VECTOR PROCESSING IN SCALAR PROCESSORS FOR SIGNAL PROCESSING

ALGORITHMS
Michael T. Brady, J. Q. Trelewicz Joan L. Mitchell
IBM Printing Systems Division IBM T. J. Watson Research Center
6300 Diagonal Highway, Boulder, CO 80301 Route 134, Yorktown Heights, NY 10598
{mtbrady,trelewi¢@us.ibm.com joanm@us.ibm.com
ABSTRACT erations can be performed on these vectors, including ad-

dition, subtraction, multiplication by scalars, shifting, and
others. When the parallel processing is completed, the vec-
tors can be unpacked into scalar values for storage or subse-
quent processing. The importance of these methods lies in
their handling of carries and borrows in the packed vectors

Product requirements often dictate the use of off-the-shelf
processors for very fast signal processing applications. Ad-
ditionally, restrictions on cost, power, or size/weight may

preclude the use of specialized vector processors for im-

plementation of the algorithms. We discuss a new methodf h h iall
for performing signed parallel processing in scalar, off-the- _ormat. T e vector m‘?t od can be especially advantageous
' in speeding up operations such as the direct 2-D DCT [2].

shelf processors for integerized signal processing algorithms. Methods for performing parallel processing of data streams

Uniform data precision may be used, but is not required in conventional registers have been used for applications
for the method. It is shown that the reduction in execution 9 PP

) o o . such as the parallel parsing of data communication frames
cycles resulting from this implementation is approximately

linear in the size of the registers, divided by the precision P]' Howclaver, such bit parﬁmg_ methocri]s are not appr(f:)prlgrt]e
required. or signal processing applications, where a range of arith-

metic operations must be applied to the data. A flexible
arithmetic logic unit (ALU) with carry blocks between each
1. INTRODUCTION bit has been designed [4]. This ALU allows registers to be
partitioned into multiple data for performing parallel pro-
Fast product schedules often require the use of standargtessing. In contrast, the method described in this paper al-
components, where available, for product development. Injows multiple data to be processed as vectors in registers of
the case of signal processing products, this can mean the usgonventional processors and ALUSs.
of off-the-shelf processors, which may be organized into
multiple-processor systems with parallel computing capa-
bility. However, many popular signal processing algorithms

can be calcu_lf_;\ted with limited precision without affectingse carries and borrows in any one element, or member
the aiceptz?bnlty ?Cf:tThe ;esult. l;or exa(;nple, the In_teger C;]O' of the vector, will propagate left through the register, multi-
sine ‘ransform (€T [1] can be used to approximate the ple signed data packed into a single register may be affected
DCT in integer processors with pqnflgurable precision. In by operations performed on the other elements in the regis-
thse (I:akljgzes Whg;e grg|te§2pgeclgf';,maydble used, the adze, For this reason, the elements are stored in the register in
itional bits provided by 32-bit, 64-bit and larger proces- « oo representation, which allows the signed elements

Sors are was_te_d during Fhe calculation. Exploiting this re- to be broken back into scalar values after parallel processing
dundant precision capability can afford the developer even,g complete

greater parallel processing capability in conventional pro- A vector comprisingk packed elements; numbered

2. VECTOR REPRESENTATION

cessor configurations.)) i from 1 at the right of the register throughat the left of
The me'thods_ descrlbed in this papevere deve.loped. the register will be denoteft, - - -, a2, ;). Denote the
for addressing this need with two’s-complement arithmetic. corresponding unpacked data(ag, - - -, s, a1).

Data which can be processed in parallel, because of the
algorithm structure, are packed in a “vector” format (de-
scribed below) into registers. Many signed arithmetic op-

1patents have been applied for. Joan L. Mitchell is currently on tempo- Be.fore the vector can be_ packed, the number qf bits re-
rary assignment at IBM PSD. quired for the worst-case final value (after processing) must

2.1. Packing the vector

be known. For example, addition and subtraction operationsn,, = 1, but unpacking may then be performed in fewer
each require no more than one bit of additional precision to steps. A mask is generated with a one bit at every ele-
accommodate their worst-case results, while multiplication ment’s leftmost bit (except for the leftmost element), and
by anm-bit number requires no more thanadditional bits zeros elsewhere. The mask is “and”ed with the register con-
to hold the result. The worst-case additional precision re- tents and added back to the register (some processors allow
quired can be obtained by calculating the required precisiona mask-and-copy operation to be performed in a single cy-
for each operation. On the other hand, the programmer maycle.) This causes the sign bits, which reflect the previous
also have specific knowledge of the data and the operationspropagation of borrows, to be propagated through the reg-
which may allow the final precision to be allocated more ister, removing the effect of previous borrows. The left-
tightly; e.g., the programmer may know that a specific algo- most bit of each element (except the leftmost element) is
rithm takingm additions requires only < m bits for the no longer a sign bit and should be discarded. Now,jthe
result because of the structure of the data, allowing tighterelement is stored in two’s-complement notation in its own

packing of the vector. no + Ny j + 14 ; bits of the register, and can be masked off
Call the number of bits allocated for the operations and stored elsewhere.
Note that, because of the parallel processimgmust be Another method of unpacking allows,,, = 0 but uses

the maximum needed for any element in the vector. An ad- extra cycles of execution. Starting with the rightmost ele-
ditional bit may need to be allocated if the one-cycle unpack ment in the register and moving left one element at a time,
described in Section 2.2 is used. Call the required numberthe leftmost (sign) bit of the element is masked, shifted left
of these additional bits,,;,, which may be larger than one by one bit, and added to the next element. This removes the
if unpacking is performed several times during vector pro- effects of propagated borrows in the register, one element
cessing. (This additional bit is only required for elements at a time. It is simple to verify that this procedure cannot
which propagate borrows to the left in the register, so the be performed in the single step of the single-step sign mask
additional bit is never required for the leftmost element.) and add procedure described above: consider a vector com-
Furthermore, as described in Section 2.3, the maximum-prising (—1,0, —1). With two total bits per element, the
magnitude negative number cannot be permitted to occurvector notation is 10 11 11, which, if added with the single-
in any element. This may require the allocation of an ad- step shifted sign bit mask of 01 01 00 yields 00 00 11, the

ditional bit to prevent this condition, denoteg ; € {0,1} incorrect unpacked result.
for the jth element.
Call the input precision of thgth elementr; ;. Then, 2.3. Carries and borrows
for an N-bit register, the packed vector can contaiele- i i o]
ments only if An important feature of this vector method is its handling
of carries and borrows between elements: a borrow or carry
k incurred on one element in the vector propagates through
N > kno+ (k—Dnyp + Z (Mn,j +1i5) - the register to the left, potentially affecting all bits (and thus
j=1 all elements) to the left.

Firstly, a borrow can never follow a borrow in an ele-

Packing of the input values is then performed as fol- ment: borrows can only occur through sign reversal from
lows. Thelth element to be packed is shifted left by— non-negative to negative, and from underflow. The way in
1)(no + nup) + Zf;} ny,; +ni,; bits and added to the reg- which precision is allocated in the register, including the use
ister contents. (Cycles may be saved by noticing that non-of then,, ; parameter, ensures that underflow can never oc-
negative elements may all be shifted into position and addedcur. (If the maximum-magnitude negative number rule were
into the register at once, since these elements have no sigmot used, a maximum-magnitude negative number with a
bits to propagate through the vector.) Packing is done inborrow propagating left from another element could under-
this manner to ensure that the sign bits of negative elementglow.)
are propagated left through the vector, which is necessaryto Furthermore, the restriction on the allocated precision
accommodate signed operations. for each element ensures that an overflow cannot occur. Thus,
the only way in which a carry can occur in an element is
through a sign reversal from negative to non-negative. Note
that the packing of the elements ensures that a negative el-
When the vector operations have been completed, the eleement will always have propagated a borrow left as part of
ments may be unpacked for storage or subsequent processhe packing. Furthermore, an element changing sign from
ing of the elements. Unpacking may be done using one of non-negative to negative will always propagate a borrow left
two methods. The first method, which is used in the ex- in the register as part of its sign reversal. Thus, a carry can
ample of Section 4, requires an additional sign bit, so that only follow a borrow. The result is that the single borrow

2.2. Unpacking the vector

in the element under consideration resembles the additionto left in the register, the carries and borrows from all el-
of -1 to the element immediately to the left, while the +1 of ements are propagated essentially one at a time, following
the carry cancels this -1. the same form as the packing of the register.

The vector data may thus be related to the two’'s com- Subtraction works by a similar principle, since itis equiv-
plement notation of unpacked elements by considering eachalent to negating the one vector and adding it to the other
element initiating a propagating borrow (i.e., changing sign vector.
from non-negative to negative) to add -1 to the element im-
mediately to the left. Thus, the vector data can be mapped
uniquely to the unpacked signed elements by the following: 3.3. Scalar multiplication

(g, ag,ay) Scalar multiplication by a positive number follows from ad-

= (ar[=br_r],- -, as[=bi], a1) @ dition (the effective adding of the vector to itself multiple
T times), while scalar multiplication by a negative number

whereb; € {0,1} signifies the occurrence or nonoccur- also follows from negation.

rence of a propagating borrow from element Since a

borrow only propagates left from elemeptf element .

has changed sign (or been originally packed as negative), al?"4' Shifts

most one borrow can occur on any one element, includingrpe gperation of a left shift is straightforward, since each
the possible sign-change effect from propagating borrOWS'single-bitshift left is essentially equivalent to multiplication

This is the justification for using the,, ; parameter. by two, which was discussed above. Arithmetic shift right
requires unpacking the elements, performing shifts and sign

3. VECTOR ARITHMETIC extensions, and then repacking the data.
This vector architecture supports a number of arithmetic op-
erations, which are described in detail below. 3.5. Compares
3.1. Negation Determining whether an element is in a range around zero

(for example, as is done in quantization to zero), requires
As is well known, two's complement negation essentially having the lower boundary of the range for comparison packed
inverts each bit in the register, then adding one to the right- into a vector. The vector of boundaries is subtracted from
most bit. That register negation results in vector negation the vector under test. The vector is then unpacked, and each

can be seen by considering (1): element is compared to its range individually by shifting
the unpacked vector left until the element under test is at
— (o [=bk—1], -+, a2[=b1], 1) the left of the register. Since the test is whether an element
= (—ap — 1[+bg—1], -, —as — 1[+b1], —a1) is less than the range in question, the remaining unpacked

since the +1 is only added to the rightmost element elements to the right of the element under test in the register
do not affect the result of the comparison.

Arithmetic non-equality compares exploit the additional
whered’. is one iff elementj is negative (i.e., was posi- Dit of precision that may be allocated to ensure that the

tive before the negation), and zero else. That this works Maximum-magnitude negative number cannot occur in any
whena; = 0 results from the left-propagating carry result- element in the vector. The vector need not be unpacked

ing from the negation of zero: in this cade,= 0, so that prior to comparisop. Consider thi¢h elemgnt un(_jer test,
—14b; + carry= 0=, a;. The leftmost bit of thgf — 1th element is one if a bor-
J

row has been propagated into tjth element, and zero oth-
erwise. (The rightmost element can be considered to always
have this adjacent bit be zero.) The comparison can then be
Addition and subtraction between vectors require that the done directly on the bits corresponding to the (packgh)

two vectors under consideration use the same element alignelement concatenated with this extra bit of precision (call
ment. Addition which does not result in a carry or borrow in this the jth pattern.) IfC is the number against which to
any one element is straightforward, since no carries or bor-compare, the comparison pattern will € — 1 to accom-
rows will be propagated left through the register. The gen- modate the possibility of the borrow. If no borrow occurred
eration of a carry or borrow in any element will cause the on the element under test, the test will compate— 1 to
propagation of such carry or borrow left through the regis- 2«;. If a borrow occurred, the test compares2te; — 1.

ter. However, since the ALU performs addition from right This structure allows for testing, >, <, <.

= <7O‘k’[7b;c—1]’ T 70‘2[717/1]7 70‘1>)

3.2. Addition and subtraction

4. EXAMPLE [2] 1. Kuroda, “Processor architecture driven algorithm op-

timization for fast 2D DCT,” invLSI Signal Processing,
This example is intended to show the operation of this vec- VI, (Sakai, Japan), pp. 481-490, 1995.
tor computing architecture. A small number of bits are used
to illustrate the principles without introducing unneeded com
plexity.

Considerk = 3, n, = 4, ny, = 1, andn;; = 3
for j € {2,3} and4 for j = 1. All steps are shown in
Table 1. Therw; = (2,0, —7) is represented in the reg-

ister as shown in the table #®[—1],0[—1],—7). Simi-

[3] J. Calvignac, J. Feraud, B. Naudin, C. Pin, and E. Saint-
GeorgesParallel processing method and device for re-
ceiving and transmitting HDLC SDLC bit streamdS
Patent 5119478, 1992.

[4] M. D. Bates, N. D. Butler, A. C. Gay, J. H. Kim, and
R. M. West,Arithmetic logic unit US Patent 5081607,

larly, v = (—1,1,5) is represented as-1,1,5). The in-
termediate result; + vy is expected to bél,1,—2) =
(1,1[-1],—2), which is verified by unpacking. Multiply-

1992.

ing by -2 is shown first as multiplying by 2 and then by 00000000 00000000 000000000
negation (Only two bits were reservedng for the multi- 00000010 00000000 000000000
plication, since the magnitude of the scalar multiplier takes + 11111111 11111111 111111001
only two bits.) The intermediate result {s-2,—2,4) = 00000001 11_111111 111111001
(—2[—1], —2,4), which is verified by unpacking. The final Packingu,
operation shown subtracts froa2 (v, +vs) the vectows =
(1,-2,6) = (1[-1],—2,6). The unpacked final result is 00000001 11111111 111111001
verified to be the expectdd-3,0, —2) = (—3[—1],0[—1], —2). + 11111111 00000001 000000101
This vector-arithmetic method can be applied to the DCT 00000001 00000000 111111110
to increase the throughput of a JPEG encoder or decoder. U1 U2
With 8-bit input datayn; = 8 for all input data in the block.
Consider the 1-D DCT, described by the matrix equation 00000001 00000000 111111110
DF = F. For an8 x 8 block of data, the 8 columns of *+ 00000000 00000000 100000000
F may be packed into one or more registers in parallel, re- 00000001 x0000001 ~x11111110
sulting in a computational speedup on the order of the num- v1 + vz unpacked
ber of elements in the vector (minus packing and unpacking
overhead) by performing the transform on columns packed 00000001 00000000 111111110
as vectors. The same method may be used for the transform 00000000 00000000 000000010
of the rows with the transpose éf. 00000010 00000001 111111100
x 11111111 11112111 111111111
11111101 111112110 000000100
5. CONCLUSIONS —2(v1 + v2)
This vector method for parallel data processing has been 11111101 11111110 000000100
shown to allow signed arithmetic operations on the vectors, + 00000000 10000000 000000000
with capability for unpacking to signed scalar data after par- 11111110 x1111110 x00000100
allel processing is complete. When the register accommo- —2(v1 + v2) unpacked
datesn signed elements in a vector, a speedup on the order
of n is shown, because of the low overhead associated with 11111101 11111110 000000100
packing and unpacking. It is anticipated that this method - 00000000 11111110 000000110
can be extended beyond the DCT to a number of other sig- 11111100 11111111 111111110
nal processing algorithms that lend themselves to parallel —2(v1 + vg) — 3
execution of operations.
11111100 11112111 112111110
+ 00000000 10000000 100000000
6. REFERENCES 11111101 x0000000 x11111110

[1] T.-C. J. Pang, C.-S. O. Choy, C.-F. Chan, and W.-K.
Cham, “A self-timed ICT chip for image codingdEEE
trans. circuits and systems for video technology. 9,
no. 6, pp. 856-860, 1999.

—2(v1 + v2) — vs unpacked

Table 1: Vector arithmetic example

