A NOVEL LINEAR TECHNIQUE TO ESTIMATE THE EPIPOLAR
GEOMETRY

Ebroul 1 zquierdo® and Valia Guerra’™

©) Department of Electronic Engineering
Queen Mary, University of London
London E1 4NS, United Kingdom

ABSTRACT

The accurate reconstruction of the 3D scene structure from two
different projections and the estimation of the camera scene
geometry is of paramount importance in many computer vision
tasks. Most of the information about the camera-scene geometry
is encapsulated in the Fundamental Matrix. Estimating the
Fundamental Matrix has been an object of research for many
years and continues to be a challenging task in current computer
vision systems. While nonlinear iterative approaches have been
successful in dealing with the high instability of the underlying
problem, their inherent large workload makes these approaches
inappropriate for real-time applications. In this paper practical
aspects of highly efficient linear methods are studied and a novel
low-cost and accurate linear agorithm is introduced. The
performance of the proposed approach is assessed by several
experiments on real images.

1. INTRODUCTION
Recovering the 3D scene structure from its 2D projections onto
perspectively different image planes is a major task in computer
vision. It finds application in several technologies including 3D
videoconferencing, image based rendering, medical imaging,
augmented reality, robotics, immersive telepresence, etc. The
basic problem consists of estimating the parameters governing
the camera-scene geometry, i.e., the parameters describing the
global position of the cameras with respect to the 3D scene, from
a set of given corresponding points in the 2D image planes. If
image correspondences and camera parameters are known,
arbitrary views of the scene can be synthesised. Furthermore,
using this information the 3D scene structure can be inferred by
triangulation. The whole process is recursive and involves four
processing steps:
1. Estimation of few correspondences with high accuracy
2. Extraction of the camera-scene geometry using the
correspondence estimates from step 1
3. Estimation of dense or aimost dense disparity fields using the
Epipolar constraint to reduce the search complexity and to
achieve better estimation accuracy
4. Intermediate views synthesis or extraction of the relative 3D
structure using disparity information and camera parameters.
Regarding the first processing step a high accuracy solution
to the correspondence problem for few image points has been
proposed recently in [5]. The development of a reasonably good
real-time approach for the second step is envisaged in this work.
The third and fourth processing steps have been studied in other
works[2], [4].
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As mentioned before, in this work we are concerned with the
estimation of the camera-scene geometry assuming that a set of
few correspondence estimates is available. Due to the high
instability and ill-posed nature of the calibration problem, thisis
perhaps the hardest of the four processing steps outlined above.
The first attempt to deal with this problem was reported by
Longuet-Higgins [7] in 1982. He discovered that if eight or more
corresponding points in two different images are known, the
camera-scene geometry can be encapsulated in a 3x3 matrix
called the essential matrix. If the cameras are uncalibrated, i.e., if
the intrinsic camera parameters are unknown, the same process
can be applied to recover the scene structure up to a projective
transformation [1], [2]. In this case the 3x3 matrix encoding the
camera-scene geometry or Epipolar geometry is caled the
fundamental matrix. Longuet-Higgins's algorithm for the
estimation of the essential matrix leads to a system of linear
equations in which the nine elements of the fundamental matrix
form the vector of unknowns that should be estimated. This
classic method is best known as “The Eight-Point Algorithm”
(EPA). The most relevant property of this approach is its
linearity, and consequently its low complexity, which makes it
very suitable for real-time applications.

Longuet-Higgins's work started a wave of research activities
about structure from stereo and camera calibration within the
computer vision community [1], [2], [8]. On the one hand most
of these papers deal with fundamental theoretical aspects of the
problem. On the other hand several experiments have shown that
although Longuet-Higgins's linear scheme is optima from a
computational point of view, it is unstable when applied to real
data. More recent papers, including the works of Xu and Zhang
[8], introduce nonlinear constraints and robust statistics to deal
with the extreme distortion susceptibility to non-Gaussian noise
and outliers of the linear model. The major drawback of these
methods is that the linearity of the origina model gets lost and
the iterative solution of a high non-linear model becomes
necessary. This brings with it an essentially higher workload and
consequently the use of these methods in real-time applications
becomes unrealistic.

In 1997 Hartley [3] presented a careful and sound analysis of
the reasons for the high instability of the EPA. He showed that
this fact mainly originated in non rigorous implementations in
which aspects of linear algebra and numerical analysis are totally
ignored. In his paper Harley states: “The poor performance of
the EPA can probably be traced to implementation that does not
take sufficient account of numerical considerations, most
specificaly the condition of the set of linear equations being
involved”. In this statement the word “condition” refers to the



condition number of the matrix of the linear system to be solved.
Furthermore, Hartley [3] showed that by applying a kind of
normalization to the input data, the EPA ddlivers results
comparable with computationally more expensive non-linear
methods but at very low computationa cost. Basically, Hartley's
“Normalized Eight-Point Algorithm” (NEPA) consists of a
modification of the reference co-ordinate system for image
points via a simple translation, followed by a straightforward
scaling in order to considerably reduce the condition number of
the matrix of the underlying linear system.

In this paper a novel accurate and extremely low-complexity
linear approach for camera-scene registration is introduced. The
introduced approach reinforces Hartley's statement about the
cause of the poor performance of the EPA by using efficient
numerical schemes and some fundamental results on data
normalization and preconditioning. Our work is close in spirit to
Hartley’s work.

We are aware of the fact that neither Hartley’s approach nor
the extensions proposed in this paper outperform the best non-
linear iterative algorithms. On the other hand several computer
experiments and comparisons show that the results obtained by
applying the improved linear approaches only dlightly differ
from those obtained with iterative techniques. Our objective has
been to develop and implement a stable method showing good
performance, i.e, delivering good results a very low
computational cost and suitable for real-time applications.

2. FUNDAMENTALS

Given two stereo images the relationship between two corres-
ponding points X| = (X, ,:I.)T and X, = (X, ,1)T can be
formulated as:

ZMIX, = RMIX + W, @)
with M the camera intrinsic matrices, R the rotation matrix from
left to right camera coordinate systems and W the translation

vector from the origin of the left camera coordinate system to the
origin of the right camera coordinate system. Taking

U =uv DT =M% and Up = (U v )T =M
(the normalized image coordinates), the cross-product of (1) with
the trandation vector W = (1, t,, t3)T followed by the inner
product with U leadsto
U.EU, =0, 2
0 -t3
with E=T[R, T=t3 0 -t Equation (2) iscalled
Ht 4 of

the epipolar equation. This equation can be written as an
homogeneous linear equation in the nine unknown elements of

hTE=0,  with
h = (U UV Uy Ve v u v )T and E o the nine

dimensional vector, whose elements are the coefficients of the
essential matrix. For n corresponding points we obtain a system
of linear equations of the form:

H,E=0. ©)

the essential matrix E:

Since E is defined up to a scale factor eight corresponding
points are sufficient to calculate the essential matrix. Moreover,

rank(H,) =k and k<9, because in the other case, i.e., when

k=9, equation (3) only poses the trivial solution. Most methods
for solving (3) assume that the errors in the input data are
Gaussian distributed with zero mean, and use the L, —norm to

solve the problem. Unfortunately, the least squares method is
extremely unstable because the distribution of errors is not
Gaussian and the initia data can contain outliers. Thus, the
straightforward linear EPA method is extremely sensitive to
noise in the input data. This fact led to the belief that the linear
approach fails when real data is used. Consequently, iterative
methods in which high nonlinear constraints are used to deal
with the instability of the linear model became widely spread [8].
The first attempt to challenge (3) using rea data and an EPA-
like linear model was done by Hartley [3]. He demonstrated that
the linear model can perform as well as iterative methods if
linear algebra tools and a rigorous numerical analysisis used in
the algorithm design. Basicaly, Hartley's algorithm can be
outlined as follows:
1. Transform the image coordinates according to

transformations Jr =T,U, and J| =T\U,

2. Find the essentid matrix E corresponding to the
transformed coordinates
3 St E=T/JET,.

Although Hartley’s approach opened a new way to solve the
calibration problem without using complex non-linear
techniques, it still applies the standard and expensive SVD. This
fact together with the complexity of the performed
transformation make it difficult to run Hartley's agorithm in
rea-time using standard equipment. In the next section we
establish the most important results concerning Hartley's
proposed transformations, and use that analysis to derive more
efficient algorithms. A new kind of transformation is proposed to
solve the linear problem maintaining stability and accuracy but
extremely reducing the complexity.

3. THE PROPOSED ALGORITHM

In the following some important results derived from our study
are outlined. These results not only add value to the rigor of the
analysis concerning the camera-scene registration problem, but
they demonstrate the ideas behind a more efficient agorithm.
For the sake of clarity, and perhaps lack of space, these
assertions will be presented without proof. Readers interested in
the theorem'’ s proofs and additional results are referred to [6].
The objective of the next two theorems is to give
mathematical rigor to Hartley's scaling approach. It is well-
known that the matrix H, of the system usually has rank eight.
Notice that only in rare cases in which the configuration of the
image points has very specific structure, the rank of H, isless

than eight [2]. This fact is used to prove that Harley’s algorithm
(NEPA) leads to the same solution (up to a scale factor) of the
original linear system (3).

Theorem 1: Let E be the essential matrix obtained by solving (3)
using the original (non-transformed) data. If H, has rank



eight, then solving (3) using NEPA leads to a matrix E
satisfying
E=AE, for A #0.

Hartley proposes two different scaling techniques: isotropic
and non-isotropic. The next theorem states a very important
property of these scalings.

Theorem 2: Hartley's non-isotropic scaling is optimal in the
sense of reducing the condition number of the system.

Using the analytical study presented above, we have devised
a new and essentially more simple implementation of Hartley's
scaling approach. Three basic points tackled in the new approach
are:

» The use of a more efficient numerical agorithm to solve the
underlying linear system
» To perform the scaling directly on the matrix H,, rather

than on the input data
» To avoid products of badly conditioned matrices.
The NEPA scheme is based on the estimation of the least

eigenvector of the matrix obtained from HI.Hn. This is

achieved by performing SVD of this matrix product. We found
that there are essentially more efficient methods to estimate the
least eigenvector. Most of these methods have been developed in
the context of the estimation of the condition number of a
matrix. For this reason they are known as techniques of
condition estimator type. Basically, we propose to use inverse
iteration algorithms or alternatively the CCVL. A detailed
description of these techniques can be found in [6]. Using the
inverse iteration technique in conjunction with a QR-
decomposition leads to a highly efficient implementation since
only few iterations are necessary to obtain an accurate
approximation of the least eigenvector. The major advantage of
this technique compared with the SVD is the low computational
cost. The cost of both methods measured in flops is given in the
second row of table 1. To give more numerical stability to the
new approach and further reduce the computational cost,

products of type HI.Hn are avoided. Notice that Harley's
technique begins by doing this product. Since
cond(H,I.Hn) = [cond(Hn)]z, this leads to an unnecessary

worsening of the condition of the system. In this context the
proposed agorithm is more efficient compared with NEPA. The
computational difference between the two techniques is
summarized in table 1.

Using the NEPA schema two scaling matrices should be
estimated, one for each set of input points on the right and |eft
images respectively. In contrast to that, in the sequel an
alternative comprising just one scaling matrix is proposed. For a
given 9x9 scaling matrix S the introduced technique consists of
the following algorithmic steps:

. Define E=S'E

+ Solvethetransformed linear system H nSE =0

- Find E=SE

«  Estimate the Essential Matrix E from the vector E

The question now is how to find the “best matrix S’ in the
sense of improving the condition number of H,S. Following

the argumentation that leads to Hartley's non-isotropic scaling,

one should be tempted to choose S = R, with R the matrix
taken from the QR-decomposition of Hy, . Inthis caseit is easy
to see that:

cond(H,S) = cond(H nR'l) =cond(Q) =1.
Consequently, R is optimal in the sense of improving the
condition of H,S. Unfortunately, things are not as simple as

that. In this case the system E = s implicit in the algorithm
has the same bad condition properties as the origina system (3).
To avoid this dilemma we should look for a scaling matrix that
on the one hand reduces the condition of the system and on the
other hand is numericaly stable when it is inverted. These two
conditions can be achieved by using diagonal matrices. Let us

define Sas:
1/2 _
d3'?), dj—mHnjHZ)z,
4

S=DY2 =diag(di’?, d3'?,...,
forj=1,2,...,9,
where Hy is the j-th column of Hy, and ||, is the Lo-norm.,

Since H nS_1 has columns of unit length it is straightforward to
prove that among al the diagonal scaling this scaling minimizes
the condition of the system. Furthermore, the estimation of E

from E is numerically stable as the caculation of st s
trivial. Additionally, the amount of operationsis lower compared
with the scaling used in the NEPA approach.

One question remains open: does the Essentiad Matrix
obtained in this way correspond to the original Essential Matrix
of the system (3)? This question is answered by the following
statement

Theorem 3: Let S be a non-singular matrix, E and E the
solutions of the systems HL,E=0 and H,SE=0

respectively. If H, hasrank eight, then
E =ASE for A 0.

This means the original Essential Matrix and that obtained
using the proposed technique are the same up to a scaling factor.

L #flopsin #flopsin this
Algorithmic Step NEPA Method
Matrix Multiplication O(nz) None
System Solution 324n+5832 162n-314

Tab. 1: Computational cost in flops for Hartley’'s method and the
proposed method for n corresponding points

Assuming that n corresponding points are known, the
preceding arguments led to the design of the following algorithm
for the estimation of the Epipolar Geometry:

+ Buildthematrix H, asgiven by (3)
» Definethe matrix Sasgivenin (4)
* Usethe CCVL techniqueto estimate E from H,SE =0

 Find I§= SE and build the Matrix E' from the vector é

o Select the matrix of rank 2 closest to E' as the Essential
Matrix.



This linear algorithm provides accuracy in the results at low
computational cost. The proposed scaling acts directly on the
system to be solved (3). It uses a preconditioning matrix S
which is optimally defined in the sense of improving the
condition of the system. Since the computational cost is
extremely low, the method can be easily runin real-time.

Fig 1. Epipolar lines estimated for the scene GWEN.
4. SELECTED RESULTS

The proposed technique has been evaluated by estimating the
epipolar geometry for real images. Several comparisons with
results obtained using other previously reported methods have
been conducted. In these comparisons both performance and
complexity have been evaluated. A comprehensive report of this
comparative evaluation is in preparation [6]. The evaluation
includes results obtained using different techniques from the
literature [8] as well as a direct comparison with the NEPA
scheme [3]. Although, the methods introduced in [8] were
designed to satisfy physical constraints inherent to the
calibration problem, the new algorithm supplies similar results.
For reasons of space, in this article only few results obtained for
the scene GWEN can be reported. The epipolar lines obtained
with the proposed agorithm are shown in the image at the
bottom of Fig. 1. In this representation both stereo images are
shown in the background. Superimposed on the left image (top)
the matched points are highlighted, on the right image (bottom)
the epipolar lines corresponding to these points are drawn.

5. CONCLUSIONS

A novel, accurate and simple linear approach for camera-scene
registration has been presented. Some fundamental results that
give mathematical rigor to Hartley’'s view about numerical
implementation of the classic EPA scheme are proven. The
introduced al gorithm uses techniques of condition estimator type
to approximate the least singular value and its corresponding
singular vector, instead of explicitly performing an essentialy
more expensive singular value decomposition. To improve the
condition of the system a diagonal scaling on the matrix H,, is

introduced. Another important feature of the proposed algorithm
is to strive for a direct solution to the underlying linear system

H,E =0, avoiding the use of products of type H;,r.Hn. The

performance of the method has been assessed by estimating the
Epipolar Geometry from stereoscopic images.
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