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ABSTRACT

An approac to identifying ground targets from sequential high-
range-resolution (HRR) radar signatures is presented. A hidden
Markov model (HMM) is employed to model the sequential
information contained in multi-asped target signatures.
Dominant range-amplitude fedures are extracted via RELAX
for dimension reduction. A new distance measure is
incorporated into the HMM to alow adired matching operation
in the fedure domain withou requiring interpolation. The
approad is applied to the dataset of ten MSTAR targets and is
shown to yield an average identification rate of 90.3% using
sequential information from 6 degree agular spans.

1. INTRODUCTION

High range resolution (HRR) radar signatures are widely
utilized for the dalenging task of eledromagnetic target
identification. Two standard modes exist in implementing target
identification wsing HRR signatures. One is to trea the HRR
signatures at different viewing angles as independent
observations, from which ore makes a dasdfication dedsion
[1-4]. Ancther is to perform coherent processng on
observations at multiple angles, to form a radar image, and
proceal with identificaion in the image domain [5-6]. Since a
given HRR signature ll apses the target information into aone-
dimensional function of time, significent discrimination
information may be lost and ambiguities arise when an
unknown target is being interrogated, espedally when similar
targets exist in the referencelibrary. In contrast, the radar image
gives resolution in bah the range and crossrange dimensions,
significantly aiding clasdficaion performance However, to
form a high-quality radar image, the data quality must be high to
avoid phase errors [8] and range aurvature. For the cae of a
moving groundtarget, the radar image will i nevitably be blurred
due to target and sensor motion.

The dorementioned radar image implicitly employs multiple
HRR signatures, from multiple gerture positions. In this paper
we take an alternative gproach to processng the sequence of
HRR waveforms, withou the need to form an image. In
particular, we utili ze ahidden Markov model (HMM) to process
features from the sequence of HRR waveforms, thereby
exploiting underlying sequential information. In [9] we discuss
the gplicaion of HMM s to modeling the statisticd information
in asequentia set of multi -asped acustic-scatering signatures,
with this work extended here for multi-asped processng of

HRR data, for ground targets. For ground targets the target
motion is confined to a plane, therefore the change of viewing
angle primarily consists of asped change, with the devation
kept approximately at a cnstant angle. Usualy the ground
targets have arich set of scattering features, with these extraded
here via RELAX processng. The dgorithm is applied to the
ten-target MSTAR data.

2.HMM PROCESSING OF SEQUENTIAL
HRR DATA

Figure 1(a) represents a typicd sensor-target configuration
for airborne interrogation of a ground target. The drborne radar
periodicdly transmits coherent pulses of microwave eergy,
which impinge the ground target at depresson angle ¢.
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Fig. 1. State decomposition by dividing the full 360° asped
angle into a set of distinct angular sedors. (a) Three
dimensional geometry of the sensor-target configuration, (b)
projedion of the 3-D configuration orto the 2-D ground,
asauming the depresson angle remains approximately
constant.

Each pulse is subsequently reflected from the target and
recaved by the radar. After some pre-processng of these
scatered radar echo pulses, a sequence of HRR signatures is
ohtained, ead representative of the target as viewed from a
distinct target-sensor orientation (with particular target-sensor
orientations dependent on the sensor motion and target pose,
with the latter typicdly unknown). The depresson angle of the
incident wave can be maintained as constant by cortrolling the



sensor flight path, with such assumed here. The variable target-
sensor orientations are therefore modeled as a change in the
azmuthal orientation (seeFig. 1b).

It is well known that HRR signatures exhibit significant
variability as viewed from different orientations [1-4,7].
Nevertheless there ae typicdly contiguous angular sedors over
which the scdtered fields are @proximately stationary
statisticdly. Each such sedor istermed a “state” (seeFig. 1b),
and the sequence of HRR measurements sample waveforms
from a sequence of target states, with this sequence well
charaderized via a Markov model [9]. In pradice the target
orientation is unknown (or “hidden™), in addition to the target
identity, and therefore the sequence of scatered waveforms is
modeled via ahidden Markov model (HMM).

Asaume atarget is partitioned into N distinct states, denoted

S={S,S,-*S,}. The HMM dtate transitions are denoted by
the matrix A={a,} , where a, is the probability of transiting
from state i to state j. Further, the initial-state probabilities are
denoted by thevedor m={rm} wherein i isthe state index. For
the sequence of HRR measurements, assume that o6 represents
the maximum change in the target-sensor orientation, upon
conseautive measurements (the change in arientation is assumed
smaller than 6 , which can be implemented by controlling the

sensor flight path, while the @solute target-sensor orientationis
asumed urknown). If 6 represents the angular extent of state

i, and assuming &6 <, for dl i, then the matrix A={a} istri-

diagonal, yielding the HMM construct in Fig. 2 (shown for four
states).

Fig 2 lllustration of state transition governed by a transition matrix
with tri-diagonal structure

Based on the dorementioned assumptions with regard to
d0and 6, one can redily demonstrate the following
estimationsfor A={a,}

a,, =a, =06/(26) a, =(6,-308)/6 1)

If theinitial target pose is uniformly distributed, we similarly

have
m:a/ia @)
As discussed further below, (1) and (2) constitute initial
estimates for A={a,} and m={m}, with these refined via
Baum-Welch training [14].

3. STATE-DEPENDENT STATISTICS

The model employed for the state-dependent statistics is
dependent on the seleded fedure set. Ground targets usualy
contain fairly complex scatering features. Each of the HRR
waveforms for the MSTAR data set consists of 72 range hins,

and therefore use of the waveform itself, as a feaure vedor, is
not an atradive option. Moreover, the HRR signature can be
corrupted by noise, and wedk scattering features may be highly
contaminated, making dired use of the signature unreliable for
classficaion. For our problem, the radar frequency is centered
at 10 GHz with a bandwidth of 600 MHz, and therefore the
target scatering is well represented as a series of diffractions
from scatering centers on the target surface We seek the
extradion d these scatering-center features for representation
of afeaurevedor.

Reseachers have nsidered severa models  for
eledromagnetic scatering from targets. For example, Altes has
devised a genera target model [15], others have based their
model on the geometric theory of diffradion (GTD) [5],
employing damped-complex-exporential models [10-11,13], as
well as a point-scaterer model [12]. We here perform feaure
parsing via the point-scater model in [12], employing the
RELAX agorithm described therein.

Consider the frequency-dependent, complex HRR waveform
X(w) , scatered from a given target at a particular (generaly
unknown) target-sensor orientation. The RELAX algorithm [12]
is used to extrad paint-scatered wavefronts from X(w) , from

which the range (time) dependent HRR waveform isredized
K X X
X(r)=3 Aw(r=r) ©)
k=1
where x(r) is the Fourier transform of X(w) after extrading
these series of point scaterers, AX=oyexdjgy) is the

complex amplitude of the kth wavefront (magnitude alf ), w(r)

is the red window function used to represent the spatial support
of the wavefronts (defined by system bandwidth), and K
represents the number of RELAX-extraded wavefronts. In the
work presented here w(r) is a Gaussan with variance onsistent

with sensor bandwidth. For eadn complex HRR waveform (3)
we define thered and pasitive function

v K X X
= - 4
X(r) I(z:1c;'kw(r o) @

Now consider two HRR signatures X(r) and y(r), for which
we wish a distance measure. The distance is defined in terms of
the arrelation

C(x,y)=[drx(r)y(r) = i iaja‘ij(r —r)w(r-r’)dr

=5 Solong(r 1)

Since w(r) is Gausdan, so is g(r), with twice the variance
Using matrix notation, (5) can be re-written as
C(xy)=0/W 6, (6)

®)

with W, a K x K matrix representing the functions g(rkX - riy) .
Note that the crrelation in (5) can be computed diredly from
the RELAX outputs, without having to explicitly form the range
profile (4).
We now define the distance

d*(x,y)=0,W_06 +0/W 0 -20/W O @)
which is referred to as the spatially weighted distance (SWD), in
which eadh element in the weighting matrix is a function o



spatial distance between scaterers. In (7) W,, and Wy, are of the
same form as W,,. Note that if the wavefronts are spaced

uniformly, such that A=rg;-nr‘=rY,-rYand g(A)=0,
then this distance measure reduces to the traditiona Euclidean
distance
d*(x,y)=6;6,+06,6,-26,6,=(6,-6,)'(6,-9,) ®)
The distance measure in (7) plays a pivota role in the HRR
HMM, as currently designed. In particular, for the N states

S={(S,S, S} charaderistic of a given target, we define a

codebook of N codes C={c,c,,---,cN}, With code c,

asociated with state s,. Recdl that the HMM requires a state-
dependent statisticd measure. For a given HRR signal x the
likelihood that x is assciated with state s, is defined as

2
d (x,zcn)] ©)

1
P(X|sn) = exp[-

5 V2m n

The likelihood in (9) is clealy motivated by a Gausdan

distribution, but here we explicitly utili ze the distance measure

d?, which is tied to the RELAX feaures extracted from the HRR
waveform.

Note that ead target will have its own set of states and codes,

and an important isue ncens the design o the state

dependent codes C ={c;,Cy,---,Cn}. AS we discuss in the

Conclusion, the sophisticated design of C is an area of future
reseach. In the work reported here we simply utili ze the training
data asciated with a given state to define the average HRR
profile, this defining the code aswciated with that state. In (9)

n? is the ensemble average of the SWD between the state-

dependent HRR profiles and the awciated code (averaged
acossall target states). The optimal state decomposition is also
an area of future reseach, for in the work reported here we
simply utili ze a uniform state decompasition. We note, however,
that the state-transition matrix, initial-state probabilities and the
constant n*are optimized duing Baum-Welch [14]
optimizaion, based on training data However, the target-
dependent codebook C currently remains fixed. As discussed in
Sec 4, the training and testing data ae distinct.

Summarizing the dgorithm, ead target is segmented into a
uniformly distributed set of states, ead state idedly
representative of a set of target-sensor orientations over which
the scatered fields are stationary. For ead state we define an
asociated code, composed of representative RELAX fedures. In
the testing phase we measure a sequence of HRR waveforms,
and compute an overall HMM likelihood that the sequence is
asociated with a particular target. In the HMM we require the
likelihood that a particular set of RELAX feaures, asciated
with a particular HRR waveform, is consistent with a given
HMM state. This likelihood is computed using the distance
between the RELAX fedures and the state-dependent code, with
the distance @mputed asin (7), and the likelihood asin (9). The
training data is used to define the target-dependent codes and
optimize the HMM state-transition matrix and initial-state
probability vedor.

4. IDENTIFICATION RESULTS

We present example identification results using the gproac

discussed above. The data set used consists of the X-band HRR
signatures of ten MSTAR targets (see [5,6] for details on the
MSTAR targets). The MSTAR data set typicdly consists of
image dhips. These images have been converted into a sequence
of HRR waveforms, through various filtering operations. The
HRR data was provided to the investigators by the US Defense
Advanced Reseach Projeds Agency (DARPA), with the
conversion d MSTAR images to HRR waveforms performed
under the TRUMPETS program. All ground-based targets are of
very similar shape (most are military vehicles, athough there
are afew civilian vehicles[5,6]).

The HRR signatures have a bandwidth of approximately
600MHz catered at 10 GHz, and have arange resolution of
approximately 0.3 meters. Training data and testing data ae
distinct (as provided by DARPA), each having a full coverage
of 360° asped angles (fixed depresson angle). Recdl that the
HMM processes a sequence of HRR waveforms, without
explicitty forming an image. The agular sampling is
30 =0.1°and the sequences are awmed to consist of sixty
HRR waveforms (consistent with a 6° aperture). For ead target
3,601 signatures are used to cover the full 360° asped range,
resulting in a total of 36,010 training signatures and 36,010
testing signatures for the ten targets. The HRR signatures
(complex) are transformed to the frequency domain and the
RELAX agorithm [12] is employed to extrad the feaures from
the frequency domain data. To fadlitate data manipulation, a
fixed number of dominant point scaterers are extraded for eat
signature. Here we set this number as K=15 (see (3)). Each
target is partitioned into 180 wniformly distributed states, eat

with 6, =2° (see(1) and (2)). Ten HMM models are obtained,

ead describing one of the ten targets, and a maximum-
likelihood (ML) classficaionis employed.

To evaluate dassfication performance, we use dl possble
sequences of sixty HRR waveforms (equivalently, all passble 6°
apertures), yielding a total of 3,541 testing sequences for eath
target. Based onthe frequency with which the testing sequences
are adgned to ead target, we obtain the confusion matrix
shown in Table 1. Theij-th entry in the confusion matrix gives
the percentage of target i identified as target j given that target i
isthetrue target. It is ®en that using our HMM -based approad,
an average crred identification rate of 90.3% is attained for the
ten MSTAR targets (the data cnsidered is as given by DARPA,
no additi ve noise is considered in these results).

To compare our approach with traditional techniques, we use
the same training data to examine aMagjority Voting Clasdfier
(MVC) and an Independent Multi-aspea Clasdfier (IMC). For
ead target we have 180 states, dong with assciated codes and
likelihoods (see (9)). In the MVC, eah o the sixty HRR
waveforms in the testing sequenceis mapped to ore of the target
states, in a ML sense, using (9). Asuume M; represents the
number of times a state from target i was © mapped into. The
data under test isdedared scatered from target i if M;>M, for all
targets k (ties are settled via an appropriately weighted random-
number generator, e.g. 50/50 for a two-way ti€). Note that the
MV C does not exploit the fad that in redity al sixty waveforms
come from the same target. The IMC utili zes this in a simple
way. In particular, when testing if the HRR seguence is
asociated with target i, ead HRR signature is asociated with
the state of target i for which (9) is largest, and the likelihood is
computed as the product of the sixty asociated likelihoods



(independence aaumed). Both clasdfiers utili ze pieces of the
HMM, but do not utilize orrelated sequential information, with
this acounted for by the HMM .

The same HRR data mnsidered by the HMM is aso used to
test the performance of the MVC and IMC. Space limitations
predude presentation of the complete mnfusion matrix for these
simpler methods, but the average performance of the MVC and
IMC algorithms was 62% and 58%, respedively. The degraded
performance of the two clasdfiers is not surprising. The ten
MSTAR targets are very confusing targets [5,6]. The HRR
signature of a target at one aped angle will quite likely be
similar to the signature of another target at the same or some
other asped angle. This confusion will inevitably result in many
wrong dedsions for ead individua signature. In contrast,
similar signatures from two dfferent targets will be much less
likely to appea in the same order of asped angles. That is, the
sequential charaderistics of signatures can be distinguishable
even if the signatures themselves are wnfusing. It is the dficient
use of this squentia information that gives the superior
performance of the HMM model.

5. CONCLUSIONS

In this paper we have discused the use of sequential information
in identificaion d ground targets using HRR radar signatures.
The underlying association o states to asped angular secors
yields a simple and reliable setting for computation of the HMM
parameters. The omplexity of scatering from ground targets is
made manageable by extrading parameters (features) of
dominant scaterers. The Euclidean dstance is extended to
acourn for the general wavefront time of arrival, which then
provides a statisticd model for the HRR signalsin aHMM state.
It is hown that an average rred identificaion rate of 90.3% is
achieved onthe MSTAR data using information from 6° angular
spans. Whil e the results reported here ae encouraging, there is
much room for improvement. In particular, we ae arrently
employing genetic dgorithms to optimize the target state
decomposition and definition of the target- and state-dependent
codes.
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T72 | BTR70 | BMP2 | 2S1 | ZSU234 BTR60 | BRDM2 [ D7 | T62 | ZIL131

T72 921 ] 031 0.68 152 | 0.82 0.37 144 107 {040 | 130
BTR70 1.02 | 87.0 4.29 181 [ 0.14 2.01 3.02 0 071 | 0

BMP2 0.14 | 0.96 89.2 4.77 | 2.20 0.37 1.52 0 0 0.79
2S1 0 2.51 1.64 854 | 0.08 1.33 4.80 0 130 | 294
Z8U234 | 0 0.88 1.38 0.40 | 890 1.19 0.51 322 119 |[147
BTR60 0 0.79 0.23 0.08 | 2.06 92.6 1.75 085 ] 011 | 150
BRDM2 | 0.11 | 4.12 1.04 28510 0.17 915 01710 0

D7 09 |0 0.11 00810 0 0.51 9801031 (O

T62 0 0.17 0.59 028 | 251 1.16 0.20 5851883 [0.96
ZIL131 1.02 [ 0.31 3.67 1.02 [ 1.75 0 0 2511003 [897

Table 1. Confusion matrix of the HMM clasgfier. Theij-th entry is percentage (%) of target i identified as target j
given that target i is the true target (average rate: 90.29%).




