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ABSTRACT

It has been demonstrated that hidden Markov models (HMMs)
provide an effective architecture for classification of distinct
targets from multiple target-sensor orientations.  In this paper,
we present a methodology for designing class-based HMMs that
are well suited to the identification of targets with common
physical attributes.  This approach provides a means to form
associations between existing target classes and data from targets
never observed in training.  After performing a wavefront-
resonance matching-pursuits feature extraction, we present an
information theoretic tree-based state-parsing algorithm to
define the HMM state structure for each target class. In training,
class association is determined by minimizing the statistical
divergence between the target under consideration and each
existing class, with a new class defined when the target is poorly
matched to each existing class. The class-based HMMs are
trained with data from the members of its corresponding class,
and tested on previously unobserved data.  Results are presented
for simulated acoustic scattering data.

1. INTRODUCTION

Hidden Markov models provide a natural architecture for target
detection and classification using multi -aspect sequential data,
when the target identity and orientation are unknown [1].  In our
previous work, we have defined the HMM states to correspond to
angular sectors of a target over which the scattering physics is
relatively invariant, with the state transition probabiliti es derived
from the relative target-sensor motion.  When sensing a sequence
of scattered waveforms from multiple target-sensor orientations,
the target is effectively sampled from a sequence of states, which
we model as a Markov process. Since the orientation of the target
is generally unknown, the sequence of sampled states is also
unknown (hidden), and is statistically deduced (via an HMM)
from the sequence of observed features.

    While it has been demonstrated that such an approach is
successful for discriminating distinct targets in a variety of
sensing environments [1,2], here we address the issue of
designing HMMs to identify target classes, where members of a
given class may share common physical attributes such as size or
physical composition. Such a detection strategy may be
incorporated into a hierarchal identification framework, where a
putative target is first detected, then assigned to a class, and

finally (with suff icient information) identified as a particular
target within that class.

    The class-based model design is summarized in Fig. 1. Data
from an unknown target is submitted to a matching-pursuits [3]
feature extractor, with the features subsequently vector quantized
(VQ) [4] using a nearest neighbor mapping in the feature space.
A class is statistically defined according to its VQ codebook, the
angular sectors that define its state boundaries, and the
probabilit y mass function of the VQ codes as a function of state.
If data from a target in the training set is not well matched to any
existing class, its features are used to design a new class.  The
class state partitions are determined by successively maximizing
the statistical divergence of the feature distributions between
adjacent regions of the target using a tree-based algorithm as
described in Section 2.  In Section 3, we discuss the details of the
class-association decision followed by a description of the HMM
architecture and training process in Section 4. The classification
results on simulated acoustic scattering data are presented in
Section 5.

Fig. 1. Flowchart of class association prior to HMM design.
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2. STATE-PARSING
While it is recognized that man-made targets often exhibit
scattering that is a strong function of aspect, it is not necessarily
clear how to a priori partition the target into contiguous states,
each representing distinct scattering phenomenology. Here we
describe a feature-based state parser used to define the HMM
structure for a particular target class. We implicitly assume that
the scattering phenomenology is suff iciently represented by the
features themselves.

    When a target, T, in the training set is not suff iciently matched
(elucidated in Section 3) with any existing target class
Cl, l = 1…L, the target features Y = { yθ} , are used to define a
new class CL+1, with θ corresponding to aspect. By default, data
from the first target in the training set is used to define the first
class. After pre-whitening the features, a K-means algorithm
employing a Euclidean distortion metric is applied to the data,
where the number of discrete codes, K, is adapted to achieve a
pre-defined minimum distortion. Therefore the VQ operation

},...,1:{,: KvvVQ ∈=→ θθvvY                     (1)

is simply a mapping from feature space onto the integers 1,…,K.
While VQ represents a discrete nonparametric representation of
the feature distribution, other statistical models (such as
continuous Gaussian mixtures) may be employed.  We desire that
the target be partitioned into states exhibiting distinct scattering
behavior, manifested by the interstate dissimilarity between
elements of v. A natural measure of the dissimilarity between two
probabilit y mass functions p(x) and q(x) is the information-
theoretic Kullback-Liebler distance, or divergence, defined by
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    In this context, given quantized data v, we initially seek to
partition the target (Fig. 2a) into two contiguous sectors SL and
SH along the aspect θL|H that maximizes the state-conditioned
divergence of the codes
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    The sectors SL and SH may each be further partitioned given
suff icient divergence between the quantized feature distributions
in the subsectors.  This iterative tree-based process is ill ustrated
in Fig. 2b, where the sector SH is partitioned into subsectors SHL

and SHH, where HHHLH SSS ∪= . In this example, there is no

partition within SL to achieve suff icient divergence to warrant
further subdivision. When the hierarchical partitioning process is
completed, the contiguous sectors may be arranged in order from
bottom to top of the final nodes in the tree.  For this example, the
states of the target are represented by the adjacent partitions SL,
SHLL, SHLH, and SHH, with each exhibiting suff iciently distinct
feature distributions. Such an approach is similar to that
employed in CART [5]. After completing the tree-based state-
parsing, for convenience we re-label the states as a function of
increasing aspect, S1,…,SM, with the states spanning angular
intervals of ψ1,…,ψM, respectively.

Fig. 2. Tree-based partitioning of target states.  a) The target is
initially divided into two angular sectors that have distinct
feature distributions as defined by maximizing the divergence. b)
Each sector is subsequently subdivided if there is a partition
within the sector to achieve suff icient divergence, ideally
corresponding to distinct scattering physics within the partitioned
sector. The final set of sectors are the contiguous target states.

3. CLASS ASSOCIATION
Given that a class is characterized by its state partitions and the
distribution of its codes within each state, we now establish two
criteria suff icient for class membership. Since each class is
representative of targets with distinct scattering behavior, a
unique codebook is designed for each class, to obtain codes
representative of the class within a specified minimum mean
distortion. Features from a target under test for class membership
are quantized using the codebook Ql associated with class Cl,
with the codebook containing Kl codes. The number of class-
dependent codes generally varies with the complexity of the
features over the sampled target space, which in turn is a function
of the geometric complexity of the target, the target’s physical
composition, and sensor bandwidth.

    The first criterion for class membership considers the global fit
between the target features Y and the class codebook Ql. If the
average quantization distortion between the continuous features
and the nearest-neighbor mapping is excessive, it is evident that
the codebook does not suff iciently represent the target, which is
therefore declared a nonmember of class Cl.  If the target data
passes the global distortion test, the second criterion compares
the statistics of Y and Cl at the state level.  The data under test is
partitioned according to the Ml angular sectors defined by the
states },...,{ ,1. lMlll SS=S associated with class Cl.  The total

state-by-state divergence between the target and class is a natural
measure of the local statistical mismatch, which is given by
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where p(vY | Sl,m) is the probabilit y mass function of the
quantized features vY from the target in the mth state of class Cl,
and )|( ,mlSvp

lC  is the probabilit y mass function of the class Cl

in its mth state. When (4) is suff iciently small , the data is declared
to be in Cl.  In the event that the features, Y, pass the global
distortion test for more than one class, then the class that
minimizes (4) is declared to best represent the target under test.

    Examples of two targets that may pass the global distortion
test, but fail the state-divergence test in (4) are a cylindrical shell
and a spherical shell .  Given a class designed on the distribution
of the features from the cylindrical shell , the scattering from the
sphere may be very similar to scattering from the cylinder at
certain orientations.   Therefore, there is li kely to be a code in the
codebook for the cylindrical class that is well matched to the
features observed from the sphere (which are identical at all
orientations).  Thus the distortion for representing the sphere
features may be low, but the state-dependent distribution of the
spherical features may be quite disparate from the set of all
cylindrical features via the cylindrical class codebook.

4. HMM DESIGN

The class-based HMMs are trained on the target data associated
with their respective class.  Prior to training the HMMs, a master
codebook, Q, is constructed by merging the training features
from every member of every class and re-applying the K-means
algorithm. This ensures that the master codebook provides
complete yet eff icient sampling of the features from all trained
classes. The existence of the master codebook requires that any
data submitted for classification is vector quantized only once,
rather than necessitating a separate VQ for each of the classes.
The master codebook also serves to regulate the interclass
likelihoods assigned to a particular observation sequence under
test.

    For each class, a so-called geometric HMM is designed, which
we briefly describe here, with the full details of the architecture
provided in [1]. The HMM for the class Cl is
ΓΓl = { Al, Bl, ππl, Ql, Sl} , where Al is the Ml x Ml matrix of state
transition probabiliti es, Bl is a Kl x Ml matrix formed by the state-
conditioned probabilit y mass function )|( ,mlSvp

lC in each of

the columns, and ππ is an Ml vector composed of the probabilit y of
sampling each of the states on the initial observation of the multi -
aspect sequence. Typically, such an HMM is designed for each
distinct target of interest.  The novel approach presented here is
that the HMMs are designed by incorporating the feature
statistics across all class members (with multiple targets in the
same class). Such an approach is valid since the state parsing is
identical across class members.  Note that the HMM explicitl y
incorporates sequential information, while the class-association
described in Sections 2 and 3 only utili zes the distribution of
features from single observations.

    A unique feature of the geometric HMM is that A and ππ may
be directly estimated from the knowledge of the relative target

sensor motion, with the structure of A generally constrained to
disallow transitions other than to adjacent states. Such a
constraint follows from our concept of state as a contiguous
angular sector of the target, and leads to a tri-diagonal structure
in A.

5. CLASSIFICATION RESULTS

We present results for four target classes using simulated
acoustic scattering data generated using a finite-element axis
symmetric model for the targets.  The targets under consideration
were submerged steel elli psoidal shells with fixed density of
7800 kg/m3, and Poisson ratio of 0.3.  The major axis length was
20 cm for classes C1 and C2 , and 60 cm for classes C3 and C4,
with all classes having minor axis length of 11 cm. In this paper,
we consider a class to constitute a set of targets that have similar,
but not identical, physical attributes. We therefore varied the
within-class Young’s modulus over a uniform distribution of
width 0.5 x 1011 N/m2 (non-overlapping between classes), with
the class means specified in Table 1. Furthermore, the shell
thickness for all classes was sampled from a uniform distribution
with mean 1 cm, and width 0.1 cm.  As defined, these classes
exhibited suff icient within-class variabilit y, while still providing
a challenging interclass identification problem as ill ustrated in
Fig. 3.  Free-field scattered responses were generated for each
target with angular resolution of 1 degree over 90 degrees of the
target (since the targets exhibited mirror symmetry across both
major and minor axes).

   Table 1. Description of elli psoidal target classes.  Each class
was characterized by a uniform distribution of thickness and
Young’s modulus as described in the text, while the external
dimensions remained fixed.

    A matching-pursuits algorithm [3] is employed for feature
extraction, with a dictionary Dγ indexed by the parameters
γn = { αn, ωn, τn, φn} , where the dictionary elements are defined
parametrically as
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Major   Minor   Y. Mod
(cm)      (cm)        N/m2

C1
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C4

20 11
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60 11 2.5x1011
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20 11



where U(t) is the Heaviside step function (U(t)=0 for t<0 and
U(t)=1 for t>0), and 

nγβ is a normalization constant. Note that

this dictionary is capable of modeling both wavefronts (small
temporal support, characterized by large damping αn) and
resonances (large temporal support, characterized by small
damping αn). The timing τn between consecutive extracted
dictionary elements yields the aforementioned time delays. Given
a scattered waveform f(t), matching pursuits iteratively seeks to
find the dictionary element, eγ, that maximizes the projection
energy |<Rn, eγ>|2 with the residual Rn.  Therefore, after N
iterations the partial reconstruction of f is given by
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    For this study, we performed three matching-pursuits
iterations, with the feature vector for the measured waveform
constituted by y = { α1, ω1, α2, ω2, τ2-τ1, α3, ω3, τ3-τ2} .  Seven
targets were generated from each class, with two from each class
entered into the training set, and the remaining five targets from
each class reserved for testing.  In the statistical class-training
phase described in Sections 2 and 3, no a priori knowledge of
the physical class of the training data is assumed, leaving the
algorithm to design classes based on the characteristics of the
features alone. For the simulated data under consideration, our
statistical class trainer correctly associated every target from each
of the predefined physical classes. This not only is indicative of
the success of the class association algorithm, but also of the
abilit y of the features to well represent the scattering physics.
The targets in classes C1, C2, C3, and C4 were parsed into
3, 4, 4, and 5 states respectively (over 90-degrees), indicating the
relative scattering complexity across classes.

    Each class-based HMM, ΓΓl, was trained using the data from
the two targets associated with its class. The parameters for the
model were specified by the geometric HMM [1] and refined
using the Baum-Welch algorithm.  Data under test was sampled
at 5-degree intervals, with 10 multi -aspect observations per

Fig. 3.  – Sample waveforms of various aspects from classes a)
C1 and b) C3.  In the presence of moderate environmental noise,
cross-class confusions may be likely given a single observation.

Table 2 – Classification results of five testing targets from each
class, with a total of 1800 testing sequences per class. The rows
indicate the true target, while the columns indicate the outcome
of the classifier.

sequence, with each observation corrupted by white Gaussian
noise at an SNR of 15 dB.  Classification results are presented in
Table 2, where it is observed that class confusion is
predominantly across targets of the same physical dimensions.

6. CONCLUSIONS

We have presented a methodology for designing class-based
hidden Markov models for the multi -aspect identification of
targets sharing common physical attributes. The class
associations for the training data may be known a priori, or as
presented here, may be adaptively determined from the statistical
characteristics of the features.  The states for the HMMs were
determined using a tree-based algorithm designed to maximize
the interstate feature divergence within a given class. While we
demonstrated the effectiveness of this approach to the
classification of simulated acoustic scattering data, we believe it
holds potential for a variety of multi -aspect sensing modaliti es.
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