integer Wavelet Transform (IWT). It should be noted that
filter coefficients need not be integers for IWT.

In this paper, we consider the lifting based implementation
of the filters proposed in the JPEG 2000 Verification Model [3]:
(5,3), C(13,7), S(13,7), (2,6), (2,10), (6,10) and (9,7). We
determine the precision required for signals and the filter
coefficients to implement the above filters using the Single
Sample Overlap Wavelet Transform (SSOWT) in fixed point,
2’s complement arithmetic. We find that a 14 bit precision is
required for a satisfactory lossy performance and 16 bit precision
for lossless performance. Next, we propose an architecture for
these filters that produces an output every cycle for the
JPEG2000 default filters [(5,3) for lossless mode and (9,7) for
lossy mode]. The architecture is capable of carrying out
DWT/IDWT in row-column fashion. It consists of two row
processors, two column processors and two memory modules.

The rest of the paper is organized as follows. In section 2 we
give a brief introduction to lifting based DWT. In section 3 we
determine the precision that is required for fixed point
implementation. In section 4 we briefly describe the proposed
architecture.

2. LIFTING SCHEME - PRELIMINARIES

The basic principle of the lifting scheme [1,2] is to factorize the
polyphase matrix of a wavelet filter into a sequence of
alternating upper and lower triangular matrices and a diagonal
matrix with constants. The factorization is obtained by using an
extension of the Euclidean algorithm.  The resulting formulation
can be implemented by means of banded matrix multiplications.
Let (z)h

~  and (z)g~  be the low and high pass analysis filters and
h(z) and g(z) be the low and high pass synthesis filters.  The
filters can be divided into even and odd parts as
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The polyphase matrices are then defined as -

It has been shown in [2] that if )~,
~

( gh  is a complementary filter

pair, then (z)P
~ can always be factored into lifting steps as shown

below : (K1 and K2 are constants)

Scheme 1 corresponds to the (z)P1
~ factorization, and is shown

in Fig.1. Here the low-pass samples (even terms) are multiplied
by the time domain equivalent of (z)t~ , and are added to the high
pass samples (odd terms) in the first step.  In the second step, the
updated high pass samples are multiplied by the time domain
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equivalent of (z)s~  and are added to the low-pass samples. In

Scheme 2 which corresponds to the (z)P2
~ factorization, the low-

pass terms are calculated in the first step ( (z)s~  is used) and the

high pass terms are calculated in the second step ( (z)t~  is used).
For IWT, in each lifting step, the result of the filtering operation
has to be rounded right before addition or subtraction.

In both the schemes, if a diagonal matrix is present in the
factorization, the low pass coefficients are multiplied with K1
and the high pass coefficients are multiplied with K2. In such
cases, the IWT cannot be achieved just by rounding. Then IWT
can be achieved by splitting the diagonal matrix into extra lifting
steps [4] and then applying rounding. We do not explore this
option in this paper.

The wavelet filters are classified into (i) Case 1 filters which
consists of (5,3), C(13,7), S(13,7) and can be factorized into two
matrices; (2,6) and (2,10) which can be factorized into three
matrices (ii) Case 2 filters which consists of (9,7) and (6,10) and
can be factorized into four matrices and a diagonal matrix.

3. PRECISION ANALYSIS

We have carried out a comparison study between the floating
point and fixed point implementations to determine the number
of bits required in a fixed point implementation for satisfactory
lossy performance and also for lossless performance. We have
used three gray scale images, Baboon, Barbara and Fish, each of
size 513x513 and carried out the study for 5 levels of
decomposition. We have verified the results from the study with
15 gray scale images from the USC-SIPI image database.

3.1 Lifting Coefficients

The magnitude of the lifting coefficients for the filters we have
considered range from 0.046875 to 1.58613. In order to convert
all the filter coefficients to integers, the coefficients are
multiplied by 256 (i.e. shifted left by 8 bits). The range of
coefficients is now 12 to 406. This implies that we require 10
bits (2’s complement representation) for the lifting coefficients.
At the end of each multiplication, the product is shifted right by
8 to get the required result. This is implemented in hardware by
rounding the 8 least significant bits.

3.2 Signal values

The signal values have to be shifted left too in order to increase
the precision; the extent of the shift is determined using image
quality analysis.  In this work we have experimented with a shift
ranging from 0 to 5 bits (we call them the Additional Bits, ABs).
It should be noted that, filters (5,3) and (2,6) can be implemented
with just shifts as their lifting coefficients are multiples of 2. But
we have carried out the analysis by multiplications for
comparison purposes. If the filters are implemented with shifts,
additional bits are not required.

In conventional fixed point implementation, instead of
shifting the input samples, the coefficients are shifted by
required number of extra bits.  Consider the general structure of
a lifting based filter implementation with SSOWT -

y = a (x1 + x2) + b (x3 + x4) + x5
where a and b are the filter coefficients, x’s are the signal
samples and y is the transform value. If the filter coefficients
alone are shifted, an extra shifting operation has to be performed
on the x5 term to maintain the data alignment.

3.3 Rounding

We have considered a method for rounding wherein, both +ve
and -ve numbers are rounded towards +• i.e. the numbers
would be rounded to next higher integer (for ex. 965.50 → 966
and -965.50 → -965).  To achieve this, a ‘1’ should be added for
both, +ve and –ve numbers whenever the MSB of the bits being
truncated is a ‘1’. If MSB = ‘0’ the number can be just truncated.
It should be noted that instead of applying rounding  on the
result of the filter operation (which results in bigger
accumulators) as in [4], it is applied to the individual terms of
the filter result.
Example : Consider the general lifting structure. Let a = 0.2345,
b = 1.4567, x1 = 24, x2 = 43, x3 = 156, x4 = 56 and x5 = 10.
The floating point implementation result is y = 334.5319.  Let us
assume that coefficients are shifted left by 8 bits (and rounded to
nearest integer ) and number of ABs = 2.  Then a = 60, b = 373,
x1 = 96, x2 = 172, x3 = 624, x4 = 224 and x5 = 40.  The
products are 60(96+172) = 16080 and 373(624+224) = 316304.
Shifting the product right by 8 bits and rounding will yield 63
and 1236.  So y = 63 + 1236 + 40 = 1339.  This should be
interpreted as round[(1337>>2)+two bits]=round[334.75]=335.

3.4 Results

All through this work we define SNR as

For forward transform, Signal corresponds to the values obtained
by the floating point implementation.  For forward transform
followed by the inverse transform, Signal corresponds to the
original image data.

The SNR values for the Baboon image after 5 levels of
forward transform with the product terms formed by truncating
and rounding the 8 LSB’s are given in Table 1. We see that the
SNR for the forward transform is not degraded by truncation.

The SNR values for the Baboon image after 5 levels of
forward and inverse transform with truncation and rounding are
given in Table 2. From Table 2, we see that except for (5,3) and
(2,6) filters and to some extent (2,10) filter, truncation severely
degrades the performance of the filters. But if (5,3) and (2,6)
filters have to be implemented with multiplications, then
truncation will be sufficient to achieve the lossless performance.

From Table 1 it is clear that more the number of ABs better
the performance of the fixed point implementation. However,
having more than 2 ABs has little effect on (6,10) and (9,7)
filters. From Table 2 we see that with 2 ABs the SNR for all the
filters is > 30 dB with rounding. So we can conclude from Table
1 and Table 2, that 2 ABs are enough for satisfactory lossy
performance. Further from Table 2, we see that with 5 ABs all
the filters except for (6,10) and (9,7) filters are lossless with
rounding. So we conclude that 2 ABs are needed for a
satisfactory lossy performance and 5 ABs for lossless
performance. A similar trend was observed for the other two
images.

Once the number of ABs are fixed, we need to determine the
width of the data path.  This can be done by observing the
maximum (minimum) values for the transformed values at the
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ABs (5,3) C(13,7) S(13,7) (2,6) (2,10) (6,10) (9,7)
Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round

0 28.458 29.788 19.801 27.870 21.678 28.120 28.478 30.654 22.725 29.349 18.154 24.858 18.225 24.861
1 36.190 37.536 25.866 33.758 27.800 34.116 34.991 37.553 28.759 36.011 23.989 30.364 24.219 28.458
2 44.380 45.687 32.048 39.590 34.046 39.962 41.945 43.677 34.861 42.324 29.502 35.068 28.759 30.376
3 52.357 52.974 38.449 45.264 40.520 45.843 50.631 52.368 41.060 48.391 34.257 38.140 30.864 31.103
4 63.513 64.674 45.379 53.146 47.603 53.616 61.063 63.508 47.425 54.234 37.525 39.560 31.478 31.358
5 69.761 70.924 51.587 59.133 53.751 59.630 70.097 71.087 54.124 59.531 39.193 40.042 31.574 31.430

Table 1 SNR values after forward transform for the Baboon image

ABs (5,3) C(13,7) S(13,7) (2,6) (2,10) (6,10) (9,7)
Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round Trunc. Round

0 12.985 18.949 3.990 27.399 1.783 27.090 18.800 18.977 18.157 18.983 5.069 28.859 -6.602 24.561
1 19.614 24.405 10.159 31.042 7.944 30.857 26.338 24.525 25.114 24.565 11.322 32.727 -0.571 30.527
2 25.811 30.208 16.176 37.478 13.928 36.480 32.680 31.245 31.627 31.325 17.457 36.164 5.449 36.374
3 32.797 34.507 22.244 48.720 20.016 48.213 39.825 36.821 38.793 36.803 23.806 37.876 11.495 43.620
4 36.964 77.467 28.013 113.224 26.322 110.302 70.646 73.633 48.550 70.892 30.333 38.883 17.490 56.711
5 inf inf 33.094 inf 32.896 inf inf inf 99.819 inf 36.070 39.312 23.479 77.581

Table 2 SNR values after forward and inverse transform for the Baboon image

end of each level of decomposition and taking the largest
(smallest) among them.  The maximum and minimum values
with ABs = 2 and 5 are given in Table 3 and Table 4.

From Table 3 and Table 4 we see that the (9,7) filter
generates both maximum and minimum values in case of
Baboon and Barbara images, while the (6,10) filter generates
maximum and minimum values for the Fish image.  Based on
these results, we need 13 bits to represent the transform values
with 2 ABs.  However in some stray cases, the internal precision
is of 14 bits magnitude. So the width of the data path required
for lossy transform is 14 bits. Similarly we can deduce, from
Table 4, that a 16 bit wide data path is required for lossless
performance. All the above results have been verified with USC-
SIPI database images - 5.2.08-10, 7.1.01-04, 7.1.06-10, boat,
elaine, ruler and gray21 from the Miscellaneous directory.

Filter Baboon Barbara Fish
Max Min Max Min Max Min

(5,3) 1080 -951 746 -662 609 -654
C(13,7) 781 -772 742 -629 519 -512
S(13,7) 785 -744 723 -657 486 -514
(2,6) 904 -1062 783 -729 571 -645
(2,10) 1153 -1377 930 -1087 706 -737
(6,10) 1107 -760 1273 -903 1025 -1403
(9,7) 3116 -2421 2390 -2442 864 -1127

Table 3 Maximum and minimum values for ABs = 2

Filter Baboon Barbara Fish
Max Min Max Min Max Min

(5,3) 8642 -7611 5950 -5296 4876 -5253
C(13,7) 6250 -6183 5930 -5036 4147 -4096
S(13,7) 6287 -5951 5778 -5261 3887 -4097
(2,6) 7216 -8487 6269 -5837 4556 -5171
(2,10) 9226 -11008 7429 -8705 5664 -5891
(6,10) 8877 -6077 10192 -7231 8175 -11248
(9,7) 24920 -19370 19073 -19524 6871 -8991

Table 4 Maximum and minimum values for ABs = 5

4. PROPOSED ARCHITECTURE

The proposed architecture calculates DWT/IDWT in the

row-column fashion on a block of data of size NxN. It is an
extension of the DWT architecture proposed in [6]. The
architecture consists of a Row module (two Row Processors RP1
and RP2), a column module (two Column Processors CP1,CP2)
and two memory modules (MEM1, MEM2). To perform
DWT(IDWT), data has to be written into MEM1 along the
rows(columns). In the rest of the paper, we assume that data is
stored in transposed form for IDWT and discuss all the details in
terms of rows for both DWT and IDWT.

To perform the DWT, the architecture reads in the block of
data, carries out the transform, and outputs the LH, HL, HH data
at each level of decomposition. The LL data is used for the next
level of decomposition. To perform the IDWT, all the sub bands
from the lowest level are read in. At the end of the inverse
transform, the LL values of the next higher level are obtained.
The transform values of the three bands (LH,HL and HH) are
then read in and the IDWT is carried out on the new data set.

For the Case 1 filters (i.e. when lifting is implemented by
two /three factorization matrices), processors RP1 and RP2 read
the data from MEM1 perform the DWT/IDWT along the rows,
and write the data into MEM2. To reduce the latency and the
memory requirements, the column processors calculate the
column wise transforms along the rows. Processor CP1 reads the
data from MEM2, performs the column wise DWT/IDWT along
alternate rows, and writes the data into MEM2 and
MEM1/Ext.MEM.  Processor CP2 also reads the data from
MEM2 and writes to MEM1/extermanl memory, and performs
the column wise DWT/IDWT along the rows that CP1 did not
work on. Fig. 2 describes the data flow for the Case 1 filters.

For the Case 2 filters (i.e. when lifting is implemented by
four factorization matrices), there are two passes.  In each of the
passes, RP1 and RP2 read in the data, execute the first two
matrix multiplications and write the result into MEM2.  CP1 and
CP2 execute the next two matrix multiplications.  In the first
pass, both CP1 and CP2 write the results into MEM1 in column
major fashion and in the second pass, CP2 writes the LL
subband data to MEM1, while other three subbands are written
to Ext.MEM.

4.1 Row and Column processor design

Each filter requires a different configuration of adders,



multipliers and shifters in the data path in order to generate an
output every cycle. We have considered a configuration that
generates an output every clock cycle for the default JPEG2000
filters (5,3) (lossless) and (9,7) (lossy) filters. The proposed
architecture consists of four processors, where each processor
consists of 2 adders, 1 multiplier and 1 shifter.

For lossy (lossless) coding, adders and shifters have to handle 14
(16) bits data, while multipliers have to multiply 14 (16) bit data
with a 10 bit coefficient.

4.2 Memory

The proposed architecture consists of two memory modules,
(MEM1 and MEM2). Data in MEM1 is written by Ext.MEM,
CP1 and CP2, and is read by RP1 and RP2. The data in MEM2
is written by RP1, RP2 and CP1, and read by CP1 and CP2.
Each module consists of 4 banks with a maximum of 4 ports
(read and write ports combined) per bank. The memory design
and management is significantly different from that in [6].

MEM1 module – It consists of 4 banks (MEM10, MEM11,
MEM12 and MEM13). For the Case 1 filters, for the forward
transform, we need 2 banks (MEM10, MEM11), while for the
inverse transform we need 3 banks (MEM10, MEM11, MEM12).
For the Case 2 filters, we need all the 4 banks for both the
forward and inverse transforms. Each bank contains either odd
samples or even samples of a row or column. The memory banks
in MEM1 module read in the whole block in the beginning
during the forward transform, and read in the whole block at the
last level during the inverse transform. As a result all the four
memory banks are of size NxN/2.

Filter MEM20 MEM21 MEM22 MEM23

(5,3) 1 row 1 row 1 row 1 row
C(13,7) 2 rows 2 rows 1 row 3 rows
S(13,7) 2 rows 2 rows 1 row 3 rows
(2,6) 1 row 1 row 1 row 2 rows
(2,10) 2 rows 2 rows 1 row 4 rows
(6,10) 2Ta+3Tm+5 (elements)

-
- -

(9,7) 2Ta+3Tm+3 (elements)
-

- -
Table 5 Size of MEM2 module banks

MEM2 Module - It also consists of 4 banks (MEM20, MEM21,
MEM22 and MEM23). We require all the 4 banks for the Case 1
filters and each bank contains complete row(s)/column(s) of
data. For the Case 2 filters, we require 2 banks (MEM20,
MEM21).and each bank contains the odd or even samples. The
total memory required for the filters in MEM2 banks is given in

Table 5 (Ta is adder/shifter delay and Tm is multiplier delay, a
multiple of Ta).

4.3 Control

Control signals are needed primarily to maintain the steady flow
of data to  and from the processors. Our design consists of local
controllers in each of the processors which communicate with
each other by with hand shaking signals.  Each local controller
consists of three components – Counter, Memory signal
generation unit and Address generation unit.

4.4 Timing

The total time required, for one level of decomposition of an
NxN block, for all the filters is given in Table 6.  Here, Ta is the
delay of the adder, Ts is the delay of the shifter, and Tm is the
delay of the multiplier. Timing is based on the values obtained
by hand scheduling.

Filter Timing
(5,3) 2N/2+2Ta+2Ts+N+3+N/2N

(13,7) 7N+6Ta+2Tm+4+N/22N

(2,6) 3N/2+6Ta+Tm+3+N/2N

(2,10) 5N+7Ta+Tm+ 3+N/22N

(9,7) 2(4Ta+6Tm+6+NN/2)

(6,10) 2(3Ta+6Tm+6+2NN/2)

Table 6 Time required for a NxN block (one level)

4.5 Implementation

The architecture has been implemented in behavioral VHDL and
simulated using Mentor Graphics VHDL compiler and Model
Sim simulator running on Solaris on Ultra Sparc 10 machine.
The adder and shifter are assumed to have a one clock cycle
delay, where as the multiplier has a four cycle delay and is
pipelined to 4 levels. The VHDL simulation results match
exactly with C code simulations. The code is available at -
http://www.public.asu.edu/~kishorea/lifting.
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