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ABSTRACT
In this paper, we characterizeoptimaldetectionandsignaling(in
termsof signal-to-noiseratio) for a fastfadingchannelwhenthe
autocorrelationfunction of the channelvariation is known. We
find thatthewell known matchedfilter andRake receiver arelim-
iting casesof our result. Also, we provide a procedurethat finds
a pairof signalsfor digital communication.With landmobilefad-
ing channel,thesignalsobtainedwith ourprocedurehaveaperfor-
mancesignificantlybetterthantraditionalflat-toppulsein termsof
probabilityof errorrate.

1. INTRODUCTION

In this paper, we addressthe problemof designinga signaling
waveformfor optimumtransmissionthroughafastfadingchannel,
wheretheoptimumis with respectto maximumsignalto noisera-
tio, underthe assumptionthat the autocorrelationfunction of the
channelvariationfunction is known. Fig. 1 depictsthesystem,a
genericsystemfor fadingchannelswith acorrelationdetector. We
alsocharacterizetheoptimalreceiver for sucha signal.
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Fig. 1. Systemmodel.

Up to thepresent,researchaboutfadingchannelshasbeenper-
formedlargely underthe slow fadingassumption,i.e., the chan-
nel is consideredto be constantfor up to a few symbol times.
Underthis assumption,a channellocally behavesasan additive-
white-Gaussiannoise(AWGN) channel. It is generallyaccepted
thatmatchedfilter detectorsproducegoodperformance.However,
whentheslow fadingassumptionis lifted, theoptimaldetectoris
not simply a matchedfilter. Fastfadingcausesvariationswithin
thesymbolintervals so that themodelappliedto slow fadingbe-
comesinaccurate[1, 2]. The signal-to-noiseratio (SNR) in the
receiverstatistic� dependsonthechannelpropertiesandthefunc-
tions ���
��� and ���
��� : Unlikeun-fadedtransmissionthroughaGaus-
sian channel,the transmittedwaveform ���
��� , ratherthan just its
energy, hasbearingon theSNRperformance,andtheoptimal re-
ceiver signal ���
��� is notnecessarilyequivalentto ���
��� .

Thestudycanbelargely simplifiedwhenwe separatethefast
fadingandthefrequency selectivenessaspectsof thefadingchan-
nel. When we assumefrequency non-selectiveness,the channel

� �! #"���� becomessimplemultiplicativechanneli.e., �$�
���&%(')�
�������
���*,+ �
���.- with ')�
��� being a zero-meanstationarycomplex Gaus-
siansignaland

+ �
��� beingcomplex AWGN with apower-spectral-
density(PSD) /103254 . Thestudymaybeextendedfor frequency se-
lective fadingchannelsby introducingmultiple pathsto thechan-
nelmodel,i.e.,

�6�
���7%,869;: 9 ' 9 �
�������
�=<?> 9 � *@+ �
���.- (1)

where' 9 �
��� is normalizedsothat ACBED ' 9 D F.GH%JI , and : 9 is thepath
strengthand > 9 is thepathdelayfor KML!N path.

We will derive our resultswith single path situationherein.
However, our discussionis readily extendedfor multipathfading
channels.We first characterizeoptimaldetectorsfor known trans-
mittedsignal,thenwe studytheoptimalsignalingin thesenseof
maximizingtheSNRof thereceivedsignal.

2. OPTIMAL DETECTION OF KNOWN SIGNALS

If wedonotassumeperfectsynchronization,whenaknown signal�O0��
��� is transmitted,thereceivedsignalattheoutputof thedetector
filter is 1 �1%QP(B ')�
�����O0��
�7<SR�� *T+ �
���UGV���
���$W��X-
whereR is arandomdelaywith densityfunctionof Y=�
R�� . Thecor-
respondingsignalandnoisecomponentsattheoutputof thedetect-
ing filter are �3Z[%Q\]'^�
�����O0_�
�3<`R������
���aW�� and�3bc%Q\ + �
�������
���aW�� .
Assuming���
��� hasunit energy, we have AC��D �3bdD FO�)%,/e03254 . The
varianceof thesignalpartisAC��D � Z D F �%fA]g PCP B ')�! H���O0��! h<iR��UG��d�! H�XB 'kj_�MlH����j0 �MlC<iR��UG��Hj��MlH�aWm nW$lpo
%QPcPrqts��! 6-.lH��uh�! 6-�lH�����! H��� j �MlH�$Wm nW$lcv�wyx%{zc�y�H�.-

whereqts=�! $-.lH�k%fACB ')�! H��' j �MlH�UG and uh�! 6-�lH�&%QACB ���! d<nR���� j �Mld<R��UGp%Q\c� 0 �! h<iR���� j0 �Mlh<iR=��Y��
R=�aW�R&|
To maximize zc�y�H� with constraintof }h�y�H�~% \ �d�
����� j �
���mW��%�I , we form theLagrangian�k�y�H�e%rzc�y�H�^<@�#}h�y�H� , where �

is a Lagrangemultiplier. We take a variationwith respectto � (as
definedin theappendix1) of theLagrangianandsetit to zero,i.e.,�� � �&�y��03�&% �� � zc�y��0O�=<i� �� � }h�y��03�&%Q� (2)

1Throughoutthis paper, integralsstatedwithout limits areassumedto
beover theinterval �M�~�?���i� .



where � 0 �
��� is an extremumof zc�y�H� . We have ���7� NO�X�� N �! H��%� j0 �! �� and ���7� NO�.�� N �! H�7%;\hqts7�! $-�lH��uh�! 6-�lH��� j0 �MlH��W$l . From(2),

�p� j0 �! H�7% P q s �! 6-�lH��uh�! $-�lH��� j0 �MlH�aW$ld| (3)

For this � 0 , AC��D � Z D FO�^%�\_\hq s �! $-�lH��uh�! 6-�lH��� 0 �! H��� j0 �MlH��Wm �W$l�%�=| Weconcludethatfor maximumSNR, � is thelargesteigenvalue
of qts=�! $-�lH��uh�! 6-�lH� , and � j0 �
��� is thecorrespondingeigenfunction.

For perfectsynchronization,i.e., Y=�
R���% � �
R�� , it is interest-
ing to point out that for thecaseof a singlenon-fadingpath,i.e.,q�s=�! 6-�lH�&%fq (constant)for all  and l , �p� j0 �! ��&% \ qts=�! $-�lH��O0_�! ���� j0 �MlH����0��MlH�aW$l�%��O0_�! H�$\hq�� j0 �MlH��� j0 �MlH�mW$l�%����30��! �� ,
where ����� . This is the familiar matchedfilter. On the other
hand,for thecaseof non-fadingmultiplepaths,using(1), �p� j0 �! H�&%  9 g$D : 9 D F \ q�� j0 �Mlc<T> 9 ������0��MlH�mW$lpo5�O0_�! c<?> 9 �&%   9 � 9 �305�! c<> 9 � , which is therake receiver.

3. OPTIMAL SIGNALING (MAXIMIZING SNR)

Observingthat �S%¡\e')�
�������
���~���
���mW�� is symmetricin ���
��� and���
��� , we cancharacterizethe ���
��� that maximizesthe SNR for a
given ���
��� with thesameargumentabove. Thisleadstoaniterative
algorithm: We find the optimal ���
��� for a given ���
��� then turn
aroundandfind theoptimal ���
��� for this �d�
��� .
Algorithm 1: Initialize: Randomlyselectaninitial �305�
��� .

1. Set� 0 �
��� sothat �H¢�� j0 �
���&%�\]q s �! $-�lH��uh�! 6-�lH��� j0 W$l where� ¢ is thelargesteigenvalue,and � j0 �
��� is thecorresponding
eigenfunction.

2. Set �30��
��� so that �$0O� j0 �
���]%£\hqts��! 6-.lH��¤`�! 6-�lH��� j0 �MlH�aW$ld-
where � 0 �
��� is that found in step1, ¤`�! 6-.lH�1%¥\h� 0 �! *R=��� j0 �Ml * R���Y=�
R��$W�R , and �$0 is the largesteigenvalueand� j0 �
��� is thecorrespondingeigenfunction.

3. Repeatsteps1 and2 until convergence.

The integral equationscan be approximatedusing discretesam-
plesandmatrix eigensolvers (e.g., in MATLAB). Sinceonly the
largesteigenvalue(s)/vector(s)is (are)needed,the power method
canbeused.It is not necessaryto storetheentirekernelasa ma-
trix, since uh�! 6-�lH� constructedby asinglevector, qts=�! $-�lH� is also
symmetricToeplitz, and henceis also characterizedby a single
vector. This allows highernumbersof samples(finer resolution)
to becomputedwith modeststoragerequirements.

We have implementedthis algorithm with discretesamples,¦e§ %�I32mI345¨ sec,of q s �! ��k%f©i� 0 �M4�ªd«­¬) H� from a landmobile
modelunderRayleighfading,where © is a constant,and « ¬ is
themaximumDopplershift [3]. In thefollowing examples,weuse«`¬;%(®6| ¯5¯�°�®5® Hz, thatcanbeobtainedwhenwearecommunicat-
ing with 900MHzwhile having arelativespeedof around1.66me-
ter/sec.Assumingperfectsynchronization,wefind that D ���
����D F andD ���
����D F approach

� �
��� with thelargesteigenvalueapproachesto I .
This agreeswith recentobservations[4] that capacity-achieving
signalingsarepeaky in nature.

3.1. Frequency Constraints

Obviously,
�

functionsarenotpracticalsignalingwaveforms.One
possibleapproachfor designingpracticalsignal/filter pairs is to
introducefrequency restrictionsto �m�
��� and �d�
��� . Let ±)�M²H��%³ �M���
����� and ´T�M²H�~% ³ �y���
����� denotetheFouriertransforms.We

introducethe functional µ Z �M�3� and µ N �y�H� asmeasuresof theen-
ergyof �m�
��� and���
��� respectively in thefrequency range��<t¶?-�¶J� ,
µ N �y���~% P;·¸ · ´T�M²H��´ j �M²H�aW�²�% P B ¹h�

²45¶ ��´T�M²H�UGV´ j �M²H�$W�²
%­45¶ºP�P�»�¼E½6¾��M4�ª�¶��! h<TlH�������! ���� j �MlH�aWm nW$ld-

andsimilarly µnZ_�M�3�k%Q45¶ \h\ »�¼�½�¾m�M4�ª�¶��! #<tlH�����m�! ���� j �MlH�mWm nW$ld|
We constructa Lagrangianto reflect the frequency contain-

ment of ���
��� , i.e., �k�y�H�¿%���I]<(À=��zc�y�H� * À�µ N �y�H�t<(�#}h�y�H�
where Àf�(B �a-OIXG is a weighingfactor. By settingthevariationof�k�y�H� at � 0 to bezero,weobtain ��I$<­À=� �� N zc�y� 0 � * À �� N µ N �y� 0 �k%� �� N }h�y� 0 �.| But,�� � µ N �y��03�&%�45¶ P »�¼E½6¾m�M4�ª�¶��! ]<TlH����� j0 �MlH�mW$ld- (4)

so,we have

�H� j0 �! H�7% P B���In<�À=��q s �! 6-�lH��uh�! $-�lH�* 4OÀ7¶£»�¼�½�¾��M43ª=¶Á�! h<@lH���UGV� j0 �MlH�mW$l (5)

to characterizethe optimal ��0��
��� for given �305�
��� . Similarly, we
have

�#� j0 �! H�&%iPQB���I[<SÀ7��q�s7�! 6-�lH��¤`�! $-�lH�* 4OÀ7¶£»�¼�½�¾m�M43ª=¶Á�! ]<TlH���UG
� j0 �MlH�mW$ld- (6)

where ¤`�! 6-.lH�^%�\h��0��! * R���� j0 �Ml * R���Y=�
R��$W�R , to characterize
theoptimal �30��
��� for given ��0��
��� .

Again, we candetermineoptimumsignal/filterpairswith an
iterative algorithm:
Algorithm 2: Initialize: Randomlyselectaninitial random�O0_�
��� .

1. Set � 0 �
��� to satisfy(5), where �i%,�H¢ is the largesteigen-
valueof the kerneland � j0 �
��� is the correspondingeigen-
function.

2. Set �O0��
��� to satisfy(6) where �Â%Ã�$0 is the largesteigen-
value of the kernel and � 0 �
��� is the correspondingeigen-
function.

3. Repeatsteps1 and2 until convergence.

An examplecomputedusingthesameq�s=�! H� asbeforeshows we
areableto obtainsignal/filterpair thatarefrequency constrained
while at thesametimematchedto thechannelautocorrelationand
producereasonableSNR.Fig. 2 shows the initial andfinal wave-
forms of ���
��� and �d�
��� , andhow the largesteigenvalueincreases
with theiterationnumber. In this plot, ¶Ä%,452�ª Hz and Ài%Q�$| Å .

4. SIGNAL SETS

To communicateover a fastfadingchannel,amplitudeandphase
modulationare inappropriate:somethingakin to orthogonalsig-
naling is necessary. We must thereforefind at leasttwo setsof
signal/filterpairs �M�O0_�
���.-���0_�
����� and �M� ¢ �
���.-�� ¢ �
����� , suchthat un-
der the channelinfluence ')�
��� , � 9 �
��� and �mÆa�
��� have a minimal
correlationfor K[Ç%ÂÈ .
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Fig. 2. Signalgenerationwith frequency restrictions.

From (3), (5) and (6), we know that the minimum correla-
tion canbeobtainby setting �mÆa�
��� to be theeigenfunctioncorre-
spondingto the smallesteigenvalue while we generate� 9 �
��� for
given � 9 �
��� , at the sametime setting � Æ �
��� to be the eigenfunc-
tion correspondingto the smallesteigenvalue while we generate� 9 �
��� for given � 9 �
��� . However, the kernel must be changedto
enforcefrequency containment.So,while finding the eigenfunc-
tionscorrespondingto thesmallesteigenvalues,we usethekernel
of theinverseoperator(É[B�Ê G , Appendix2) of thatof (4) in placeof45¶Ë»�¼�½6¾m�M4�ª�¶��! e<?lH��� in (5) and(6) for frequency containment.

We suggestthefollowing procedure:Givena transmittedsig-
nal � 0 �
��� (resp. detectionfilter � 0 �
��� ), let the correspondingfil-
ter Ì� 0 �
��� (resp. signal Ì� 0 �
��� ) be the eigenfunctionhaving largest
eigenvalueof thekernel ��I5<nÀ7��q�s7�! 6-�lH��uh�! $-�lH� * 43À=¶£»�¼�½�¾��M43ª=¶��! <ÍlH��� (resp.��I=<ÎÀ=��qts7�! $-�lH��¤`�! 6-�lH� * 43À=¶£»�¼�½�¾m�M4�ª�¶��! [<ÍlH��� )
asdefinedbefore.At thesametime, set Ï�d¢3�
��� (resp. Ï��¢��
��� ) to be
the eigenfunctionwith smallesteigenvalueof the kernel ��I­<@À=�q�s=�! 6-�lH��uh�! $-�lH� * À�É[B 4_¶Ë»�¼E½6¾m�M4�ª�¶��! �<�lH���UG (resp.��Ic<QÀ=�q s �! 6-�lH��¤`�! $-.lH� * À�É[B 4_¶Ë»�¼�½�¾��M43ª=¶��! Î<;lH���UG ). Usethesame
methodto obtain Ì� ¢ �
��� , Ì� ¢ �
��� , Ï�O0_�
��� , and Ï��0��
��� . This procedure
will becarriedout repeatedly:for eachnew iteration,set � 0 �
���^%ÐZ � � L!��Ñ~ÒZ � � L!�F , �_¢O�
���&% ÐZ�Ó � L!�
Ñ~ÒZ�Ó � L!�F , � 0 �
���7% ÐNO� � L!��Ñ ÒNO� � L!�F , and �d¢3�
���&%ÐN Ó � L!�
Ñ ÒN Ó � L
�F , then normalizethesefunctionsto unit energy. The
procedureis summarizedin fig. 3. Computationally, thesmallest
eigenvaluescanbe found using inverseiteration. As before,the
matricesrequireonly vector-sizestorage.
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Fig. 3. Procedurefor generatingsignal/filterpairs.

Due to the averagingin the generationprocessof the sig-
nal/filterpairs,thepairsvaryalot, bothwith thewaveformsandthe
SNR in term of the largesteigenvalue. However, during the pro-

cess,we comeacrossmany “good” pairswhich have high SNR.
Fig. 4 shows severalof thesepairsfor a rangesof À s.
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Fig. 4. Signal/filterpairsgeneratedwhen ¶Ä%Q4_2�ª Hz.

A quadraticreceiver asshown in fig. 5 is usedto detectthe
received signal. Let ��Ø.Ù�% \ �!')�
������Øa�
��� *Q+ �
������� 9 �
����W�� denote

Ú�
�

Û
Û Ü ��Ý������	

� Ó ���
	

� � ���
	 � �
� Ó

Fig. 5. QuadraticReceiver.

the signal-plus-noisereceiver statisticwhen �3Ø$�
��� is sent,andletÞ Ø@%ßB ��Ø � ��Ø Ó G�à . Let áÞ Ø@%ËAC� Þ Ø_� . The covariancematrix of
the samplevectorwhen ��Øa�
��� is transmittedis definedas q`Ø�%ACB�� Þ Øh<âáÞ Ø��X� Þ Ø]<âáÞ Ø_��ãnGy| Sincecorrelationdetectionis a linear
operation,Þ is complex Gaussianwith densityfunction[5]

Y=� Þ D �3Ø$�
�����k% Iª�äeD q`Ø�D_åXæ$ç B�<1� Þ <@áÞ Ø_� ã q ¸ ¢Ø � Þ <TáÞ Ø_�UGM|
Thedecisionrule weuseis

Y�� Þ D �O0��
������<èY=� Þ D � ¢ �
����� Z �éêZ�Ó �ë � Þ <@áÞ ¢ � ã q ¸ ¢¢ � Þ <@áÞ ¢ �=<;� Þ <@áÞ 03� ã q ¸ ¢0 � Þ <@áÞ 03� Z �éêZ�Ó^ì ½ D q`0mDD q ¢ DëTí %(î ã�ï î Z �éêZ�Ó :6-
whereï %fq ¸ ¢¢ <�q ¸ ¢0 , ð�%�4a�yq ¸ ¢0 áÞ 0 <�q ¸ ¢¢ áÞ ¢.� , ñS%�< I4 ï ¸ ¢ ð ,îi% Þ <�ñ , and:1% ì ½iò ó � òò ó Ó ò * áÞ ã ¢ q ¸ ¢¢ áÞ ¢ <táÞ ã0 q ¸ ¢0 áÞ 0_< ¢ô ð�ã ï ¸ ¢ ð .
Thequadraticform in theexponentcanbediagonalizedby using
thetransformationAÎ�!î=�&%�áî¿%,õ^¢�ö ¸ ¢ õ F�÷ whereõ^¢ and õ F are



obtainedfrom theunitaryeigendecompositionø ¸ ¢ %ùõ^¢�ö F õ ã¢
and ö ¸ ¢ õ­ã¢ ï õ ¢ ö ¸ ¢ %Äõ F µ�õ­ãF , and where µ is a diagonal
matrix of theeigenvaluesof ø ï . For Rayleighfading,we haveáîS%f� andtheprobabilityof errorratethencanbeevaluatedusing
thecumulative distribution functionof í presentedin [6], i.e.,z�úa�
:��&%ûüüý üüþ  ,ÿ Ù ê 0���� äb�� ¢�� b	�� 9 ¢¢ ¸�
 �
 Ù
� åXæ$ç ��<n:�� ¸ ¢9 � if :��;�

In<  �ÿ Ù é 0���� äb�� ¢�� b��� 9 ¢¢ ¸ 
 �
 Ù
� åXæ$ç ��<n:�� ¸ ¢9 � if :��;�a-
where ��Ø aretheeigenvaluesof ø ï .

Fig. 6showsaperformancecomparisonbetweenthesignal/filter
pairsobtainedby methodsuggestedin this paperwith binaryflat-
toppulsesin aPPMpairwith aspanof 4 secondsthroughatypical
landmotionfadingchannel.In thisplot, ±7/ qQ%�<�IO� ì���� ¢ 0 / 0 254
(signalsof constantunit energy).
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5. CONCLUSION

We characterizedthe optimal detectorand signaling in term of
SNRfor afadingchannelwhentheautocorrelationfunctionof the
channelvariationwasknown. Our resultincludedthewell known
Matchedfilter andRake receiver. We alsoprovidedanalgorithm
thatgeneratesoptimal signal/filterpairshaving goodSNR which
satisfy frequency containment.With typical land mobile fading
channel,thesignalsobtainedwith ourprocedurehaveamuchbet-
ter performancecompareto traditional flat-top pulse in term of
probabilityof errorrate.

6. APPENDIX 1

The derivative, morepreciselythe variation,of z : � F ���)�! �
with respectto � is a function definedas follows. Let ���
���¿%" �
��� * È�#H�
��� , where both " �
��� and #H�
��� are real, we have [7]���=� N3�� N % ¢F�$ ���7� N���&% < È ���7� N���&')( - and * �=� N3�* N,+ % ¢F�$ ���7� N3��&% * È ���7� N3��&'-( ,

suchthatfor .��/��- and 0Ã�1� F ���)� [8],2 �� " zc�y���43333 N3� -5076&%
2 � zc�y��0��� " -50�6&% P � � zc�y��0O�� " �X�
����0C�
����W��

% ì ¼�89;: 0 zc��� " 0 * .<0e� * È�# 0 �7<?zc�y� 0 �. -

and2 �� # zc�y�H� 3333 NO� -&0�6k% ì ¼�89=: 0
zc� " 0 * È��># 0 * .50]���=<?zc�y� 0 �. |

That is, the variation ����&% is that function which providesa linear
approximationto z .

7. APPENDIX 2

Let ?#�Mld-� ��[%�É[B í �Mld-� H�UG , so thatwe have \�?#�Mld-� H� í �! 6-A@���Wm S%� �Mlk<B@��.| For thecase?#�Mld-� ��&%C?p�Mlk<� �� andí �Mld-� H�7% í �Mlk<� �� ,
we have

P ?p�Mlc<? �� í �! ]<D@���Wm C% � �Mlh<E@��ë PF?p�
�7< " � í � " ��W " % � �
��� ë ©T��G)�7% I}h��Gn� -
where©T��G)� and }h��G)� aretheFouriertransformsof ?p�
��� and í �
���
respectively. If }h��G)��%�� for someG andis boundedbelow, we
use ©T��G)�&% ¢�=�IH �
ÑKJ astheapproximationof theinverseoperator
kernel,with L beingsomeconstantsuchthat }h��G)� * LNM;� .
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