
Fig. 1.   State decomposition by dividing the full 360° aspect
angle into a set of distinct angular sectors. (a) Three-
dimensional geometry of the sensor-target configuration, (b)
projection of the 3-D configuration onto the 2-D ground,
assuming the depression angle remains approximately
constant.
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ABSTRACT

An approach to identifying ground targets from sequential high-
range-resolution (HRR) radar signatures is presented. A hidden
Markov model (HMM) is employed to model the sequential
information contained in multi -aspect target signatures.
Dominant range-amplitude features are extracted via RELAX
for dimension reduction. A new distance measure is
incorporated into the HMM to allow a direct matching operation
in the feature domain without requiring interpolation. The
approach is applied to the dataset of ten MSTAR targets and is
shown to yield an average identification rate of 90.3% using
sequential information from 6 degree angular spans.

1. INTRODUCTION

High range resolution (HRR) radar signatures are widely
utili zed for the challenging task of electromagnetic target
identification. Two standard modes exist in implementing target
identification using HRR signatures. One is to treat the HRR
signatures at different viewing angles as independent
observations, from which one makes a classification decision
[1-4]. Another is to perform coherent processing on
observations at multiple angles, to form a radar image, and
proceed with identification in the image domain [5-6]. Since a
given HRR signature collapses the target information into a one-
dimensional function of time, significant discrimination
information may be lost and ambiguities arise when an
unknown target is being interrogated, especially when similar
targets exist in the reference library. In contrast, the radar image
gives resolution in both the range and cross-range dimensions,
significantly aiding classification performance. However, to
form a high-quality radar image, the data quality must be high to
avoid phase errors [8] and range curvature. For the case of a
moving ground target, the radar image will i nevitably be blurred
due to target and sensor motion.
    The aforementioned radar image implicitly employs multiple
HRR signatures, from multiple aperture positions. In this paper
we take an alternative approach to processing the sequence of
HRR waveforms, without the need to form an image. In
particular, we utili ze a hidden Markov model (HMM) to process
features from the sequence of HRR waveforms, thereby
exploiting underlying sequential information. In [9] we discuss
the application of HMMs to modeling the statistical information
in a sequential set of multi -aspect acoustic-scattering signatures,
with this work extended here for multi -aspect processing of

HRR data, for ground targets. For ground targets the target
motion is confined to a plane, therefore the change of viewing
angle primarily consists of aspect change, with the elevation
kept approximately at a constant angle. Usually the ground
targets have a rich set of scattering features, with these extracted
here via RELAX processing. The algorithm is applied to the
ten-target MSTAR data.

2. HMM PROCESSING OF SEQUENTIAL

HRR DATA

    Figure 1(a) represents a typical sensor-target configuration
for airborne interrogation of a ground target. The airborne radar
periodically transmits coherent pulses of microwave energy,
which impinge the ground target at depression angle ϕ.

Each pulse is subsequently reflected from the target and
received by the radar. After some pre-processing of these
scattered radar echo pulses, a sequence of HRR signatures is
obtained, each representative of the target as viewed from a
distinct target-sensor orientation (with particular target-sensor
orientations dependent on the sensor motion and target pose,
with the latter typically unknown). The depression angle of the
incident wave can be maintained as constant by controll ing the
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sensor flight path, with such assumed here. The variable target-
sensor orientations are therefore modeled as a change in the
azimuthal orientation (see Fig. 1b).
    It is well known that HRR signatures exhibit significant
variabilit y as viewed from different orientations [1-4,7].
Nevertheless, there are typically contiguous angular sectors over
which the scattered fields are approximately stationary
statistically. Each such sector is termed a “state” (see Fig. 1b),
and the sequence of HRR measurements sample waveforms
from a sequence of target states, with this sequence well
characterized via a Markov model [9]. In practice the target
orientation is unknown (or “hidden”), in addition to the target
identity, and therefore the sequence of scattered waveforms is
modeled via a hidden Markov model (HMM).
    Assume a target is partitioned into N distinct states, denoted

},  ,,{ 21 NsssS �= . The HMM state transitions are denoted by

the matrix }{
ijaA = , where 

ija  is the probabilit y of transiting

from state i to state j. Further, the initial-state probabil ities are
denoted by the vector }{ iππ =  wherein i  is the state index. For

the sequence of HRR measurements, assume that δθ represents
the maximum change in the target-sensor orientation, upon
consecutive measurements (the change in orientation is assumed
smaller than δθ , which can be implemented by controll ing the
sensor flight path, while the absolute target-sensor orientation is
assumed unknown). If 

i
θ  represents the angular extent of state

i, and assuming iθδθ < for all i, then the matrix }{
ijaA =  is tri-

diagonal, yielding the HMM construct in Fig. 2 (shown for four
states).

    Based on the aforementioned assumptions with regard to
δθ and 
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θ , one can readily demonstrate the following
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    If the initial target pose is uniformly distributed, we similarly
have
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    As discussed further below, (1) and (2) constitute initial
estimates for }{

ijaA =  and }{ i
ππ = , with these refined via

Baum-Welch training [14].

3. STATE-DEPENDENT STATISTICS

The model employed for the state-dependent statistics is
dependent on the selected feature set. Ground targets usually
contain fairly complex scattering features. Each of the HRR
waveforms for the MSTAR data set consists of 72 range bins,

and therefore use of the waveform itself, as a feature vector, is
not an attractive option. Moreover, the HRR signature can be
corrupted by noise, and weak scattering features may be highly
contaminated, making direct use of the signature unreliable for
classification. For our problem, the radar frequency is centered
at 10 GHz with a bandwidth of 600 MHz, and therefore the
target scattering is well represented as a series of diffractions
from scattering centers on the target surface. We seek the
extraction of these scattering-center features for representation
of a feature vector.
    Researchers have considered several models for
electromagnetic scattering from targets. For example, Altes has
devised a general target model [15], others have based their
model on the geometric theory of diffraction (GTD) [5],
employing damped-complex-exponential models [10-11,13], as
well as a point-scatterer model [12]. We here perform feature
parsing via the point-scatter model in [12], employing the
RELAX algorithm described therein.
    Consider the frequency-dependent, complex HRR waveform

)(ˆ ωx , scattered from a given target at a particular (generally
unknown) target-sensor orientation. The RELAX algorithm [12]
is used to extract point-scattered wavefronts from )(ˆ ωx , from
which the range (time) dependent HRR waveform is realized
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where )(rx  is the Fourier transform of )(ˆ ωx  after extracting

these series of point scatterers, )( x
k

x
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x
k jexpA φσ=  is the

complex amplitude of the kth wavefront (magnitude x
kσ ), )(rw

is the real window function used to represent the spatial support
of the wavefronts (defined by system bandwidth), and K
represents the number of RELAX-extracted wavefronts. In the
work presented here )(rw is a Gaussian with variance consistent
with sensor bandwidth. For each complex HRR waveform (3)
we define the real and positive function
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    Now consider two HRR signatures )(~ rx  and )(~ ry , for which
we wish a distance measure. The distance is defined in terms of
the correlation
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Since )(rw  is Gaussian, so is )(rg , with twice the variance.
Using matrix notation, (5) can be re-written as
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with Wxy a KK × matrix representing the functions )( y
i

x
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Note that the correlation in (5) can be computed directly from
the RELAX outputs, without having to explicitl y form the range
profile (4).
    We now define the distance
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which is referred to as the spatially weighted distance (SWD), in
which each element in the weighting matrix is a function of
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Fig 2. Illustration of state transition governed by a transition matrix
with tri-diagonal structure



spatial distance between scatterers. In (7) Wxx and Wyy are of the
same form as Wxy. Note that if the wavefronts are spaced

uniformly, such that y
i

y
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x
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then this distance measure reduces to the traditional Euclidean
distance
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    The distance measure in (7) plays a pivotal role in the HRR
HMM, as currently designed. In particular, for the N states

},  ,,{ 21 NsssS �= characteristic of a given target, we define a

codebook of N codes }  { 21 NcccC ,,, �= , with code cn

associated with state sn. Recall that the HMM requires a state-
dependent statistical measure. For a given HRR signal x the
likelihood that x is associated with state sn is defined as

      ]
2

)(x
exp[

2

1
)(x

2

2

ηπη
n

n
cd

sp
,−=                      (9)

    The likelihood in (9) is clearly motivated by a Gaussian
distribution, but here we explicitl y utili ze the distance measure
d2, which is tied to the RELAX features extracted from the HRR
waveform.
    Note that each target will have its own set of states and codes,
and an important issue concerns the design of the state-
dependent codes }  { 21 NcccC ,,, �= . As we discuss in the

Conclusion, the sophisticated design of C is an area of future
research. In the work reported here we simply utili ze the training
data associated with a given state to define the average HRR
profile, this defining the code associated with that state. In (9)

2η  is the ensemble average of the SWD between the state-
dependent HRR profiles and the associated code (averaged
across all target states). The optimal state decomposition is also
an area of future research, for in the work reported here we
simply utili ze a uniform state decomposition. We note, however,
that the state-transition matrix, initial-state probabilities and the
constant 2η are optimized during Baum-Welch [14]
optimization, based on training data. However, the target-
dependent codebook C currently remains fixed. As discussed in
Sec. 4, the training and testing data are distinct.
    Summarizing the algorithm, each target is segmented into a
uniformly distributed set of states, each state ideally
representative of a set of target-sensor orientations over which
the scattered fields are stationary. For each state we define an
associated code, composed of representative RELAX features. In
the testing phase we measure a sequence of HRR waveforms,
and compute an overall HMM likelihood that the sequence is
associated with a particular target. In the HMM we require the
likelihood that a particular set of RELAX features, associated
with a particular HRR waveform, is consistent with a given
HMM state. This li kelihood is computed using the distance
between the RELAX features and the state-dependent code, with
the distance computed as in (7), and the likelihood as in (9). The
training data is used to define the target-dependent codes and
optimize the HMM state-transition matrix and initial-state
probabilit y vector.

4. IDENTIFICATION RESULTS

We present example identification results using the approach

discussed above. The data set used consists of the X-band HRR
signatures of ten MSTAR targets (see [5,6] for details on the
MSTAR targets). The MSTAR data set typically consists of
image chips. These images have been converted into a sequence
of HRR waveforms, through various filtering operations. The
HRR data was provided to the investigators by the US Defense
Advanced Research Projects Agency (DARPA), with the
conversion of MSTAR images to HRR waveforms performed
under the TRUMPETS program. All ground-based targets are of
very similar shape (most are milit ary vehicles, although there
are a few civili an vehicles [5,6]).
    The HRR signatures have a bandwidth of approximately
600MHz cantered at 10 GHz, and have a range resolution of
approximately 0.3 meters. Training data and testing data are
distinct (as provided by DARPA), each having a full coverage
of 360° aspect angles (fixed depression angle). Recall that the
HMM processes a sequence of HRR waveforms, without
explicitl y forming an image. The angular sampling is

o10.=δθ and the sequences are assumed to consist of sixty
HRR waveforms (consistent with a 6o aperture). For each target
3,601 signatures are used to cover the full 360° aspect range,
resulting in a total of 36,010 training signatures and 36,010
testing signatures for the ten targets. The HRR signatures
(complex) are transformed to the frequency domain and the
RELAX algorithm [12] is employed to extract the features from
the frequency domain data. To facilit ate data manipulation, a
fixed number of dominant point scatterers are extracted for each
signature. Here we set this number as K=15 (see (3)). Each
target is partitioned into 180 uniformly distributed states, each

with o
i 2=θ (see (1) and (2)). Ten HMM models are obtained,

each describing one of the ten targets, and a maximum-
likelihood (ML) classification is employed.
    To evaluate classification performance, we use all possible
sequences of sixty HRR waveforms (equivalently, all possible 6°
apertures), yielding a total of 3,541 testing sequences for each
target. Based on the frequency with which the testing sequences
are assigned to each target, we obtain the confusion matrix
shown in Table 1. The ij -th entry in the confusion matrix gives
the percentage of target i identified as target j given that target i
is the true target. It is seen that using our HMM-based approach,
an average correct identification rate of 90.3% is attained for the
ten MSTAR targets (the data considered is as given by DARPA,
no additive noise is considered in these results).
    To compare our approach with traditional techniques, we use
the same training data to examine a Majority Voting Classifier
(MVC) and an Independent Multi-aspect Classifier (IMC). For
each target we have 180 states, along with associated codes and
likelihoods (see (9)). In the MVC, each of the sixty HRR
waveforms in the testing sequence is mapped to one of the target
states, in a ML sense, using (9). Assume Mi represents the
number of times a state from target i was so mapped into. The
data under test is declared scattered from target i if Mi>Mk for all
targets k (ties are settled via an appropriately weighted random-
number generator, e.g. 50/50 for a two-way tie). Note that the
MVC does not exploit the fact that in reality all sixty waveforms
come from the same target. The IMC utili zes this in a simple
way. In particular, when testing if the HRR sequence is
associated with target i, each HRR signature is associated with
the state of target i for which (9) is largest, and the likelihood is
computed as the product of the sixty associated likelihoods



(independence assumed). Both classifiers utili ze pieces of the
HMM, but do not utili ze correlated sequential information, with
this accounted for by the HMM.
    The same HRR data considered by the HMM is also used to
test the performance of the MVC and IMC. Space limitations
preclude presentation of the complete confusion matrix for these
simpler methods, but the average performance of the MVC and
IMC algorithms was 62% and 58%, respectively. The degraded
performance of the two classifiers is not surprising. The ten
MSTAR targets are very confusing targets [5,6]. The HRR
signature of a target at one aspect angle will quite li kely be
similar to the signature of another target at the same or some
other aspect angle. This confusion will inevitably result in many
wrong decisions for each individual signature. In contrast,
similar signatures from two different targets will be much less
likely to appear in the same order of aspect angles. That is, the
sequential characteristics of signatures can be distinguishable
even if the signatures themselves are confusing. It is the eff icient
use of this sequential information that gives the superior
performance of the HMM model.

5. CONCLUSIONS

In this paper we have discussed the use of sequential information
in identification of ground targets using HRR radar signatures.
The underlying association of states to aspect angular sectors
yields a simple and reliable setting for computation of the HMM
parameters. The complexity of scattering from ground targets is
made manageable by extracting parameters (features) of
dominant scatterers. The Euclidean distance is extended to
account for the general wavefront time of arrival, which then
provides a statistical model for the HRR signals in a HMM state.
It is shown that an average correct identification rate of 90.3% is
achieved on the MSTAR data using information from 6° angular
spans. While the results reported here are encouraging, there is
much room for improvement. In particular, we are currently
employing genetic algorithms to optimize the target state
decomposition and definition of the target- and state-dependent
codes.
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T72 BTR70 BMP2 2S1 ZSU234 BTR60 BRDM2 D7 T62 ZIL131
T72 92.1 0.31 0.68 1.52 0.82 0.37 1.44 1.07 0.40 1.30
BTR70 1.02 87.0 4.29 1.81 0.14 2.01 3.02 0 0.71 0
BMP2 0.14 0.96 89.2 4.77 2.20 0.37 1.52 0 0 0.79
2S1 0 2.51 1.64 85.4 0.08 1.33 4.80 0 1.30 2.94
ZSU234 0 0.88 1.38 0.40 89.0 1.19 0.51 3.22 1.95 1.47
BTR60 0 0.79 0.23 0.08 2.06 92.6 1.75 0.85 0.11 1.50
BRDM2 0.11 4.12 1.04 2.85 0 0.17 91.5 0.17 0 0
D7 0.96 0 0.11 0.08 0 0 0.51 98.0 0.31 0
T62 0 0.17 0.59 0.28 2.51 1.16 0.20 5.85 88.3 0.96
ZIL131 1.02 0.31 3.67 1.02 1.75 0 0 2.51 0.03 89.7

 Table 1. Confusion matrix of the HMM classifier. The ij -th entry is  percentage (%) of target i identified as target j
given that target i is the true target (average rate: 90.29%).


