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ABSTRACT

In this paper we characterizeoptimal detectionand signaling(in
termsof signal-to-noiseratio) for a fastfadingchannelwhenthe
autocorrelatiorfunction of the channelvariationis knowvn. We
find thatthe well knovn matchedilter andRale recever arelim-
iting casef our result. Also, we provide a procedurehatfinds
apair of signalsfor digital communicationWith land mobilefad-
ing channelthesignalsobtainedwith our procedurénave a perfor
mancesignificantlybetterthantraditionalflat-toppulsein termsof
probability of errorrate.

1. INTRODUCTION

In this paper we addressthe problemof designinga signaling
waveformfor optimumtransmissiorthroughafastfadingchannel,
wheretheoptimumis with respecto maximumsignalto noisera-
tio, underthe assumptiorthatthe autocorrelatiorfunction of the
channelvariationfunctionis known. Fig. 1 depictsthe systema
genericsystentor fadingchannelswith acorrelationdetector We
alsocharacterizéhe optimalrecever for suchasignal.

transmitter channel recever

Fig. 1. Systemmodel.

Uptothepresentresearctaboutfadingchannelhasbeenper
formed largely underthe slow fadingassumptionj.e., the chan-
nel is consideredo be constantfor up to a few symbol times.
Underthis assumptiona channellocally behaesasan additive-
white-Gaussiamoise (AWGN) channel. It is generallyaccepted
thatmatchedilter detectorgproducegoodperformanceHowever,
whenthe slow fadingassumptioris lifted, the optimal detectoris
not simply a matchedfilter. Fastfadingcausesvariationswithin
the symbolintervals so thatthe modelappliedto slow fadingbe-
comesinaccuratg]1, 2]. The signal-to-noiseratio (SNR) in the
recever statisticr depend®nthechannepropertiesandthefunc-
tionss(t) andh(t): Unlike un-fadedtransmissiorthrougha Gaus-
sian channel,the transmittedwaveform s(t), ratherthan just its
enepgy, hasbearingon the SNR performanceandthe optimal re-
ceiversignalh(t) is notnecessarilequialentto s(t).

The studycanbe largely simplified whenwe separatéhe fast
fadingandthefrequeng selectvenessaspect®f thefadingchan-
nel. Whenwe assumedrequeng non-selectienessthe channel

¢(r;t) becomesimplemultiplicativechannel.e.,r(t) = a(t)s(t)
+ n(t), with a(t) being a zero-mearstationarycomplex Gaus-
siansignalandn(t) beingcomplex AWGN with a power-spectral-
density(PSD)Ny /2. Thestudymaybeextendedor frequeng se-
lective fadingchanneldy introducingmultiple pathsto the chan-
nelmodel,i.e.,

r(t) = Z&ai(t)S(t — ¢i) +n(t), 1)

wherea;(t) is normalizecsothatE[|ai|2] = 1, andg¢; is thepath
strengthandg; is the pathdelayfor ** path.

We will derive our resultswith single path situationherein.
However, our discussioris readily extendedfor multipathfading
channelsWe first characterizeptimal detectorsor known trans-
mitted signal,thenwe studythe optimal signalingin the senseof
maximizingthe SNRof therecevedsignal.

2. OPTIMAL DETECTION OF KNOWN SIGNALS

If we donotassumeerfectsynchronizationwhenaknown signal
so(t) istransmittedtherecevedsignalattheoutputof thedetector
filter is *

r= / [a(t)so(t — p) + n(B)]h () dt,

wherey is arandomdelaywith densityfunctionof p(u). Thecor
respondingignalandnoisecomponentsttheoutputof thedetect-
ingfilter arers = [ a(t)so(t—p)h(t) dt andr, = [ n(t)h(t) dt.
Assumingh(t) hasunit enegy, we have E(|r,|?) = No/2 . The
varianceof thesignalpartis

E(rs[?)
= B{ / / [a(r)so(r — wIA(r)a” (V)s(A — w]h* (A) dr dA}

- / Re(r, \)B(r, NA()R* (A) dr dX < F(h),

whereR. (7, A) = E[a(r)a*(A)]and¥(r,\) = E[s(r—p)s* (A—
)] = [ so(r — p)s5(A — p)p(p) dp.

To maximizeF (h) with constraintof G(h) = [ h(t)h*(t) dt
= 1, we form the Lagrangian(h) = F(h) — yG(h), where~y
is a Lagrangemultiplier. We take a variationwith respecto h (as
definedin theappendixl) of the Lagrangiarandsetit to zero,i.e.,

- T(h) = S F(ho) =75-Glh) =0 (2

1Throughoutthis paper integrals statedwithout limits areassumedo
beovertheintenal (—oo, o).



where o (t) is an exremumof F(h). We have 2¢00) (r) =
R (1) and2Eh0) (1) = [ Ry, (7, \)¥ (1, A)hy(A)dA. From(2),

hi(r) = / Ra (7, \) ¥ (r, )R (A) dA. 3

Forthis ho, E(|7s|?) = [[ Ra(m, A\)¥ (7, A)ho(T)h§(A)drdA =
~. We concludethatfor maximumSNR,y is thelargesteigevalue
of Ro (7, A)¥ (7, \), andhg(t) isthecorrespondingigenfunction.
For perfectsynchronizationi.e., p(u) = d(u), it is interest-
ing to point out that for the caseof a singlenon-fading path,i.e.,
R (7,)) = R (constantfor all 7 and\, vh$ (1) = [ Ra(T, A)
50(T)s5(AN)ho(A)dX = so(7) [ Rsg(A)hs(X)dX = Cso(r),
whereC' € C. Thisis the familiar matchedfilter. On the other
hand for thecaseof non-fadingmultiple pathsusing(1), yho (1) =
S Al&N? [ Rsg(X = ¢i))ho(A) dA}so(T — ¢i) = 35, Ciso(r —

¢i), whichis therake recever.

3. OPTIMAL SIGNALING (MAXIMIZING SNR)

Observingthatr = [ «(t)s(t) h(t)dt is symmetricin s(¢) and
h(t), we cancharacterizehe s(t) thatmaximizesthe SNR for a
givenh(t) with thesameargumentabore. Thisleadsto aniterative
algorithm: We find the optimal h(t) for a given s(t) thenturn
aroundandfind theoptimal s(¢) for this h(t).

Algorithm 1: Initialize: Randomlyselectaninitial sq(t).

1. Setho(t) sothatyi1hy(t) = [ Ra (7, X)¥(7, A)hi dA where
~1 is thelargesteigervalue,andhg(t) is thecorresponding
eigenfunction.

2. Setso(t) sothatyoss(t) = [ Ra(T, \)®(T,A)sg(A) dA,
whereho(t) is thatfoundin stepl, (7, A) = [ ho(r +
w)hg (A + p)p(p) du, andyo is thelargesteigervalueand
sp(t) is thecorrespondingigenfunction.

3. Repeastepsl and?2 until corvergence.

The integral equationscan be approximatedusing discretesam-
plesand matrix eigensolers (e.g.,in MATLAB). Sinceonly the
largesteigemvalue(s)ector(s)is (are) neededthe pover method
canbeused.lt is not necessaryo storethe entirekernelasa ma-
trix, since¥ (7, \) constructedy asinglevector R, (7, ) is also
symmetric Toeplitz, and henceis also characterizedy a single
vector This allows highernumbersof samplegfiner resolution)
to becomputedwith modeststoragerequirements.

We have implementedthis algorithm with discretesamples,
AT = 1/128sec,0f R, (1) = K Jo(2rBpT) from aland mobile
modelunderRayleighfading,where K is a constantand Bp is
themaximumbDopplershift[3]. In thefollowing exampleswe use
Bp = 4.99744Hz, thatcanbeobtainedvhenwe arecommunicat-
ing with 900MHzwhile having arelative speef aroundl.66me-
ter/sec. Assumingperfectsynchronizatiomwe find that|s(¢)|> and
|h(t)|? approach¥(t) with the largesteigevalueapproacheto 1.
This agreeswith recentobserations[4] that capacity-achiging
signalingsarepealy in nature.

3.1. Frequency Constraints

Obviously, § functionsarenot practicalsignalingwaveforms.One
possibleapproachfor designingpractical signalffilter pairsis to
introducefrequeng restrictionsto s(t) and h(t). Let S(f) =
F(s(t)) andH(f) = F(h(t)) denotetheFouriertransforms\We

introducethe functionalQ, (s) andQ; (k) asmeasuresf theen-
ey of s(t) andh(t) respectrely in thefrequeny range(—W, W),

w
wm = [ HOT (= [DGEE () df
—ow / / sinc(27W (1 — \)h(r)h* (\) dr dA,

andsimilarly Q(s) = 2W [ [ sinc(2aW (1—X))s(7)s*(A) dr dA.

We constructa Lagrangianto reflectthe frequenyg contain-
mentof h(t), i.e., J(h) = (1 — B)F(h) + BQx(h) — vG(h)
whereg € [0,1] is aweighingfactor By settingthe variationof
J(h) atho to bezero,weobtain(1—8) = F(ho) + B3 (ho) =
v2-G(ho). But,

%Qh(ho) = oW / sinc(2rW (1 — N)hS(N A, (4)

so,we have

by (r) = / [(L = B)Ra(r, (7, N)
+ 28W sinc(2nW (1 — A))]ho(A) dX

()

to characterizehe optimal ho(t) for given sqo(t). Similarly, we
have

ysa(r) = / [(1 = B)Ra (7, \)&(, \)
+ 28W sinc(2nW (7 — A))]so(A) d,

(6)

where®(7, A) = [ ho(r + p)ho (A + p)p(p) du, to characterize
theoptimalso(t) for givenho(t).

Again, we candetermineoptimum signal/filter pairswith an
iterative algorithm:
Algorithm 2: Initialize: Randomlyselectaninitial randomso(t).

1. Setho(t) to satisfy(5), wherey = ~; is thelargesteigen-
value of the kerneland hg(t) is the correspondingeigen-
function.

2. Setso(t) to satisfy(6) wherey = ~ is the largesteigen-
value of the kerneland so(t) is the correspondingeigen-
function.

3. Repeastepsl and?2 until corvergence.

An examplecomputedusingthe sameR,, (1) asbeforeshavs we
areableto obtainsignal/filter pair thatarefrequeng constrained
while atthe sametime matchedo the channelutocorrelatiorand
producereasonabl&SNR.Fig. 2 shavs theinitial andfinal wave-
forms of s(t) andh(t), andhow the largesteigervalueincreases
with theiterationnumber In this plot, W = 2/xHz and = 0.6.

4. SIGNAL SETS

To communicateover a fastfadingchannel amplitudeand phase
modulationare inappropriate:somethingakin to orthogonalsig-
naling is necessary We mustthereforefind at leasttwo setsof
signalffilter pairs (so(t), ho(t)) and(s1(t), h1(t)), suchthatun-
der the channelinfluencea(t), s;(t) andh;(t) have a minimal
correlationfor i # j.
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Fig. 2. Signalgeneratiorwith frequeng restrictions.

From (3), (5) and (6), we know that the minimum correla-
tion canbe obtainby settingh; () to be the eigenfunctioncorre-
spondingto the smallesteigervalue while we generateh;(t) for
given s;(t), at the sametime settings;(¢) to be the eigenfunc-
tion correspondingo the smallesteigevalue while we generate
s;(t) for given h;(t). However, the kernel mustbe changedto
enforcefrequeng containment.So, while finding the eigenfunc-
tions correspondindo the smallesteigervalues,we usethekernel
of theinverseoperator(Z[-], Appendix2) of thatof (4) in placeof
2W sinc(27W (7 — X)) in (5) and(6) for frequeng containment.

We suggesthe following procedure Givenatransmittedsig-
nal so(t) (resp. detectionfilter ho(t)), let the correspondindil-
ter ho(t) (resp. signalso(t)) be the eigenfunctiorhaving largest
eigemvalueof thekernel(1—
—A)) (resp(l — B)Ra (1, \)®(1, A) + 28W sinc (2 W (1 — X))
asdefinedbefore. At the sametime, seth (t) (resp. 51 (t)) to be
the eigenfunctionwith smallesteigemvalue of the kernel(1 — )
Ro (7, \)¥(7,A) + BI[2W sinc(2aW (1 — A))] (resp(1 — B)
Ro (7, \)@(7, A) + BZ[2W sinc(2xW (7 — A))]). Usethe same
methodto obtain 3 (t), A1 (t), 50(t), andho(t). This procedure
will becarriedout repeatedlyfor eachnew iteration,setso(t) =
So®+50() g, (4) = SLO¥EWD) p(4) = ﬁo(t);ﬁo(t)’andhl(t) -

M+ thennormalizethesefunctionsto unit enegy. The
procedurds summarizedn fig. 3. Computationallythe smallest
eigevaluescanbe found usinginverseiteration. As before,the
matricesrequireonly vectorsizestorage.

so(t) =

sg(t) —P ho(i) = S0t .
: ‘Q(So(i)+80(i))

‘ 2(’10(1) +ho) .

) = ."s(t):

AR | N
. 1(t 1
s1(8) = Lk (1) + e () L(s1(t) +51()

Fig. 3. Procedurdor generatingsignal/filterpairs.

Due to the averagingin the generationprocessof the sig-
nalffilter pairs,thepairsvary alot, bothwith thewaveformsandthe
SNRin term of the largesteigemvalue. However, duringthe pro-

B)Ra (7, A) ¥ (7, \)+28W sinc (27 W (7

cess,we comeacrossmary “good” pairswhich have high SNR.
Fig. 4 shaws several of thesepairsfor arangef 3s.
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Fig. 4. SignalffilterpairsgenerateadvhenW = 2/xwHz.

A quadraticreceizer asshavn in fig. 5 is usedto detectthe
received signal. Let ry, = [(a(t)sk(t) + n(t))hi(t)dt denote

e
alie

hi(t)

r(t)

Fig. 5. QuadraticRecever.

the signal-plus-noiseecever statisticwhen s (t) is sent,andlet
ry = [rrg re,]T. Letty = E(ry). The covariancematrix of
the samplevectorwhen s, (¢) is transmittedis definedas Ry, =
E[(ry, — 7)(rx — %)¥]. Sincecorrelationdetectionis a linear
operationr is complex Gaussiamwith densityfunction[5]
p(r|sk(t)) = )" Ry (r — £)]-

_ exp[—(r —
TRy P

Thedecisionrule we useis

S0

p(r|so(t)) — p(rlsl(t))szl 0

| Ro

(r—50)"Ry! (r—ro) = ln Al

2(1‘ — f‘l)HRl_l(l‘ — f‘l) —

S0

=g = vHQv 2 &,
81

whereQ = Ry'—Ry ', w = 2(Ry 'To—R; 'F1),u = —lQ_lw,

v =r—u,and{ = |R°| +I'11HR1 r—Tg RO ro——wHQ lw
The quadraticform in the exponentcanbe diagonalizedy usmg
thetransformationE(v) = v = Uy L™ "U>d whereU; andU- are



obtainedfrom the unitary eigendecomposition/ ~* = U; L2U{

and LU QUL L' = U,QUY, andwhereQ is a diagonal
matrix of the eigevaluesof M Q. For Rayleighfading,we have
v = 0 andthe probability of errorratethencanbe evaluatedusing
the cumulatize distribution functionof g presentedh [6], i.e.,

Fy(§) =
%<0 { T s e pespl—gar®) if €<0

i

1= Saso {IDos o 2 fexpictert) 1 €20
whereg;, aretheeigervaluesof M Q.

Fig. 6 shavsaperformanceomparisorbetweerthesignalffilter
pairsobtainedby methodsuggesteéh this papemwith binaryflat-
top pulsesn aPPMpairwith aspanof 4 secondshroughatypical
landmotionfadingchannelIn thisplot, SNR = —101log,, No/2
(signalsof constanunit enegy).
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Fig. 6. P(e) vsSNR.

5. CONCLUSION

We characterizedhe optimal detectorand signalingin term of
SNRfor afadingchannewhentheautocorrelatiorfunctionof the
channeblvariationwasknown. Our resultincludedthe well known
Matchedfilter and Rake recever. We also provided an algorithm
that generatesptimal signal/filter pairs having good SNR which
satisfy frequeng containment. With typical land mobile fading
channelthesignalsobtainedwith our procedurehave amuchbet-
ter performancecompareto traditional flat-top pulsein term of
probability of errorrate.

6. APPENDIX 1

The derivative, more preciselythe variation,of F: £L2(R) — C
with respectto h is a function definedas follows. Let h(t) =
u(t) + jv(t), whereboth u(t) andv(t) arereal, we have [7]

SF(h) _ 1 (8F(h) _ ;6F(h) dF(h) _ 1 (8F(h) | .8F(h)
Sh —5( su. I o )’anddh* —‘( 5o TJ1 75 )

2
suchthatfor e € R, andV € L2(R)[8],

) vy = [ RSy 0w (yae

F((uo + €V) + jvo) — F(ho)

)

V) =(
ho

(S F(h)

= lim
€—0 €

and

(S pm)| V) = lim o+ 3o+ V) = F(ho)
ov n =0 €
0
Thatis, the variation ‘;—i is that function which providesa linear
approximatiorto F'.

7. APPENDIX 2

Letk(X\, 7) = Z[g(X, 7)], sothatwe have [ k(X, T)g(r,v)dT =
d(A—v). Forthecasek(\, 7) = k(A—7) andg(\,7) = g(A—71),
we have

/k@—TMh—UWT=MA—W

1

:/k(t—u)g(u)duzé(t) = K(w) = m,

whereK (w) andG(w) aretheFouriertransformsf k(¢) andg(t)
respectiely. If G(w) = 0 for somew andis boundedoelar, we
useK(w) = W astheapproximatiorof theinverseoperator

kernel,with I beingsomeconstansuchthatG(w) + I > 0.
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