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ABSTRACT

On the basis of the concepts of both weighted subspace criterion
and information maximization, this paper proposes a weighted
information criterion (WINC) for searching for the optimal
solution of a homogeneous neural network. We develop two
adaptive algorithms based on the WINC for extracting in parallel
multiple principal components. The both algorithms are be able to
provide an adaptive step size which leads to a significant
improvement in the learning performance. Furthermore, the
recursive least squares (RLS) version of WINC algorithms has a
low computational complexity O(Np), where N is the input
vector dimension and p is the number of desired principal
components. Since the weighting matrix does not require an
accurate value, it facilitates the system design of the WINC
algorithm for real applications. Simulation results are provided to
illustrate the effectiveness of WINC algorithms for PCA.

1. INTRODUCTION

Since the introduction of a simplified linear neuron with
constrained Hebbian learning rule by Oja [1] which extracts a
single principal component from stationary input data, neural
approaches to perform Principal Component Analysis (PCA) have
received a great deal of attention, and a variety of learning
algorithms for PCA have been proposed. For a good reference,
see [2]. The learning algorithms for multiple component
extraction can be divided into sequential and parallel versions.
The sequential version [3,4,5] can be implemented by making
explicit use of the "deflation" procedure which is a
computationally inexpensive orthonormalization method for
extracting lower order components. A main advantage of the
sequential version is that one can adaptively increase the number
of neurons needed for PCA. The drawbacks of this version are
that 1) one needs more memory to store the input samples to be
repeatedly used; 2) the version produces a long processing delay
due to the different component extraction one after another. In the
parallel versions, the principal components of interest are
extracted simultaneously. The parallel version [6,7,8,11] has
been studied extensively since the parallel version can overcome
the drawbacks of the sequential version and one can conveniently
derive the sequential version from the parallel version.

It is well known that there have been two significant ways
capable of performing in parallel the true PCA. The first way is
based on the hierarchically structured lateral inhibition network
[2]. While the resultant algorithm has the characteristic similar to
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the lattice filter, the speeds of convergence for different neurons
are necessarily sorted according to their orders [6] . The other way
is based on the weighted subspace criterion, but the network
architecture is still symmetrical and the learning algorithm for
different component extraction is local and homogeneous [7,8,9].
The properties of locality and homogeneity imply modularity and
regularity in implementing the algorithm in parallel hardware [8].
But, the weighted subspace algorithm (WSA) [8] as well as Xu's
Least Mean Square Error Reconstruction (LMSER) algorithm [7]
is the fixed step size algorithm. In practice, the proper choice of
the step size is often a difficult task. This often implies that a
trade-off between the convergence speed and the steady-state
error occurs easily [13].

Recently, Miao and Hua [10] proposed a novel information
criterion (NIC) for searching for the optimum weights of a
two-layer linear neural network. They have shown in [10] that
unlike the mean square error (MSE), the NIC is nonquadratic and
has a steep landscape along the trajectory from a small weight
matrix to the optimum one, so that the NIC yields faster
gradient-based algorithms. However, it is worth noting that the
NIC is a subspace tracking criterion which produces just the
principal subspace analysis (PSA) instead of true PCA. To
perform true PCA, reorthormalization is needed [5], [10]. The
reason is that the PSA algorithm is based on both the symmetrical
neural network architectures and the symmetrical optimization
criterion.

In this paper, we present a new approach for extracting in
parallel multiple principal components. It is based on an idea of
adding a weight to NIC [10] so that the optimum weights at
equilibrium points will be exactly the desired eigenvectors of a
covariance matrix instead of an arbitrary orthonormal basis in the
principal subspace. The reformulated information maximization
criterion, called the Weighted INformation Criterion (WINC)
herein, yields some interesting results such as the improvement
convergence when compared to WSA.[8] for PCA.

2. NEW LEARNING ALGORITHMS FOR PCA

Suppose the N-dimensional input vector x(k),k =12,---, be a
zero-mean stationary stochastic process whose covariance matrix
R = E{x(k)x” (k)} with N positive eigenvalues. We arrange the
so that the
corre-sponding eigenvalue sequence is in descent order:

orthonormal eigenvectors v,,v,,--, Vo Vy

A >Ay>>A, >A,4 22 Ay >0 For some applications,
such as feature extraction and data compression, it is usually
expected to obtain the first p dominant eigen-components
spanning a principal subspace. In this case, the p-dimensional
output vector y(k) in time k of a linear neural network is a linear



function of its inputs, namely
y(k) = W' (k =Dx(k) M
where W(k—1)is an N X p connection weight matrix. To find

the optimal weight matrix, Let’s define the following objective

function
Tyme(W) =%{rr[log(WTRWA)J—tr(WTW)} )

where #r(Dldenotes a matrix trace and A = diag(a;,a,,"-+,a,)is
a weighting matrix with @ >a, >--->a,>0. It is a novel
criterion for extracting in parallel multiple principal components,
referred to as Weighted INformation Criterion (WINC) herein.
Note that if let A =1, in (2) where 1, is an identical matrix,
then WINC reduces to NIC [10] which performs PSA. So, this is a
universal criterion for PCA and PSA.

By applying the gradient ascent searching to Jyy (W), we

can obtain the corresponding gradient equation with respect to W

in the following
O yve (W) = RWA(AW/ RW) ™' - W 3)

The batch implementation for updating W(k) based on the

above gradient equation is straightforward:
W(k) =Wk -1+ r][li(k)W(k - =Wk -DAW” (k-1)
R(OW(k -DAT AW’ (k -DR(OW(k -DA'T" (@)
where 0<n <1 denotes a fixed step size and ﬁ(k) is the

estimate of R given by
R(k) = (k_% Rk -1)+ %x(k)xT k) )

where 0 <y <1 denotes the forgetting factor which is used to
track the nonstationary environment. It has been shown in [12]
that W(k) will asympAtotically converge to true principal
eigen-vectors of R as R(k) convergesto R.

Compared with the WSA proposed by Oja et al in [§8]

W(k) = W(k = 1) +n[R(k)W(k 1) -

W(k -)AW’ (k ~DR(K)W(k -1)A™'] (6)
it is clear that WINC algorithm in (4) has an adaptive step size
AW (k —l)li(k)W(k —DA™'T'.  This property brings about a
significantly improved learning performance compared with WSA,

as will be seen in Section III.

Although the batch WINC algorithm (4) is able to provide
good learning performance, it requires, like WSA, a high
computational complexity of O(N’p) every update.
Furthermore, the matrix inverse, in despite of reduced dimension,
is explicitly involved in computations. This is inconvenient for
real applications and modular design of hardware. In the

following, we develop a computationally efficient algorithm with
O(Np) operations every update based directly on the input vector
sequence {x(k)} .

Note that since

A~ k .
R(EW(k-1) = %Z Y@y (1) 0
i=1

where  y(i))= W' (k—1)x({) , considering the projection
approximation y(7) = W’ (i —1)x(¢) similar to [5],[10], (4) can be
rewritten as

W(k) = (1=mW(k =1) +nW(k) ®)

1

~ koo 00t . a
where W (k) = § yk“x(i)yT(z‘)mé y*“y()y" ()0 A™" which
=1 D =1 E

can be calculated recursively [12]. Due to the limitation of the
space herein, the RLS implementation of WINC algorithm is
summarized in the following without derivations.
Initialization: Choose P(0), W(0), and \TV(O) properly.
Update equations (for &k >1):

y(k) =W (k =1)x(k) ©)
Pk -Dy(k
)= Gore- D o
P(k) =y~ (P(k =1) - g(k)y” (k)P(k ~1)) (1)
W(k) = W(k=1)+x(k)g" (k) -X(k)g" (A~ (12)
where g(k) = A"P(k)Ay(k) , X(k) = W(k -1)Ay(k) .
W(k) = (1=mW(k =1) +nW(k) (13)

From (9)-(13), it is easy to find that WINC algorithm
requires 6Np +3p® +4p operations every update. If =1, it
requires only 4Np+3p? +4p operations every update while
WSA with the data driving requires SNp +2p operations every
update. In general, the input dimension N is much larger than the
output dimension p for many real applications. Thus the WINC
algorithm is cheaper than the WSA if p < N/3-1. Notice that
some subspace tracking algorithms [5],[10] demand O(Np)
operations for obtaining an arbitrary orthonormal basis and
additional O(N?p) operations for postprocessing of the
eigen-vector estimates. In comparison with NIC algorithm [10],
the WINC algorithm demands an increase in the computational
complexity of Np+ p? +2p operations every update in order to
perform directly the true eigenvector estimates. However, the
WINC algorithm uses an incorporate network to implement
extracting in parallel multiple principal eigenvectors without the
need of extra design of the postprocessing network. In fact, the
WINC algorithm corresponds to a three-layer linear neural
network model (as shown in Fig.1). The model features a novel
structure of fewer hidden units than input and output units fully
connected by fixed weights, referred to as a weighting matrix.
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Fig.1 A three-layer linear PCA neural network model.

3. SIMULATION RESULTS

In this section, we present two simulation results to demonstrate
the behavior and the applicability of the WINC algorithm. The
first simulation serves to show the transient behavior of the
learning in the principal eigenvectors. The results are compared
with those obtained using the WSA. In the second simulation, we
apply the WINC algorithm to compress the image data. The
results are compared with those obtained using both the standard
Karhunen-Loeve transformation (KLT) and the WSA. After the
sample covariance matrix R has been updated via (5), its
complete eigenvalue decomposition (EVD) is computed by a
standard batch method in Matlab for obtaining the real principal
eigenvectors.

3.1. Transient Behavior

In this simulation, the data sequence was generated by the
first-order autoregressive process [4]

x(k) =0.9x(k —1) +e(k)
where e(k) is a zero-mean uncorrelated Gaussian driving sequence
with unit variance. The data points are arranged in blocks of size
six (N=6). In order to estimate the error for each eigenvector for
each iteration, we calculate the direction cosine given by

Direction Cosine(k)= |W,T (k)v,; | / (||w ; (k)""v ; ||)

where w, (k) is the estimated ith principal eigenvector at time & ,
and v, denotes the actual ith principal eigenvector [13]. Clearly,
if w;(k) isexactly same as v,, then the maximum value of the
direction cosine should be unity. Hence, for a good algorithm, the
direction cosine should converge fast to unity as iterations.

Let us consider the first three (p=3) principal component
extraction. Two algorithms—the WINC algorithm (4) and the
WSA (6) — are run for the same random W(0) and

A=diag[1,0.9,0.8] with n=0.5 and n=0.01, respectively. Note
that the n determined by trial and error is almost optimal for the
WSA convergence. Fig.2 shows the transient behavior of the two
algorithms for extracting the first three principal components in
parallel.

It is obviously observed from Fig.2 that the WINC algorithm
outperforms the WSA for extracting all the principal components.
It converges fast to the true principal components. The WSA is
obviously hierarchical algorithm for extracting multiple principal
components, whereas the WINC algorithm can almost provide the
consistent convergence speeds for extracting different principal
component. This property is very significant for real time
applications where the multiple principal component needs fast
parallel extraction. The results show that the WINC algorithm
provide the improved convergence speed for the parallel
extraction of the multiple principal component via the adaptable
step-size.

3.2 Image Data Compression

It is well known that the practical value of PCA is that it provides
an effective technique for dimensionality reduction. To illustrate
the applicability of WINC algorithm, let us consider the example
of a Lena image . It has a resolution of 512X 512 pixels with 256
gray levels. To train the algorithm, 8 X 8 nonoverlapping blocks of
the image are used and then arranged into series of a
64-dimension input vector, with the image scanned from left to
right and top to bottom to give a total of training samples K=4096.
Once the training process is completed, the W(K) is used to
reconstruct the image data. The reconstructed input vector is
given by X(k)=W(K)WT (K)x(k) . The quality of the
reconstructed image is measured by [5]

2
Y x|
3 v o) = x|

In this simulation, two algorithms—the WINC algorithm
(11)-(13) and the WSA (6) with the data driving—are run for the

SNR =101log

same initial W(0)=[Ip,0]T and A with n =0.5 and n

=5x%10"°, respectively. The elements of the diagonal matrix A are
set in exponential decrease. We take P(0) =0.05I,and y =1in

the WINC algorithm. We use the result of the standard KLT as the
benchmark to examine the performance of algorithms.

Fig.3 shows the SNR vs. different dimension p for two
algorithms. We see that the difference between the WINC
algorithm and the KLT in SNR is less than 0.5dB for p <25.1In
particular, the performance of the WINC algorithm is nearly
identical to the KLT for p <16 . Again, the performance of WSA
is not better than that of the WINC algorithm. In particular, for
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Fig.2 The direction cosine curves of WINC algorithm and WSA for
extracting the first three principal eigenvectors.

p 213 the SNR of WSA does not increase in direct ratio with
the dimension p. This implies that the corresponding minor
components do not converge to correct components, which results
in the fact that the part of the signal energy is distributed to the
lower order components which are rejected in the reduction
process. So, the quality of the reconstructed image is not
improved by the increased dimension. Obviously, this is not true
for the WINC algorithm. Although the difference between the
WINC algorithm and the KLT in SNR becomes increasing with p,
the performance of the WINC algorithm is not degraded severely.
For example, the difference between the WINC algorithm and the
KLT in SNR is less than 1dB at p =30.

4. CONCLUSION

This paper proposes an unconstrained optimization criterion—the
WINC for parallel multiple principal component extraction on the
basis of the concepts of the weighted subspace and the
information maximization. Based on the gradient-ascent method,
we derive two WINC algorithms for performing the true PCA
recursively. The gradient-ascent version of the WINC algorithm
turns out to be an extended WSA with the adaptive learning rate
which leads to a significant improvement in the convergence
speed. More importantly, Its RLS version not only provides the
fast convergence and the high accuracy but also has the low
computational complexity. The simulation results sufficiently
show the high efficiency of the WINC algorithm for the parallel
multiple principal component extraction. Furthermore, the WINC
also generalizes some well-known PCA/PSA algorithms by
introducing two adjustable parameters nand A. Thus, the WINC
provides a fast, flexible adaptive method for many potential real
applications.
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