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ABSTRACT
Transient scattered fields from a general target are composed of
wavefronts, resonances and time delays, with these constituents
linked to the target geometry. A classifier applied to transient
scattering data requires a statistical model for such fundamental
constituents. A Markov model is employed to characterize the
transient scattered fields �  for a set of target-sensor orientation
over which the transient scattering is stationary �  utili zing a
wavefront, resonance, time-delay “alphabet” . The Markov model
is utili zed in a classifier developed for multi -aspect transient
scattering data, with a hidden Markov model (HMM) employed
to address the generally non-stationary nature of the multi -aspect
waveforms. Each state of the HMM is characteristic of a set of
target-sensor orientations for which the scattering statistics are
stationary, the statistics of which are characterized via the
aforementioned Markov model. The wavefront, resonance and
time-delay features are extracted via a modified matching-
pursuits algorithm.

1. INTRODUCTION

The classification of a target based on multi -aspect scattered
waveforms constitutes a problem of long-standing interest.
Scenarios for which this problem is relevant include target
detection via synthetic aperture radar (SAR), in which the
synthetic aperture implies the target is viewed from multiple
orientations, or aspects. In the work presented here, we are
interested in the detection and classification of a submerged
(underwater) elastic target, based on acoustic scattering data,
with the sensor sequentially positioned such that the target is
viewed from multiple orientations [1]. The complication in these
sensor problems is manifested in the fact that in practice both the
target identity and orientation are unknown, necessitating the
classifier to be robust to such uncertainty.

The hidden Markov model (HMM) has proven to be an effective
tool for processing multi -aspect scattering data [1,2], with each
HMM state corresponding to a generally contiguous set of target-
sensor orientations over which the associated scattered fields are
statistically stationary. When sensing a set of scattered
waveforms from multiple orientations, we therefore implicitl y
sample waveforms from the different target states, with some
states sampled more than once, and others not at all , depending
on the target-sensor orientations considered. The sequence of
sampled states is modeled via a Markov model, and since the

target orientation (and identity) is unknown, the states being
sampled are “hidden”, necessitating a HMM.

The contribution of this paper involves the statistical
characterization of the HMM states, for transient scattering data.
The scattering data is parsed via a modified form of matching
pursuits, employing a wavefront-resonance dictionary. The
matching-pursuits parsing characterizes the transient scattered
fields in terms of a sequence of wavefronts, resonances and time
delays, sequentially arranged with increasing time (from left to
right, as in speech). This implies that the scattered fields are
characterized by three canonical members of an alphabet, with
the sequence of such modeled via a Markov model, as applied in
classical language models [3]. Each HMM state is characteristic
of a distinct class of scattering phenomenology, and is therefore
represented by a distinct Markov model, for the wavefront,
resonance and time delay alphabet. This state-dependent model is
closely connected with the underlying scattering physics, as
compared with vector quantization and Gaussian-mixture models
utili zed previously [1,2]. We demonstrate that the HMM model
with Markov state descriptor performs well i n its role as a
classifier. Moreover, by connecting the statistical model to the
underlying scattering physics, one can address fundamental
information-theoretic constructs such as the mutual information
between different target models  [4].

2. MODIFIED MATCHING PURSUITS

Assume we have a scattered waveform f(t) that we wish to parse
in terms of its underlying scattering mechanisms. Discrete
scatterers on a target (edges, corners, etc.) generally give rise to
temporally localized scattered fields, with these termed
wavefronts. Wavefronts are typically a slightly modified form of
the excitation pulse. When multiple wavefronts are closely
spaced temporally, the set of wavefronts is represented more
compactly in terms of a resonance. For example, the (resonant)
ringing heard from a bell corresponds to a sequence of
wavefronts, as the underlying acoustic wave circumnavigates the
bell surface, shedding acoustic energy on every rotation. The
temporal spacing between wavefronts and resonances is
characteristic of the spatial separation between different target
scatterers, this also containing important underlying information.
We therefore seek to parse the transient scattered fields into their
fundamental wavefront, resonance and time delay constituents.
This is effected by employing a modified form of matching



pursuits [5]. In particular, define a dictionary γD  indexed by the
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where U(t) is the Heaviside step function (U(t)=0 for t<0 and
U(t)=1 for t>0), and 

n
Kγ is a normalization constant. Note that

this dictionary is capable of modeling both wavefronts (small
temporal support, characterized by large damping nα ) and

resonances (large temporal support, characterized by small
damping nα ). The timing nτ between consecutive extracted

dictionary elements yields the aforementioned time delays.

Traditional matching pursuits (MP) is a greedy algorithm [5],
selecting the “best” dictionary elements iteratively. The Relax
algorithm has been widely applied to extracting wavefronts from
high-resolution radar (HRR) data [6], and here we adapt it to
matching-pursuits (yielding Relax-MP). As an example, on the
first iteration of MP, assume dictionary element 

1γe is selected,

from which we have
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ameliorate this, analogous to the Relax algorithm [6], we define
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We iterate this process until convergence is achieved in )(
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3γe is computed, and we similarly iterate

between 
1γe , 

2γe , and 
3γe . After K such Relax-MP iterations,

we determine the set of K elements of γD that “best” match the

data. As we show below, Relax-MP often yields better
performance on measured transient scattering data than does
traditional MP.

3. HMM CLASSIFIER

Assume that M scattered waveforms are observed from a given
target, with the target identity and orientation unknown. After
performing Relax-MP feature parsing on each of the scattered

waveforms, the sequence of M measurements is represented by
the sequence of Relax-MP features O={ o1, o2, …, oM} , and we
seek to associate O with the target with which they have the
highest likelihood (maximum-likelihood classification). We

therefore require the likelihood )( iTp O for target Ti. The

complication of modeling )( iTp O is manifested by the fact that

the scattered fields, and therefore om , are typically a strong
function of the (hidden) target-sensor orientation. Consequently,
we define a set of states for target Ti , where a state is a generally
contiguous set of target-sensor orientations for which the
associated om are approximately stationary [1,2]. The sequence of
observed O therefore correspond to sampling features from
different target states, with the sequence of states well modeled
via a Markov model (i.e., the probabilit y of transitioning from
one state to any other is dictated entirely by the current state
occupied). While the Markovian model is clearly a
simpli fication, it has been found appropriate for many practical
scattering scenarios [1,2]. Since both the target identity and
orientation are unknown, the particular states being sampled are
unknown, or “hidden”, necessitating the hidden Markov model
(HMM).

Characterization of the HMM target model requires an initial-
state probabilit y vector and a state-transition matrix, with these
closely linked and easily defined from the target geometry and
state decomposition [1,2]. Techniques also exist for estimating
the appropriate initial state decomposition, with all such
parameters optimized during training [1,2]. What remains is

characterization of the likelihoods )( im Tq,p o  where q

represents a particular state of target Ti. In the past such
likelihoods have been quantified through the use of vector
quantization, yielding a discrete HMM. Alternatively, one can
employ a state-dependent Gaussian-mixture model, from which
we obtain a continuous HMM [1,2]. The principal contribution
of this paper is development of a new state-dependent model for

)( im Tq,p o , motivated by the models used to characterize

another widely studied class of transient waveforms: speech. In
particular, Shannon [3] introduced the concept of applying a
Markov model to characterize the statistics of an observed
sequence of alphabet elements, from which fundamental
information-theoretic constructs can be developed. In the work
reported here we extend the language-based Markov model to
characterize the statistics of transient scattering, with the time-
dependent scattered waveform model via a statistical sequence of
wavefronts, resonances and time delays. As we demonstrate
below, this model has been employed to successfully model the

state-dependent likelihoods )( im Tq,p o  in the HMM, and in the

future it can be employed in the context of fundamental
information-theoretic metrics, such as mutual information and
the Kullback-Leibler distance [4], from which fundamental
performance bounds can be established. Such bounds will be the
subject of future presentations, and here the we focus on
applying the Markov model as an explicit component of the
multi -aspect HMM classifier.



4. MARKOV MODEL

The state-dependent likelihood )( im Tq,p o  characterizes the

statistics of an ensemble of transient scattered waveforms, with
the underlying assumption that the waveforms within a given
state are stationary (constituting a state of the HMM). The model
employed is motivated by the Markov model of Shannon [3], but
here our alphabet is composed of wavefronts, resonances and
time delays. These constituents are defined as follows. As
discussed above, wavefronts are characterized by narrow
temporal support and resonances by more extended support.
Consequently, considering the Relax-MP dictionary elements in
(1), extracted dictionary elements with decay constant α larger
than a prescribed value are termed wavefronts, and those with
smaller α are termed resonances. Again in reference to (1), a

time delay is defined by 1−−−− ii ττ , where iτ  and

1−−iτ correspond to the ith and i-1 extracted elements, as ordered

from left to right in increasing time (not necessarily in the order
extracted via Relax-MP). There are therefore three Markov
states, Sw, Sr and St, corresponding to wavefronts, resonances and
time delays, respectively. In practice some time delays

1−−−− ii ττ are small compared to the support of a wavefront; such

delays are treated as a direct transition involving the Sw and Sr

states (without an intervening transition to state St). The
permitted state transitions are indicated in Fig. 1.

Fig. 1. State transitions for transient-signal Markov model.

The statistics of the associated parametric features for the

Markov states are characterized by )p( wSωα , , )p( rSωα ,

and )p( td Sτ , where dτ represents the time delay. These Markov-

state-dependent likelihoods characterize the wavefronts,
resonances and time delays, as dictated by training data. To
simpli fy the analysis, the likelihoods are characterized by vector
quantization (VQ). In particular, a set of codes is used to
characterize the variation of )( ωα , in states Sw and Sr (distinct

codes for each), with separate codes used to characterize dτ in St.

For a given target, the same Sw, Sr and St codes are used for the
Markov models used for all HMM states, with the HMM states
distinguished by different probabiliti es of observing a given
code. For example, let C={ c1, c2, …, cL} represent the codes for
Markov state Sw. The statistics of Sw for the qth HMM state are

characterized as )qp()qp( wlw SS ,c,, ==ωα for ]1[ Ll ,∈ .

It is important to emphasize that here VQ is applied to the
wavefront, resonance and time-delay states of the Markov model,

while in previous work [1,2] VQ was applied directly on the
feature vector om. There are several advantages of the former
approach. When VQ is applied on om directly, the size of the
feature vector (Relax-MP iterations) must be constant for all
target-sensor orientations, since the same codes are used for all
HMM states. The Markov model is applicable to any sequence of
wavefronts, resonances and time delays, and therefore the states
of the HMM need not utili ze the same number of Relax-MP
iterations. This is important because the different HMM states
represent different classes of wave scattering, and therefore in
general the states may have different numbers of fundamental
scattering features. Moreover, by tying the transient scattering to
the fundamental physics (wavefronts, resonances and time
delays) one can employ the statistical models to quantify
fundamental information-theoretic bounds on classification
performance, with such tied to the underlying sensor parameters.
In the present study we focus on the Markov model as applied in
the classifier, with future studies connected to performance
bounds.

5. CLASSIFICATION RESULTS
Results are presented for acoustic scattering from five submerged
(underwater) elastic targets. The shapes of the five targets are
indicated in Fig. 2, where it is seen that the external shapes of the
targets are almost identical, with variation only seen in the
internal structure. Details on the targets and on the acoustic
measurements can be found in [1].

Fig. 2. Shapes of five targets, with all units in centimeters. The
elastic targets only differ in their internal structure.

These five targets were selected as constituting a challenging
classification problem. An HMM is designed independently for
each of the five targets, with each HMM state characterized via a
Markov model, in terms of a wavefront, resonance, time-delay
alphabet, as discussed in Sec. 4. The bandwidth of the
measurements was 7-50 KHz, and the scattering data was
sampled in 1o increments, over 360o, in a plane bisecting the axis
of the rotationally symmetric targets.
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The first phase of the processing involves performing Relax-MP
on the transient scattered waveform, as viewed from a particular
target-sensor orientation. As an example of a typical transient
scattered waveform, from one of the shell targets, and
performance of MP and Relax-MP, in Fig. 3 we show the
original scattered waveforms and its reconstruction via MP and
Relax-MP, where in both cases K=5 iterations were used. The
results in Fig. 3 are typical, and underscore the utilit y of Relax-
MP in extracting the principal scattering mechanisms, in a small
number of iterations.

Fig. 3. Original scattered signal (top), MP (middle) and Relax-
MP (bottom) reconstruction, using K=5 iterations.

For target classification a HMM is designed for each of the five
targets in Fig. 2. A sequence of scattered waveforms is viewed
from a set of target-sensor orientations, with the target identity
and orientation unknown. Each scattered waveform is parsed
with K=5 Relax-MP iterations, yielding the observation vectors
O={ o1, o2, …, oM} for M observation angles. The target is

declared Ti if )()( ji TpTp OO ≥≥ ∀  Tj . Each of the five targets

typically had five states over a non-redundent 90o set of
scattering angles, and codebooks of size L=15 were used for
Markov states Sw, Sr, and St. For the results presented here the
angular sampling is 5o and we consider M=10 observation angles
(45o aperture). For noise-free studies, the HMM training (with
the Viterbi algorithm [1,2]) is performed using all sequences of
length M=10 starting with odd initial angles, and testing is
performed using all M=10 sequences with even angles. Note that
the length of the training sequence need not be the same as the
testing sequence [1,2]. For the noise-free case, the classification
performance of the HMM was perfect. We therefore present
results for noisy data.

The noise level is defined in terms of the peak signal energy over
the noise variance, where here we employ additive colored noise,
the latter computed by convolving white Gaussian noise with the

incident-pulse shape (this noise therefore representative of
clutter). Note that the target signature is a strong function of
aspect (motivating the HMM), and therefore the peak signal
strength is a function of orientation. The SNR is defined with
respect to the peak signal strength, over all aspects and targets.
Although space limitations our discussion here, at the conference
we will detail how the SNR varies as a function of aspect and
target type.

For the noisy results, training was performed using noise-free
and 20 dB SNR data, while testing was performed using 15dB
data (performance with noise-free and 20 dB data was essentially
perfect). A confusion matrix for 15 dB SNR testing data, entirely
independent from the training data. We see in Fig. 4 that the
confusion-matrix results are very encouraging, despite the noise
level and the similarity of the five targets.

Target 1 Target 2 Target 3 Target 4 Target 5
Target 1 0.99 0.01 0.0 0.0 00.0
Target 2 0.04 0.92 0.03 0.0 0.0
Target 3 0.0 0.04 0.96 0.0 0.0
Target 4 0.0 0.0 0.0 1.0 0.0
Target 5 0.01 0.01 0.0 0.0 0.98

Fig. 4. Confusion matrix for 15 dB average SNR (colored noise)

6. CONCLUSIONS

A Markov model, employing a wavefront, resonance, time-delay
alphabet, has been applied to the problem of target classification.
The features for the Markov model are computed via Relax-MP
feature parsing, and multi -aspect scattering is accounted for via
an HMM. The classification performance, on measured data, is
encouraging. Moreover, the fact that the hybrid HMM-Markov
model is based on fundamental scattering physics, which will
allow us to now study fundamental performance bounds,
connected to the sensor parameters and target geometry.
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