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ABSTRACT

Transient scatered fields from a genera target are composed of
wavefronts, resonances and time delays, with these @mnstituents
linked to the target geometry. A clasdfier applied to transient
scatering data requires a statisticd model for such fundamental
congtituents. A Markov model is employed to charaderize the
transient scettered fields - for a set of target-sensor orientation
over which the transient scatering is dationary - utilizing a
wavefront, resonance, time-delay “alphabet”. The Markov model
is utilized in a dasdfier developed for multi-asped transient
scdtering data, with a hidden Markov model (HMM) employed
to addressthe generall y nonstationary nature of the multi-asped
waveforms. Each state of the HMM is charaderistic of a set of
target-sensor orientations for which the scatering statistics are
stationary, the statistics of which are caraderized via the
aforementioned Markov model. The wavefront, resonance and
time-delay feaures are etraded via a modified matching-
pursuits agorithm.

1. INTRODUCTION

The dasdficdion d a target based on multi-asped scatered
waveforms congtitutes a problem of long-standing interest.
Scenarios for which this problem is relevant include target
detedion via synthetic goerture radar (SAR), in which the
synthetic gerture implies the target is viewed from multiple
orientations, or aspeds. In the work presented here, we ae
interested in the detedion and clasdficaion d a submerged
(underwater) elastic target, based on awmustic scdtering data,
with the sensor sequentially positioned such that the target is
viewed from multiple orientations [1]. The cmplicaion in these
sensor problems is manifested in the fad that in pradice both the
target identity and aientation are unknown, necesdtating the
clasdfier to berobust to such urcertainty.

The hidden Markov model (HMM) has proven to be an effedive
tod for processng multi-asped scatering data [1,2], with eath
HMM state mrrespondng to a generally contiguous <t of target-
sensor orientations over which the associated scatered fields are
Statisticdly stationary. When sensing a set of scatered
waveforms from multiple orientations, we therefore implicitly
sample waveforms from the different target states, with some
states sampled more than orce, and ahers not at all, depending
on the target-sensor orientations considered. The sequence of
sampled states is modeled via a Markov model, and since the

target orientation (and identity) is unknown, the states being
sampled are “hidden”, necesstating aHMM.

The ontribution o this paper involves the datisticd
charaderizaion d the HMM states, for transient scatering data.
The scatering data is parsed via amodified form of matching
pursuits, employing a wavefront-resonance dictionary. The
matching-pursuits parsing charaderizes the transient scatered
fields in terms of a sequence of wavefronts, resonances and time
delays, sequentialy arranged with increasing time (from left to
right, as in speed). This implies that the scatered fields are
charaderized by three caoricd members of an alphabet, with
the sequence of such modeled via aMarkov model, as applied in
clasdcd language models [3]. Each HMM state is charaderistic
of a distinct classof scatering phenomenology, and is therefore
represented by a distinct Markov model, for the wavefrort,
resonance and time delay aphabet. This date-dependent model is
closely conreded with the underlying scatering physics, as
compared with vedor quantization and Gausgan-mixture models
utilized previously [1,2]. We demonstrate that the HMM model
with Markov state descriptor performs well in its role & a
clasdfier. Moreover, by conreding the statisticd model to the
underlying scétering physics, one can address fundamental
information-theoretic constructs such as the mutual information
between dfferent target models [4].

2. MODIFIED MATCHING PURSUITS

Asaume we have ascatered waveform f(t) that we wish to parse
in terms of its underlying scdtering medchanisms. Discrete
scdterers on a target (edges, corners, etc.) generally give rise to
temporally locdized scdtered fields, with these termed
wavefronts. Wavefronts are typicdly a dlightly modified form of
the ecitation puse. When multiple wavefronts are dosely
spaced temporaly, the set of wavefronts is represented more
compadly in terms of a resonance For example, the (resonant)
ringing head from a bell corresponds to a sequence of
wavefronts, as the underlying acoustic wave drcumnavigates the
bell surface shedding amustic energy on every rotation. The
temporal spadng between wavefronts and resonances is
charaderistic of the spatial separation between dfferent target
scdterers, this aso containing important underlying information.
We therefore seek to parse the transient scatered fields into their
fundamental wavefront, resonance and time delay constituents.
This is effeded by employing a modified form of matching



pursuits[5]. In particular, define adictionary Dy indexed by the
parameters Y ={dn,wn,Tn. @} , With dctionary elements
defined parametricdly as

ey, (1) = Ky, cosfon(t 1) +gple @ U -1) ()
where U(t) is the Heaviside step function (U(t)=0 for t<0 and

U(t)=1 for t>0), and KVn is a normali zation constant. Note that

this dictionary is capable of modeling both wavefronts (small
temporal suppat, charaderized by large damping apn) and
resonances (large temporal suppat, charaderized by small
damping a). The timing 7, between conseautive extraded
dictionary elementsyields the dorementioned time delays.

Traditional matching pursuits (MP) is a greedy agorithm [5],
seleding the “best” dictionary elements iteratively. The Relax
algorithm has been widely applied to extrading wavefronts from
high-resolution radar (HRR) data [6], and here we aapt it to
matching-pursuits (yielding Relax-MP). As an example, on the
first iteration d MP, assume dictionary element eylis Fleded,

from which we have
R(()l) =<RW |ey1 >ey, (1) + Rl(l) @)

where R(()l) =f(t) and < []D}denot&s inner product. On the
second MP iteration we seled &y, best matched to Rl(l) from
which we have

2
f(t) = 3 < R,g%>1|eyn >ey () +RY )
n:

Note that despite < ey1|R1(1) >=0,in general < ey1|ey2 >20.To
ameliorate this, analogous to the Relax algorithm [6], we define
R(()Z) =f-< f|ey2 >ey, and re-estimate ey, & in (2). We then
define Rl(z) =f-< f|ey1 >ey, from which we re-estimate &, -
Weiterate this processurtil convergenceis achieved in Rl(N) and
Rg\'), after which eysis computed, and we similarly iterate
between €, €y, and ey, - After K such Relax-MP iterations,

we determine the set of K elements of Dythat “best” match the

data. As we show below, Relax-MP often yields better
performance on measured transient scatering data than dces
traditional MP.

3. HMM CLASSIFIER

Asaume that M scatered waveforms are observed from a given
target, with the target identity and aientation urknown. After
performing Relax-MP fedure parsing on eat o the scatered

waveforms, the sequence of M measurements is represented by
the sequence of Relax-MP feaures O={0y, 0y, ..., Oy}, and we
seek to asciate O with the target with which they have the
highest likelihood (maximum-likelihood clasdfication). We

therefore reguire the likelihood p(O|Ti)for terget T;. The

complicaion d modeling p(OITi) is manifested by the fad that

the scatered fields, and therefore o,, , are typicdly a strong
function d the (hidden) target-sensor orientation. Consequently,
we define aset of states for target T; , where astate is a generaly
contiguous st of target-sensor orientations for which the
asciated oy, are gproximately stationary [1,2]. The sequence of
observed O therefore wrrespond to sampling feaures from
different target states, with the sequence of states well modeled
via aMarkov modd (i.e., the probability of transitioning from
one state to any other is dictated entirely by the arrent state
occupied). While the Markovian model is clealy a
simplificaion, it has been found appropriate for many pradicd
scattering scenarios [1,2]. Since both the target identity and
orientation are unknown, the particular states being sampled are
unknown, or “hidden”, necesstating the hidden Markov model
(HMM).

Charaderization o the HMM target model requires an initial-
state probability vedor and a state-transition matrix, with these
closely linked and easily defined from the target geometry and
state decompasition [1,2]. Techniques also exist for estimating
the gpropriate initial state decomposition, with al such
parameters optimized duing training [1,2]. What remains is
charaderizetion o the likelihoods p(om|q,Ti) where q

represents a particular state of target T,. In the past such
likelihoods have been quentified through the use of vedor
quantizaion, yielding a discrete HMM. Alternatively, one can
employ a state-dependent Gaussan-mixture model, from which
we obtain a ontinuowls HMM [1,2]. The principal contribution
of this paper is development of a new state-dependent model for

p(om|q,Ti), motivated by the models used to charaderize

another widely studied class of transient waveforms: speed. In
particular, Shannon [3] introduced the @ncept of applying a
Markov model to charaderize the statistics of an observed
sequence of aphabet elements, from which fundamental
information-theoretic constructs can be developed. In the work
reported here we extend the language-based Markov model to
charaderize the statistics of transient scatering, with the time-
dependent scattered waveform model via astatistica sequence of
wavefronts, resonances and time delays. As we demonstrate
below, this model has been employed to successully model the

state-dependent likelihoods p(0m|q,T;) in the HMM, and in the

future it can be employed in the wntext of fundamental
information-theoretic metrics, such as mutua information and
the Kullbadk-Leibler distance [4], from which fundamenta
performance bounds can be established. Such bound will be the
subjead of future presentations, and here the we focus on
applying the Markov model as an explicit comporent of the
multi -asped HMM clasdfier.



4. MARKOV MODEL

The state-dependent likelihood p(om|q,Ti) charaderizes the

statistics of an ensemble of transient scatered waveforms, with
the underlying assumption that the waveforms within a given
state ae stationary (constituting a state of the HMM). The model
employed is motivated by the Markov model of Shannon[3], but
here our aphabet is composed of wavefronts, resonances and
time delays. These mngtituents are defined as follows. As
discuseed above, wavefronts are caraderized by narrow
temporal suppat and resonances by more etended suppat.
Consequently, considering the Relax-MP dictionary elements in
(1), extradted dctionary elements with decey constant a larger
than a prescribed value ae termed wavefronts, and those with
smdler a are termed resonances. Again in reference to (1), a

time delay is defined by 71;-7j—q4, where T1; and
Tj 1 correspondto the ith and i-1 extraded elements, as ordered

from left to right in increasing time (not necessarily in the order
extraded via Relax-MP). There ae therefore three Markov
states, S, S and S, correspondng to wavefronts, resonances and
time delays, respedively. In pradice some time delays
Tj —Tj—p are small compared to the suppat of a wavefront; such
delays are treaed as a dired transtion involving the S, and S

states (withou an intervening transition to state S). The
permitted state transitions are indicated in Fig. 1.

Fig. 1. State transitions for transient-signal Markov model.

The datistics of the a<ciated parametric fedures for the
Markov states are dharaderized by p(a,wlSy ), p(a,wlS;)

and p(rd|S) , wheret; represents the time delay. These Markov-

state-dependent  likelihoods charaderize the wavefronts,
resonances and time delays, as dictated by training data. To
simplify the analysis, the likelihoods are charaderized by vedor
quantization (VQ). In particular, a set of codes is used to
charaderize the variation d (a,w) in states S, and S (distinct
codes for ead), with separate wdes used to charaderize 7,4in S.
For a given target, the same S,, S and S codes are used for the
Markov models used for al HMM states, with the HMM  states
distinguished by different probabilities of observing a given
code. For example, let C={c,, ¢,, ..., ¢} represent the mdes for
Markov state S,. The statistics of S, for the gth HMM state ae

charaderized as p(a,w|d,Sy ) = p(c)|0,Sy ) for | DL, L].

It is important to emphasize that here VQ is applied to the
wavefront, resonance and time-delay states of the Markov model,

while in previous work [1,2] VQ was applied dredly on the
feaure vedor o, There ae several advantages of the former
approach. When VQ is applied on o, diredly, the size of the
feaure vedor (Relax-MP iterations) must be mnstant for all
target-sensor orientations, since the same @des are used for all
HMM states. The Markov mode is applicable to any sequence of
wavefronts, resonances and time delays, and therefore the states
of the HMM neead na utili ze the same number of Relax-MP
iterations. This is important because the different HMM states
represent different classes of wave scatering, and therefore in
general the states may have different numbers of fundamental
scdtering feaures. Moreover, by tying the transient scatering to
the fundamental physics (wavefronts, resonances and time
delays) one can employ the datisticd models to quantify
fundamental information-theoretic bounds on classficdion
performance, with such tied to the underlying sensor parameters.
In the present study we focus on the Markov model as applied in
the dasdfier, with future studies conreded to performance
bounds.

5. CLASSIFICATION RESULTS

Results are presented for acoustic scattering from five submerged
(underwater) elastic targets. The shapes of the five targets are
indicaed in Fig. 2, whereit is ®e that the external shapes of the
targets are dmost identicd, with variation oy seen in the
interna structure. Details on the targets and on the aoustic
measurements can be foundin [1].
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Fig. 2. Shapes of five targets, with all units in centimeters. The
elastic targets only differ in their internal structure.

These five targets were seleded as congtituting a callenging
classficaion poblem. An HMM is designed independently for
ead o the five targets, with eac HMM state charaderized via a
Markov model, in terms of a wavefront, resonance, time-delay
alphabet, as discused in Sec 4. The bandwidth o the
measurements was 7-50 KHz, and the scatering data was
sampled in 1° increments, over 36(°, in a plane biseding the ais
of the rotationally symmetric targets.



The first phase of the processgng involves performing Relax-MP
on the transient scatered waveform, as viewed from a particular
target-sensor orientation. As an example of a typicd transient
scatered waveform, from one of the shell targets, and
performance of MP and Relax-MP, in Fig. 3 we show the
original scatered waveforms and its reconstruction via MP and
Relax-MP, where in bah cases K=5 iterations were used. The
results in Fig. 3 are typicd, and undrscore the utility of Relax-
MP in extrading the principal scatering medchanisms, in a small
number of iterations.
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Fig. 3. Origina scatered signal (top), MP (middle) and Relax-
MP (bottom) reconstruction, using K=5 iterations.

For target clasdficaion a HMM is designed for ead of the five
targets in Fig. 2. A segquence of scatered waveforms is viewed
from a set of target-sensor orientations, with the target identity
and aientation urknown. Each scatered waveform is parsed
with K=5 Relax-MP iterations, yielding the observation vedors
O={o0;, 0, ..., Oy} for M observation angles. The target is

dedared T; if p(OITi) > p(OITj) O T, . Each o the five targets

typicdly had five states over a nonredundent 90° set of
scdtering angles, and codebodks of size L=15 were used for
Markov states S, S, and S. For the results presented here the
angular sampling is 5° and we mnsider M=10 olservation angles
(45° aperture). For noise-free studies, the HMM training (with
the Viterbi agorithm [1,2]) is performed using al sequences of
length M=10 starting with odd initial angles, and testing is
performed using all M=10 sequences with even angles. Note that
the length of the training sequence nead na be the same & the
testing sequence [1,2]. For the noise-free cae, the dasdficaion
performance of the HMM was perfed. We therefore present
results for noisy data.

The noise level is defined in terms of the pesk signal energy over
the noise variance, where here we employ additive mlored ndse,
the latter computed by convolving white Gaussan ndse with the

incident-pulse shape (this noise therefore representative of
clutter). Note that the target signature is a strong function o
asped (motivating the HMM), and therefore the pe&k signal
strength is a function d orientation. The SNR is defined with
resped to the pe&k signal strength, over al aspeds and targets.
Althouwgh spacelimitations our discusson fere, at the mnference
we will detail how the SNR varies as a function d asped and

target type.

For the noisy results, training was performed using noise-free
and 20 @ SNR data, while testing was performed using 15dB
data (performancewith ndse-free aad 20 B data was esentially
perfed). A confusion matrix for 15 dB SNR testing data, entirely
independent from the training data. We seein Fig. 4 that the
confusion-matrix results are very encouraging, despite the noise
level and the simil arity of the five targets.

Target1 | Target2 | Target 3 | Target4 | Target 5
Target 1 0.99 0.01 0.0 0.0 00.0
Target 2 0.04 0.92 0.03 0.0 0.0
Target 3 0.0 0.04 0.96 0.0 0.0
Target 4 0.0 0.0 0.0 1.0 0.0
Target 5 0.01 0.01 0.0 0.0 0.98

Fig. 4. Confusion matrix for 15 dB average SNR (colored ndse)
6. CONCLUSIONS

A Markov model, employing a wavefront, resonance, time-delay
alphabet, has been applied to the problem of target clasdficdion.
The fedures for the Markov model are ommputed via Relax-MP
feaure parsing, and multi-asped scatering is acourted for via
an HMM. The dasdficaion performance, on measured deta, is
encouraging. Moreover, the fad that the hybrid HMM -Markov
model is based on fundamental scattering physics, which will
alow us to now study fundamental performance bound,
conreded to the sensor parameters and target geometry.
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