
VECTOR PROCESSING IN SCALAR PROCESSORS FOR SIGNAL PROCESSING
ALGORITHMS

Michael T. Brady, J. Q. Trelewicz

IBM Printing Systems Division
6300 Diagonal Highway, Boulder, CO 80301

{mtbrady,trelewic}@us.ibm.com

Joan L. Mitchell

IBM T. J. Watson Research Center
Route 134, Yorktown Heights, NY 10598

joanm@us.ibm.com

ABSTRACT

Product requirements often dictate the use of off-the-shelf
processors for very fast signal processing applications. Ad-
ditionally, restrictions on cost, power, or size/weight may
preclude the use of specialized vector processors for im-
plementation of the algorithms. We discuss a new method
for performing signed parallel processing in scalar, off-the-
shelf processors for integerized signal processing algorithms.
Uniform data precision may be used, but is not required
for the method. It is shown that the reduction in execution
cycles resulting from this implementation is approximately
linear in the size of the registers, divided by the precision
required.

1. INTRODUCTION

Fast product schedules often require the use of standard
components, where available, for product development. In
the case of signal processing products, this can mean the use
of off-the-shelf processors, which may be organized into
multiple-processor systems with parallel computing capa-
bility. However, many popular signal processing algorithms
can be calculated with limited precision without affecting
the acceptability of the result. For example, the Integer Co-
sine Transform (ICT) [1] can be used to approximate the
DCT in integer processors with configurable precision. In
these cases where limited precision may be used, the ad-
ditional bits provided by 32-bit, 64-bit and larger proces-
sors are “wasted” during the calculation. Exploiting this re-
dundant precision capability can afford the developer even
greater parallel processing capability in conventional pro-
cessor configurations.

The methods described in this paper1 were developed
for addressing this need with two’s-complement arithmetic.
Data which can be processed in parallel, because of the
algorithm structure, are packed in a “vector” format (de-
scribed below) into registers. Many signed arithmetic op-

1Patents have been applied for. Joan L. Mitchell is currently on tempo-
rary assignment at IBM PSD.

erations can be performed on these vectors, including ad-
dition, subtraction, multiplication by scalars, shifting, and
others. When the parallel processing is completed, the vec-
tors can be unpacked into scalar values for storage or subse-
quent processing. The importance of these methods lies in
their handling of carries and borrows in the packed vectors
format. The vector method can be especially advantageous
in speeding up operations such as the direct 2-D DCT [2].

Methods for performing parallel processing of data streams
in conventional registers have been used for applications
such as the parallel parsing of data communication frames
[3]. However, such bit parsing methods are not appropriate
for signal processing applications, where a range of arith-
metic operations must be applied to the data. A flexible
arithmetic logic unit (ALU) with carry blocks between each
bit has been designed [4]. This ALU allows registers to be
partitioned into multiple data for performing parallel pro-
cessing. In contrast, the method described in this paper al-
lows multiple data to be processed as vectors in registers of
conventional processors and ALUs.

2. VECTOR REPRESENTATION

Because carries and borrows in any one element, or member
of the vector, will propagate left through the register, multi-
ple signed data packed into a single register may be affected
by operations performed on the other elements in the regis-
ter. For this reason, the elements are stored in the register in
a “vector” representation, which allows the signed elements
to be broken back into scalar values after parallel processing
is complete.

A vector comprisingk packed elementsαj numbered
from 1 at the right of the register throughk at the left of
the register will be denoted(αk, · · · , α2, α1). Denote the
corresponding unpacked data as〈αk, · · · , α2, α1〉.

2.1. Packing the vector

Before the vector can be packed, the number of bits re-
quired for the worst-case final value (after processing) must



be known. For example, addition and subtraction operations
each require no more than one bit of additional precision to
accommodate their worst-case results, while multiplication
by anm-bit number requires no more thanm additional bits
to hold the result. The worst-case additional precision re-
quired can be obtained by calculating the required precision
for each operation. On the other hand, the programmer may
also have specific knowledge of the data and the operations,
which may allow the final precision to be allocated more
tightly; e.g., the programmer may know that a specific algo-
rithm takingm additions requires onlyk < m bits for the
result because of the structure of the data, allowing tighter
packing of the vector.

Call the number of bits allocated for the operationsno.
Note that, because of the parallel processing,no must be
the maximum needed for any element in the vector. An ad-
ditional bit may need to be allocated if the one-cycle unpack
described in Section 2.2 is used. Call the required number
of these additional bitsnup, which may be larger than one
if unpacking is performed several times during vector pro-
cessing. (This additional bit is only required for elements
which propagate borrows to the left in the register, so the
additional bit is never required for the leftmost element.)
Furthermore, as described in Section 2.3, the maximum-
magnitude negative number cannot be permitted to occur
in any element. This may require the allocation of an ad-
ditional bit to prevent this condition, denotednn,j ∈ {0, 1}
for thejth element.

Call the input precision of thejth elementni,j . Then,
for an N -bit register, the packed vector can containk ele-
ments only if

N ≥ kno + (k − 1)nup +
k

∑

j=1

(nn,j + ni,j) .

Packing of the input values is then performed as fol-
lows. The`th element to be packed is shifted left by(` −
1)(no + nup) +

∑`−1
j=1 nn,j + ni,j bits and added to the reg-

ister contents. (Cycles may be saved by noticing that non-
negative elements may all be shifted into position and added
into the register at once, since these elements have no sign
bits to propagate through the vector.) Packing is done in
this manner to ensure that the sign bits of negative elements
are propagated left through the vector, which is necessary to
accommodate signed operations.

2.2. Unpacking the vector

When the vector operations have been completed, the ele-
ments may be unpacked for storage or subsequent process-
ing of the elements. Unpacking may be done using one of
two methods. The first method, which is used in the ex-
ample of Section 4, requires an additional sign bit, so that

nup = 1, but unpacking may then be performed in fewer
steps. A mask is generated with a one bit at every ele-
ment’s leftmost bit (except for the leftmost element), and
zeros elsewhere. The mask is “and”ed with the register con-
tents and added back to the register (some processors allow
a mask-and-copy operation to be performed in a single cy-
cle.) This causes the sign bits, which reflect the previous
propagation of borrows, to be propagated through the reg-
ister, removing the effect of previous borrows. The left-
most bit of each element (except the leftmost element) is
no longer a sign bit and should be discarded. Now, thejth
element is stored in two’s-complement notation in its own
no + nn,j + ni,j bits of the register, and can be masked off
and stored elsewhere.

Another method of unpacking allowsnup = 0 but uses
extra cycles of execution. Starting with the rightmost ele-
ment in the register and moving left one element at a time,
the leftmost (sign) bit of the element is masked, shifted left
by one bit, and added to the next element. This removes the
effects of propagated borrows in the register, one element
at a time. It is simple to verify that this procedure cannot
be performed in the single step of the single-step sign mask
and add procedure described above: consider a vector com-
prising (−1, 0,−1). With two total bits per element, the
vector notation is 10 11 11, which, if added with the single-
step shifted sign bit mask of 01 01 00 yields 00 00 11, the
incorrect unpacked result.

2.3. Carries and borrows

An important feature of this vector method is its handling
of carries and borrows between elements: a borrow or carry
incurred on one element in the vector propagates through
the register to the left, potentially affecting all bits (and thus
all elements) to the left.

Firstly, a borrow can never follow a borrow in an ele-
ment: borrows can only occur through sign reversal from
non-negative to negative, and from underflow. The way in
which precision is allocated in the register, including the use
of thenn,j parameter, ensures that underflow can never oc-
cur. (If the maximum-magnitude negative number rule were
not used, a maximum-magnitude negative number with a
borrow propagating left from another element could under-
flow.)

Furthermore, the restriction on the allocated precision
for each element ensures that an overflow cannot occur. Thus,
the only way in which a carry can occur in an element is
through a sign reversal from negative to non-negative. Note
that the packing of the elements ensures that a negative el-
ement will always have propagated a borrow left as part of
the packing. Furthermore, an element changing sign from
non-negative to negative will always propagate a borrow left
in the register as part of its sign reversal. Thus, a carry can
only follow a borrow. The result is that the single borrow



in the element under consideration resembles the addition
of -1 to the element immediately to the left, while the +1 of
the carry cancels this -1.

The vector data may thus be related to the two’s com-
plement notation of unpacked elements by considering each
element initiating a propagating borrow (i.e., changing sign
from non-negative to negative) to add -1 to the element im-
mediately to the left. Thus, the vector data can be mapped
uniquely to the unpacked signed elements by the following:

(αk, · · · , α2, α1)

≡ 〈αk[−bk−1], · · · , α2[−b1], α1〉 , (1)

wherebj ∈ {0, 1} signifies the occurrence or nonoccur-
rence of a propagating borrow from elementj. Since a
borrow only propagates left from elementj if element j
has changed sign (or been originally packed as negative), at
most one borrow can occur on any one element, including
the possible sign-change effect from propagating borrows.
This is the justification for using thenn,j parameter.

3. VECTOR ARITHMETIC

This vector architecture supports a number of arithmetic op-
erations, which are described in detail below.

3.1. Negation

As is well known, two’s complement negation essentially
inverts each bit in the register, then adding one to the right-
most bit. That register negation results in vector negation
can be seen by considering (1):

−〈αk[−bk−1], · · · , α2[−b1], α1〉
= 〈−αk − 1[+bk−1], · · · ,−α2 − 1[+b1],−α1〉
since the +1 is only added to the rightmost element

=
〈

−αk[−b′k−1], · · · ,−α2[−b′1],−α1
〉

,

whereb′j is one iff elementj is negative (i.e., was posi-
tive before the negation), and zero else. That this works
whenαj = 0 results from the left-propagating carry result-
ing from the negation of zero: in this case,bj = 0, so that
−1 + bj + carry= 0 = b′j .

3.2. Addition and subtraction

Addition and subtraction between vectors require that the
two vectors under consideration use the same element align-
ment. Addition which does not result in a carry or borrow in
any one element is straightforward, since no carries or bor-
rows will be propagated left through the register. The gen-
eration of a carry or borrow in any element will cause the
propagation of such carry or borrow left through the regis-
ter. However, since the ALU performs addition from right

to left in the register, the carries and borrows from all el-
ements are propagated essentially one at a time, following
the same form as the packing of the register.

Subtraction works by a similar principle, since it is equiv-
alent to negating the one vector and adding it to the other
vector.

3.3. Scalar multiplication

Scalar multiplication by a positive number follows from ad-
dition (the effective adding of the vector to itself multiple
times), while scalar multiplication by a negative number
also follows from negation.

3.4. Shifts

The operation of a left shift is straightforward, since each
single-bit shift left is essentially equivalent to multiplication
by two, which was discussed above. Arithmetic shift right
requires unpacking the elements, performing shifts and sign
extensions, and then repacking the data.

3.5. Compares

Determining whether an element is in a range around zero
(for example, as is done in quantization to zero), requires
having the lower boundary of the range for comparison packed
into a vector. The vector of boundaries is subtracted from
the vector under test. The vector is then unpacked, and each
element is compared to its range individually by shifting
the unpacked vector left until the element under test is at
the left of the register. Since the test is whether an element
is less than the range in question, the remaining unpacked
elements to the right of the element under test in the register
do not affect the result of the comparison.

Arithmetic non-equality compares exploit the additional
bit of precision that may be allocated to ensure that the
maximum-magnitude negative number cannot occur in any
element in the vector. The vector need not be unpacked
prior to comparison. Consider thejth element under test,
αj . The leftmost bit of thej − 1th element is one if a bor-
row has been propagated into thejth element, and zero oth-
erwise. (The rightmost element can be considered to always
have this adjacent bit be zero.) The comparison can then be
done directly on the bits corresponding to the (packed)jth
element concatenated with this extra bit of precision (call
this thejth pattern.) IfC is the number against which to
compare, the comparison pattern will be2C − 1 to accom-
modate the possibility of the borrow. If no borrow occurred
on the element under test, the test will compare2C − 1 to
2αj . If a borrow occurred, the test compares to2αj − 1.
This structure allows for testing≥, >, <,≤.



4. EXAMPLE

This example is intended to show the operation of this vec-
tor computing architecture. A small number of bits are used
to illustrate the principles without introducing unneeded com-
plexity.

Considerk = 3, no = 4, nu = 1, and ni,j = 3
for j ∈ {2, 3} and4 for j = 1. All steps are shown in
Table 1. Thenv1 = (2, 0,−7) is represented in the reg-
ister as shown in the table to〈2[−1], 0[−1],−7〉. Simi-
larly, v2 = (−1, 1, 5) is represented as〈−1, 1, 5〉. The in-
termediate resultv1 + v2 is expected to be(1, 1,−2) =
〈1, 1[−1],−2〉, which is verified by unpacking. Multiply-
ing by -2 is shown first as multiplying by 2 and then by
negation (Only two bits were reserved inno for the multi-
plication, since the magnitude of the scalar multiplier takes
only two bits.) The intermediate result is(−2,−2, 4) =
〈−2[−1],−2, 4〉, which is verified by unpacking. The final
operation shown subtracts from−2(v1+v2) the vectorv3 =
(1,−2, 6) = 〈1[−1],−2, 6〉. The unpacked final result is
verified to be the expected(−3, 0,−2) = 〈−3[−1], 0[−1],−2〉.

This vector-arithmetic method can be applied to the DCT
to increase the throughput of a JPEG encoder or decoder.
With 8-bit input data,ni = 8 for all input data in the block.
Consider the 1-D DCT, described by the matrix equation
DF = F̂ . For an8 × 8 block of data, the 8 columns of
F may be packed into one or more registers in parallel, re-
sulting in a computational speedup on the order of the num-
ber of elements in the vector (minus packing and unpacking
overhead) by performing the transform on columns packed
as vectors. The same method may be used for the transform
of the rows with the transpose ofD.

5. CONCLUSIONS

This vector method for parallel data processing has been
shown to allow signed arithmetic operations on the vectors,
with capability for unpacking to signed scalar data after par-
allel processing is complete. When the register accommo-
datesn signed elements in a vector, a speedup on the order
of n is shown, because of the low overhead associated with
packing and unpacking. It is anticipated that this method
can be extended beyond the DCT to a number of other sig-
nal processing algorithms that lend themselves to parallel
execution of operations.

6. REFERENCES

[1] T.-C. J. Pang, C.-S. O. Choy, C.-F. Chan, and W.-K.
Cham, “A self-timed ICT chip for image coding,”IEEE
trans. circuits and systems for video technology, vol. 9,
no. 6, pp. 856–860, 1999.

[2] I. Kuroda, “Processor architecture driven algorithm op-
timization for fast 2D DCT,” inVLSI Signal Processing,
VIII , (Sakai, Japan), pp. 481–490, 1995.

[3] J. Calvignac, J. Feraud, B. Naudin, C. Pin, and E. Saint-
Georges,Parallel processing method and device for re-
ceiving and transmitting HDLC SDLC bit streams. US
Patent 5119478, 1992.

[4] M. D. Bates, N. D. Butler, A. C. Gay, J. H. Kim, and
R. M. West,Arithmetic logic unit. US Patent 5081607,
1992.

00000000 00000000 000000000
00000010 00000000 000000000

+ 11111111 11111111 111111001
00000001 11111111 111111001

Packingv1

00000001 11111111 111111001
+ 11111111 00000001 000000101

00000001 00000000 111111110
v1 + v2

00000001 00000000 111111110
+ 00000000 00000000 100000000

00000001 x0000001 x11111110
v1 + v2 unpacked

00000001 00000000 111111110
× 00000000 00000000 000000010

00000010 00000001 111111100
× 11111111 11111111 111111111

11111101 11111110 000000100
−2(v1 + v2)

11111101 11111110 000000100
+ 00000000 10000000 000000000

11111110 x1111110 x00000100
−2(v1 + v2) unpacked

11111101 11111110 000000100
- 00000000 11111110 000000110

11111100 11111111 111111110
−2(v1 + v2)− v3

11111100 11111111 111111110
+ 00000000 10000000 100000000

11111101 x0000000 x11111110
−2(v1 + v2)− v3 unpacked

Table 1: Vector arithmetic example


