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ABSTRACT 
 
The accurate reconstruction of the 3D scene structure from two 
different projections and the estimation of the camera scene 
geometry is of paramount importance in many computer vision 
tasks. Most of the information about the camera-scene geometry 
is encapsulated in the Fundamental Matrix. Estimating the 
Fundamental Matrix has been an object of research for many 
years and continues to be a challenging task in current computer 
vision systems. While nonlinear iterative approaches have been 
successful in dealing with the high instability of the underlying 
problem, their inherent large workload makes these approaches 
inappropriate for real-time applications. In this paper practical 
aspects of highly efficient linear methods are studied and a novel 
low-cost and accurate linear algorithm is introduced. The 
performance of the proposed approach is assessed by several 
experiments on real images. 
 

1.  INTRODUCTION  
Recovering the 3D scene structure from its 2D projections onto 
perspectively different image planes is a major task in computer 
vision. It finds application in several technologies including 3D 
videoconferencing, image based rendering, medical imaging, 
augmented reality, robotics, immersive telepresence, etc. The 
basic problem consists of estimating the parameters governing 
the camera-scene geometry, i.e., the parameters describing the 
global position of the cameras with respect to the 3D scene, from 
a set of given corresponding points in the 2D image planes. If 
image correspondences and camera parameters are known, 
arbitrary views of the scene can be synthesised. Furthermore, 
using this information the 3D scene structure can be inferred by 
triangulation. The whole process is recursive and involves four 
processing steps:  
1. Estimation of few correspondences with high accuracy 
2. Extraction of the camera-scene geometry using the 

correspondence estimates from step 1 
3. Estimation of dense or almost dense disparity fields using the 

Epipolar constraint to reduce the search complexity and to 
achieve better estimation accuracy  

4. Intermediate views synthesis or extraction of the relative 3D 
structure using disparity information and camera parameters. 

     Regarding the first processing step a high accuracy solution 
to the correspondence problem for few image points has been 
proposed recently in [5]. The development of a reasonably good 
real-time approach for the second step is envisaged in this work. 
The third and fourth processing steps have been studied in other 
works [2], [4].  

     As mentioned before, in this work we are concerned with the 
estimation of the camera-scene geometry assuming that a set of 
few correspondence estimates is available. Due to the high 
instability and ill-posed nature of the calibration problem, this is 
perhaps the hardest of the four processing steps outlined above. 
The first attempt to deal with this problem was reported by 
Longuet-Higgins [7] in 1982. He discovered that if eight or more 
corresponding points in two different images are known, the 
camera-scene geometry can be encapsulated in a 3x3 matrix 
called the essential matrix. If the cameras are uncalibrated, i.e., if 
the intrinsic camera parameters are unknown, the same process 
can be applied to recover the scene structure up to a projective 
transformation [1], [2]. In this case the 3x3 matrix encoding the 
camera-scene geometry or Epipolar geometry is called the 
fundamental matrix. Longuet-Higgins’s algorithm for the 
estimation of the essential matrix leads to a system of linear 
equations in which the nine elements of the fundamental matrix 
form the vector of unknowns that should be estimated. This 
classic method is best known as “The Eight-Point Algorithm” 
(EPA). The most relevant property of this approach is its 
linearity, and consequently its low complexity, which makes it 
very suitable for real-time applications.  
     Longuet-Higgins’s work started a wave of research activities 
about structure from stereo and camera calibration within the 
computer vision community [1], [2], [8]. On the one hand most 
of these papers deal with fundamental theoretical aspects of the 
problem. On the other hand several experiments have shown that 
although Longuet-Higgins’s linear scheme is optimal from a 
computational point of view, it is unstable when applied to real 
data. More recent papers, including the works of Xu and Zhang 
[8], introduce nonlinear constraints and robust statistics to deal 
with the extreme distortion susceptibility to non-Gaussian noise 
and outliers of the linear model. The major drawback of these 
methods is that the linearity of the original model gets lost and 
the iterative solution of a high non-linear model becomes 
necessary. This brings with it an essentially higher workload and 
consequently the use of these methods in real-time applications 
becomes unrealistic.  
     In 1997 Hartley [3] presented a careful and sound analysis of 
the reasons for the high instability of the EPA. He showed that 
this fact mainly originated in non rigorous implementations in 
which aspects of linear algebra and numerical analysis are totally 
ignored. In his paper Harley states: “The poor performance of 
the EPA can probably be traced to implementation that does not 
take sufficient account of numerical considerations, most 
specifically the condition of the set of linear equations being 
involved”. In this statement the word “condition” refers to the 
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condition number of the matrix of the linear system to be solved. 
Furthermore, Hartley [3] showed that by applying a kind of 
normalization to the input data, the EPA delivers results 
comparable with computationally more expensive non-linear 
methods but at very low computational cost. Basically, Hartley’s 
“Normalized Eight-Point Algorithm” (NEPA) consists of a 
modification of the reference co-ordinate system for image 
points via a simple translation, followed by a straightforward 
scaling in order to considerably reduce the condition number of 
the matrix of the underlying linear system.  
In this paper a novel accurate and extremely low-complexity 
linear approach for camera-scene registration is introduced. The 
introduced approach reinforces Hartley’s statement about the 
cause of the poor performance of the EPA by using efficient 
numerical schemes and some fundamental results on data 
normalization and preconditioning. Our work is close in spirit to 
Hartley’s work.  
     We are aware of the fact that neither Hartley’s approach nor 
the extensions proposed in this paper outperform the best non-
linear iterative algorithms. On the other hand several computer 
experiments and comparisons show that the results obtained by 
applying the improved linear approaches only slightly differ 
from those obtained with iterative techniques. Our objective has 
been to develop and implement a stable method showing good 
performance, i.e., delivering good results at very low 
computational cost and suitable for real-time applications.  

 
2. FUNDAMENTALS 

 
Given two stereo images the relationship between two corres-

ponding points T
lll yxX )1,,(=  and T

rrr yxX )1,,(=  can be 

formulated as: 

 Ψ+= −−
lllrrr XRMZXMZ 11 ,                        (1) 

with M the camera intrinsic matrices, R the rotation matrix from 
left to right camera coordinate systems and Ψ the translation 
vector from the origin of the left camera coordinate system to the 
origin of the right camera coordinate system. Taking 

ll
T

lll XMvuU 1)1,,( −==  and rr
T

rrr XMvuU 1)1,,( −==  

(the normalized image coordinates), the cross-product of (1) with 

the translation vector Tttt ),,( 321=Ψ  followed by the inner 

product with rU  leads to 

0=lrEUU ,                                       (2) 
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τ . Equation (2) is called 

the epipolar equation. This equation can be written as an 
homogeneous linear equation in the nine unknown elements of 

the essential matrix E: 0ˆ =EhT , with 
T

llrrlrlrlrrl vuvvvvuuvuuuh )1,,,,,( ,=  and Ê  the nine-

dimensional vector, whose elements are the coefficients of the 
essential matrix. For n corresponding points we obtain a system 
of linear equations of the form: 

0ˆ =EHn .                                    (3) 

     Since Ê  is defined up to a scale factor eight corresponding 
points are sufficient to calculate the essential matrix. Moreover, 

kHrank n =)(  and k<9, because in the other case, i.e., when 

k=9, equation (3) only poses the trivial solution. Most methods 
for solving (3) assume that the errors in the input data are 
Gaussian distributed with zero mean, and use the normL −2  to 

solve the problem. Unfortunately, the least squares method is 
extremely unstable because the distribution of errors is not 
Gaussian and the initial data can contain outliers. Thus, the 
straightforward linear EPA method is extremely sensitive to 
noise in the input data. This fact led to the belief that the linear 
approach fails when real data is used. Consequently, iterative 
methods in which high nonlinear constraints are used to deal 
with the instability of the linear model became widely spread [8]. 
     The first attempt to challenge (3) using real data and an EPA-
like linear model was done by Hartley [3]. He demonstrated that 
the linear model can perform as well as iterative methods if 
linear algebra tools and a rigorous numerical analysis is used in 
the algorithm design.  Basically, Hartley’s algorithm can be 
outlined as follows:  
1. Transform the image coordinates according to 

transformations rrr UTU =~
 and lll UTU =~

  

2. Find the essential matrix E
~

 corresponding to the 
transformed coordinates 

3. Set l
T
r TETE

~= . 

      Although Hartley’s approach opened a new way to solve the 
calibration problem without using complex non-linear 
techniques, it still applies the standard and expensive SVD. This 
fact together with the complexity of the performed 
transformation make it difficult to run Hartley’s algorithm in 
real-time using standard equipment. In the next section we 
establish the most important results concerning Hartley’s 
proposed transformations, and use that analysis to derive more 
efficient algorithms. A new kind of transformation is proposed to 
solve the linear problem maintaining stability and accuracy but 
extremely reducing the complexity. 
 

3. THE PROPOSED ALGORITHM 
 
In the following some important results derived from our study 
are outlined. These results not only add value to the rigor of the 
analysis concerning the camera-scene registration problem, but 
they demonstrate the ideas behind a more efficient algorithm. 
For the sake of clarity, and perhaps lack of space, these 
assertions will be presented without proof. Readers interested in 
the theorem’s proofs and additional results are referred to [6]. 
     The objective of the next two theorems is to give 
mathematical rigor to Hartley’s scaling approach. It is well-
known that the matrix nH  of the system usually has rank eight. 

Notice that only in rare cases in which the configuration of the 
image points has very specific structure, the rank of nH  is less 

than eight [2]. This fact is used to prove that Harley’s algorithm 
(NEPA) leads to the same solution (up to a scale factor) of the 
original linear system (3).  
Theorem 1: Let E be the essential matrix obtained by solving (3) 
using the original (non-transformed) data. If nH  has rank 
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eight, then solving (3) using NEPA leads to a matrix E
~

 
satisfying 

EE
~λ= ,   for 0≠λ . 

     Hartley proposes two different scaling techniques: isotropic 
and non-isotropic. The next theorem states a very important 
property of these scalings. 
Theorem 2: Hartley’s non-isotropic scaling is optimal in the 
sense of reducing the condition number of the system. 
     Using the analytical study presented above, we have devised 
a new and essentially more simple implementation of Hartley’s 
scaling approach. Three basic points tackled in the new approach 
are: 
• The use of a more efficient numerical algorithm to solve the 

underlying linear system 
• To perform the scaling directly on the matrix nH  rather 

than on the input data 
• To avoid products of badly conditioned matrices. 
     The NEPA scheme is based on the estimation of the least 

eigenvector of the matrix obtained from n
T
n HH . . This is 

achieved by performing SVD of this matrix product. We found 
that there are essentially more efficient methods to estimate the 
least eigenvector. Most of these methods have been developed in 
the context of the estimation of the condition number of a 
matrix. For this reason they are known as techniques of 
condition estimator type. Basically, we propose to use inverse 
iteration algorithms or alternatively the CCVL. A detailed 
description of these techniques can be found in [6]. Using the 
inverse iteration technique in conjunction with a QR-
decomposition leads to a highly efficient implementation since 
only few iterations are necessary to obtain an accurate 
approximation of the least eigenvector. The major advantage of 
this technique compared with the SVD is the low computational 
cost. The cost of both methods measured in flops is given in the 
second row of table 1. To give more numerical stability to the 
new approach and further reduce the computational cost, 

products of type n
T
n HH .  are avoided. Notice that Harley’s 

technique begins by doing this product. Since 
2)]([).( nn

T
n HcondHHcond = , this leads to an unnecessary 

worsening of the condition of the system. In this context the 
proposed algorithm is more efficient compared with NEPA. The 
computational difference between the two techniques is 
summarized in table 1. 
     Using the NEPA schema two scaling matrices should be 
estimated, one for each set of input points on the right and left 
images respectively. In contrast to that, in the sequel an 
alternative comprising just one scaling matrix is proposed. For a 
given 9x9 scaling matrix S the introduced technique consists of 
the following algorithmic steps: 

• Define ESE ˆ~ 1−=  

• Solve the transformed linear system 0
~ =ESHn  

• Find ESE
~ˆ =  

• Estimate the Essential Matrix E from the vector Ê  
     The question now is how to find the “best matrix S” in the 
sense of improving the condition number of SHn . Following 

the argumentation that leads to Hartley’s non-isotropic scaling, 

one should be tempted to choose 1−= RS , with R the matrix 

taken from the QR-decomposition of nH . In this case it is easy 

to see that: 

1)()()( 1 === − QcondRHcondSHcond nn . 

Consequently, R is optimal in the sense of improving the 
condition of SHn . Unfortunately, things are not as simple as 

that. In this case the system ESE ˆ~ 1−=  implicit in the algorithm 
has the same bad condition properties as the original system (3). 
To avoid this dilemma we should look for a scaling matrix that 
on the one hand reduces the condition of the system and on the 
other hand is numerically stable when it is inverted. These two 
conditions can be achieved by using diagonal matrices. Let us 
define S as: 

( )2
2

2/1
9

2/1
2

2/1
1

2/1 ),,...,,( njj HdddddiagDS === ,  

 for j=1,2,…,9,                                                                     (4) 

where njH  is the j-th column of nH  and 
2

. is the L2-norm. 

Since 1−SHn  has columns of unit length it is straightforward to 

prove that among all the diagonal scaling this scaling minimizes 

the condition of the system. Furthermore, the estimation of Ê  

from E
~

 is numerically stable as the calculation of 1−S  is 
trivial. Additionally, the amount of operations is lower compared 
with the scaling used in the NEPA approach. 
     One question remains open: does the Essential Matrix 
obtained in this way correspond to the original Essential Matrix 
of the system (3)? This question is answered by the following 
statement 

 Theorem 3: Let S be a non-singular matrix, Ê  and E
~

 the 

solutions of the systems 0ˆ =EHn  and 0
~ =ESHn  

respectively. If nH  has rank eight, then 

ESE
~ˆ λ=  for 0≠λ . 

     This means the original Essential Matrix and that obtained 
using the proposed technique are the same up to a scaling factor.  
 

Algorithmic Step 
 #flops in 

NEPA  
#flops in this 

Method 
Matrix Multiplication )( 2nO  None 

System Solution 324n+5832 162n-314 

Tab. 1: Computational cost in flops for Hartley’s method and the 
proposed method for n corresponding points 

     Assuming that n corresponding points are known, the 
preceding arguments led to the design of the following algorithm 
for the estimation of the Epipolar Geometry: 
• Build the matrix nH  as given by (3) 

• Define the matrix S as given in (4) 

• Use the CCVL technique to estimate E
~

 from 0
~ =ESHn  

• Find ESE
~ˆ =  and build the Matrix E ′  from the vector Ê  

• Select the matrix of rank 2 closest to E ′  as the Essential 
Matrix.  
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     This linear algorithm provides accuracy in the results at low 
computational cost. The proposed scaling acts directly on the 
system to be solved (3). It uses a preconditioning matrix S, 
which is optimally defined in the sense of improving the 
condition of the system. Since the computational cost is 
extremely low, the method can be easily run in real-time.  

         
 

         

Fig 1.  Epipolar lines estimated for the scene GWEN. 
 

4.  SELECTED RESULTS 
 

The proposed technique has been evaluated by estimating the 
epipolar geometry for real images. Several comparisons with 
results obtained using other previously reported methods have 
been conducted. In these comparisons both performance and 
complexity have been evaluated. A comprehensive report of this 
comparative evaluation is in preparation [6]. The evaluation 
includes results obtained using different techniques from the 
literature [8] as well as a direct comparison with the NEPA 
scheme [3]. Although, the methods introduced in [8] were 
designed to satisfy physical constraints inherent to the 
calibration problem, the new algorithm supplies similar results. 
For reasons of space, in this article only few results obtained for 
the scene GWEN can be reported. The epipolar lines obtained 
with the proposed algorithm are shown in the image at the 
bottom of Fig. 1. In this representation both stereo images are 
shown in the background. Superimposed on the left image (top) 
the matched points are highlighted, on the right image (bottom) 
the epipolar lines corresponding to these points are drawn.  
 

5.  CONCLUSIONS 
 

A novel, accurate and simple linear approach for camera-scene 
registration has been presented. Some fundamental results that 
give mathematical rigor to Hartley’s view about numerical 
implementation of the classic EPA scheme are proven. The 
introduced algorithm uses techniques of condition estimator type 
to approximate the least singular value and its corresponding 
singular vector, instead of explicitly performing an essentially 
more expensive singular value decomposition. To improve the 
condition of the system a diagonal scaling on the matrix nH  is 

introduced. Another important feature of the proposed algorithm 
is to strive for a direct solution to the underlying linear system 

0=EHn , avoiding the use of products of type n
T
n HH . . The 

performance of the method has been assessed by estimating the 
Epipolar Geometry from stereoscopic images.  
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