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ABSTRACT

It has been demonstrated that hidden Markov models (HMMs)
provide an effedive achitedure for clasdficaion d distinct
targets from multiple target-sensor orientations. In this paper,
we present amethoddogy for designing class-based HMM s that
are well suited to the identification o targets with common
physicd attributes. This approach provides a means to form
associations between existing target classes and data from targets
never observed in training. After performing a wavefront-
resonance matching-pursuits fegure extradion, we present an
information theoretic treebased state-parsing agorithm to
define the HMM state structure for ead target class In training,
class assciation is determined by minimizing the dtatisticad
divergence between the target under consideration and ead
existing class with a new classdefined when the target is poarly
matched to ead existing class The dassbased HMMs are
trained with data from the members of its correspondng class
and tested on previously unobserved data. Results are presented
for simulated acustic scatering data.

1. INTRODUCTION

Hidden Markov models provide anatural architedure for target
detedion and clasdficaion wsing multi-asped sequential data,
when the target identity and aientation are unknown [1]. In ou
previous work, we have defined the HMM states to correspondto
angular sedors of a target over which the scatering physics is
relatively invariant, with the state transition probabiliti es derived
from the relative target-sensor motion. When sensing a sequence
of scatered waveforms from multiple target-sensor orientations,
the target is effedively sampled from a sequence of states, which
we model as aMarkov process Sincethe orientation o the target
is generally unknown, the sequence of sampled states is also
unknown (hidden), and is gsatisticdly deduced (via an HMM)
from the sequence of observed feaures.

While it has been demonstrated that such an approad is
succesdul for discriminating distinct targets in a variety of
sensing environments [1,2], here we aldress the issue of
designing HMM s to identify target classes, where members of a
given classmay share ommon ptysicd attributes sich as $zeor
physicd compaosition. Such a detedion strategy may be
incorporated into a hierarchal identificaion framework, where a
putative target is first deteded, then asdgned to a dass and

finaly (with sufficient information) identified as a particular
target within that class

The dassbased model design is simmarized in Fig. 1. Data
from an urknown target is sibmitted to a matching-pursuits [3]
fedure extrador, with the feaures sibsequently vedor quantized
(VQ) [4] using a neaest neighbar mapping in the feaure space
A classis gatigticdly defined acording to its VQ codebodk, the
angular sedors that define its gate boundries, and the
probability massfunction o the VQ codes as a function d state.
If data from atarget in the training set is not well matched to any
existing class its feaures are used to design a new class The
class sate partitions are determined by successvely maximizing
the statisticd divergence of the feaure distributions between
adjacent regions of the target using a treebased agorithm as
described in Sedion 2 In Sedion 3 we discussthe detail s of the
classassciation dedsion followed by a description d the HMM
architedure and training processin Sedion 4 The dassficaion
results on simulated aoustic scettering data ae presented in
Sedion 5
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Fig. 1. Flowchart of classassciation prior to HMM design.



2. STATE-PARSING

While it is reamgnized that man-made targets often exhibit
scdtering that is a strong function d asped, it is not necessarily
clea how to a priori partition the target into contiguous gates,
ead representing distinct scatering phenomenology. Here we
describe afeadure-based state parser used to define the HMM
structure for a particular target class We implicitly assume that
the scatering phenomenology is aufficiently represented by the
feaures themselves.

When atarget, T, in the training set is nat sufficiently matched
(elucidated in Sedion 3 with any existing target class
C,, | = 1...L, the target feaures Y = {yg}, are used to define a
new classC.;, with 8 correspondng to asped. By default, data
from the first target in the training set is used to define the first
class After pre-whitening the feaures, a K-means algorithm
employing a Euclidean distortion metric is applied to the data,
where the number of discrete mdes, K, is adapted to achieve a
pre-defined minimum distortion. Therefore the VQ operation

VQ:Y - v,v={vg:vy OL....K} Q)

is smply a mapping from feaure spaceonto the integers 1,...,K.
While VQ represents a discrete nonparametric representation o
the feaure distribution, other statisticd models (such as
continuows Gausdan mixtures) may be enployed. We desire that
the target be partitioned into states exhibiting distinct scétering
behavior, manifested by the interstate disgmilarity between
elements of v. A natural measure of the disgmil arity between two
probability mass functions p(x) and q(x) is the information-
theoretic Kullbadk-Liebler distance, or divergence, defined by

_ p(x)
D(plla)= ) p(x)log——= 2
X:zx a(x)

In this context, given quantized data v, we initidly seek to
partition the target (Fig. 2a) into two contiguous £dors § and
S, dong the a&ped 6y that maximizes the state-condtioned
divergence of the mdes

Oup =maxD(p(vIS)IP(VISH)) ©)

The sedors § and S; may ead be further partitioned given
sufficient divergence between the quantized feaure distributions
in the subsedors. This iterative treebased processis ill ustrated
in Fig. 2b, where the sedor S, is partitioned into subsedors Sy,
and Sy, whereSy =Sy O Syy . In this example, there is no

partition within § to achieve sufficient divergence to warrant
further subdvision. When the hierarchicd partitioning processis
completed, the contiguous $dors may be aranged in order from
bottom to top d the final nodesin thetree For this example, the
states of the target are represented by the ajacent partitions S,
Si Sens and Syn, with ead exhibiting sufficiently distinct
feaure distributions. Such an approach is smilar to that
employed in CART [5]. After completing the treebased state-
parsing, for convenience we re-label the states as a function o
increasing asped, S,...,Sy, with the states ganning angular
intervals of Yy,...,Wy, respedively.
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Fig. 2. Treebased partitioning of target states. a) The target is
initialy divided into two angular sedors that have distinct
feaure distributions as defined by maximizing the divergence b)
Each sedor is subsequently subdvided if there is a partition
within the sedor to achieve sufficient divergence idedly
correspondng to distinct scatering physics within the partitioned
sedor. Thefinal set of sedors are the mntiguous target states.

3. CLASSASSOCIATION

Given that a dassis charaderized by its date partitions and the
distribution o its codes within ead state, we now establi sh two
criteria sufficient for class membership. Since eab class is
representative of targets with distinct scatering behavior, a
unique debodk is designed for ead class to oltain codes
representative of the dass within a spedfied minimum mean
distortion. Feaures from atarget under test for classmembership
are quantized using the mdebodk Q, assciated with class C,,
with the @debodk containing K, codes. The number of class
dependent codes generaly varies with the complexity of the
feaures over the sampled target space which in turnis afunction
of the geometric complexity of the target, the target’s physicd
compasition, and sensor bandwidth.

Thefirst criterion for classmembership considers the global fit
between the target feaures Y and the dass codebodk Q,. If the
average quantizaion dstortion ketween the @mntinuows feaures
and the neaest-neighbar mapping is excessve, it is evident that
the cdebodk does not sufficiently represent the target, which is
therefore dedared a nonrmember of class C,. If the target data
passs the globa distortion test, the seaond criterion compares
the statistics of Y and C; at the state level. The data under test is
partitioned acwording to the M, angular sedors defined by the
statesS; ={§ 1., u, } asociated with class C,.  The total

state-by-state divergence between the target and classis a natural
measure of the locd statisticd mismatch, which is given by



M,
d(Y.Ci) = D(p(vy IS m)lIP(ve, [Sm)) (4)

m=1
where p(w | S is the probability mass function o the
quantized feaures vy from the target in the m" state of classC,,
and p(vc, |§,m) isthe probability massfunction d the dassC,

inits m" state. When (4) is aifficiently small, the datais dedared
to bein C. In the event that the fedures, Y, pass the globa
distortion test for more than ore dass then the dass that
minimizes (4) is dedared to best represent the target under test.

Examples of two targets that may pass the global distortion
test, but fail the state-divergencetest in (4) are a glindricd shell
and a sphericd shell. Given a dassdesigned onthe distribution
of the feaures from the g/lindricd shell, the scatering from the
sphere may be very similar to scatering from the o/linder at
cetain arientations. Therefore, thereislikely to be a odein the
codebodk for the g/lindricd class that is well matched to the
fedures observed from the sphere (which are identicd at all
orientations). Thus the distortion for representing the sphere
fegures may be low, but the state-dependent distribution of the
sphericd feaures may be quite disparate from the set of all
cylindricd feauresviathe g/lindricd classcodebodk.

4. HMM DESIGN

The dassbased HMMs are trained on the target data ss<ociated
with their respedive dass Prior to training the HMM s, a master
codebodk, Q, is constructed by merging the training feaures
from every member of every classand re-applying the K-means
algorithm. This ensures that the master codebodk provides
complete yet efficient sampling of the feeures from all trained
classes. The existence of the master codebodk requires that any
data submitted for clasdficaion is vedor quantized orly once,
rather than necesstating a separate VQ for ead of the dasses.
The master codebodk also serves to regulate the interclass
likelihoods assgned to a particular observation sequence under
test.

For eadt class a so-cdled geometric HMM is designed, which
we briefly describe here, with the full details of the achitedure
provided in [1]. The HMM for the dass C is
r={A, B, 1, Q, S}, where A, is the M, x M, matrix of state
transition probabiliti es, B, isaK; x M, matrix formed by the state-
condtioned probability mass function p(ve, S m)in eadr of

the wlumns, and 1tis an M, vedor compaosed of the probability of
sampling ead of the states ontheinitia observation o the multi-
asped sequence Typicdly, such an HMM is designed for eat
distinct target of interest. The novel approach presented here is
that the HMMs are designed by incorporating the fedure
statistics acoss al class members (with multiple targets in the
same dasg. Such an approad is valid since the state parsing is
identicd aaoss class members. Note that the HMM explicitly
incorporates squential information, while the dassassciation
described in Sedions 2 and 3 oy utili zes the distribution o
feaures from single observations.

A unique fedure of the geometric HMM is that A and Tt may
be diredly estimated from the knowledge of the relative target

sensor motion, with the structure of A generally constrained to
disdlow transitions other than to adjacent states. Such a
congtraint follows from our concept of state @& a @ntiguous
angular sedor of the target, and leals to a tri-diagona structure
inA.

5. CLASSIFICATION RESULTS

We present results for four target classes using simulated
aomustic scatering data generated wsing a finite-element axis
symmetric model for the targets. The targets under consideration
were submerged sted ellipsoidal shells with fixed density of
7800kg/m®, and Poison ratio of 0.3. The major axis length was
20 cm for clases C; and C, , and 60cm for classes C; and C,,
with all classes having minor axis length of 11 cm. In this paper,
we onsider a dassto constitute aset of targets that have similar,
but not identicd, physicd attributes. We therefore varied the
within-class Yourng's moduus over a uniform distribution o
width 05 x 10™ N/m? (non-overlapping between classes), with
the dass means gedfied in Table 1. Furthermore, the shell
thicknessfor al classes was sampled from a uniform distribution
with mean 1 cm, and width 0.1 cm. As defined, these dasss
exhibited sufficient within-classvariability, while still providing
a dalenging interclass identification problem as ill ustrated in
Fig. 3. Freefield scétered resporses were generated for eat
target with angular resolution d 1 degreeover 90 degrees of the
target (since the targets exhibited mirror symmetry aaoss both
major and minor axes).

Magjor, Minor Y. Mod

(cm) | (cm) N/m?
C, 20 11 2.0x104
C, 20 11 | 2.5x104
C, 60 11 | 2.0x104
c, | 60 | 11 |25x104

Table 1. Description o elli psoidal target classs. Eacd class
was charaderized by a uniform distribution o thickness and
Young's moduus as described in the text, while the externa
dimensions remained fixed.

A matching-pursuits algorithm [3] is employed for feaure
extradion, with a dictionary D, indexed by the parameters
Yo = {0n, wh, Tn, @}, Where the dictionary elements are defined
parametricdly as

e, =By cosn(t-Ty) +@le MU -1)  (6)



where U(t) is the Heaviside step function (U(t)=0 for t<0 and
U(t)=1 for t>0), and Byn is a normalizaion constant. Note that

this dictionary is capable of modeling both wavefronts (small
temporal suppat, charaderized by large damping a,) and
resonances (large temporal suppat, charaderized by small
damping a,). The timing 7, between conseadtive extraced
dictionary elements yields the gorementioned time delays. Given
a scatered waveform f(t), matching pursuits iteratively seeks to
find the dictionary element, e, that maximizes the projedion
energy KR, e>F with the residud R, Therefore, after N
iterations the partial reconstruction o fisgiven by

N
Ro = Z<Rn—lreyn >eyn +Ry, Ry =f(t) (7)

For this gudy, we performed three matching-pursuits
iterations, with the feaure vedor for the measured waveform
congtituted by y = { a1, wy, Ao, Wy, To-T1, A3, (s, T3-To}. Seven
targets were generated from ead class with two from ead class
entered into the training set, and the remaining five targets from
ead class reserved for testing. In the statisticd classtraining
phase described in Sedions 2 and 3 no a priori knowledge of
the physicd class of the training data is assumed, leaving the
algorithm to design classes based on the caraderistics of the
fedures alone. For the smulated data under consideration, our
statisticd classtrainer corredly associated every target from eath
of the predefined physicd classes. This nat only is indicaive of
the success of the dass association agorithm, but aso of the
ability of the feaures to well represent the scatering physics.
The targets in clases C;, C, Cj and C; were parsed into
3, 4, 4, and 5states respedively (over 90-degrees), indicding the
relative scattering complexity acossclasss.

Each classbased HMM, I}, was trained using the data from
the two targets associated with its class The parameters for the
model were spedfied by the geometric HMM [1] and refined
using the Baum-Welch algorithm. Data under test was saampled
at 5-degree intervals, with 10 multi-asped observations per
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Fig. 3. — Sample waveforms of various aspeds from classes a)
C, and b Cs. In the presence of moderate environmental noise,
crossclassconfusions may be likely given asingle observation.

C, 091 | 0.06 003| 00

C 002 | 0.97 0.01 0.0
2

C 0.02| 0.03 0.91 0.04
3

C 0.0 0.0 0.18 0.82
4

Table 2 — Classficaion results of five testing targets from eah
class with a tota of 1800testing sequences per class The rows
indicae the true target, while the mlumns indicate the outcome
of the dasdfier.

sequence, with ead observation corrupted by white Gaussan
noise & an SNR of 15 dB. Classficaion results are presented in
Table 2, where it is observed that class confusion is
predominantly aaosstargets of the same physicd dimensions.

6. CONCLUSIONS

We have presented a methoddogy for designing classbased
hidden Markov models for the multi-asped identification o
targets <aring common plysicd attributes. The dass
assciations for the training data may be known a priori, or as
presented here, may be alaptively determined from the statisticd
charaderistics of the fedures. The states for the HMMs were
determined using a treebased algorithm designed to maximize
the interstate feaure divergence within a given class While we
demonstrated the dfediveness of this approach to the
clasdficaion d smulated amustic scatering data, we believe it
halds potential for avariety of multi-asped sensing modaliti es.
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