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ABSTRACT

In thiswork, wedevelopfour maximumlikelihood(ML) methods
to localizea moving target usinga network of acousticalsensor
arrays.Eacharraytransmitsadirection-of-arrival (DOA) estimate
to a centralprocessor, whichemploys oneof thelocalizationtech-
niques.The four ML approachesusedifferenttargetsignalmod-
elswherethetimeretardationfactorfor thetargetpositionandthe
degradationof thetargetsignalthroughtheair mayor maynot be
includedin the model. We comparethesemethodsalongwith a
linear leastsquaresapproachthrougha numberof simulationsat
varioussignalto noiselevels.

1. INTRODUCTION

Bearings-onlytarget localizationtechniquesprovide a key ingre-
dient to the developmentof an unattendedgroundsensor(UGS)
network. Themilitary is interestedin UGStechnologybecauseit
promisesto provide a low cost,low power andhigh performance
solutionfor battlefieldsurveillance.Thenetwork is attractive be-
causeit canactasonegiantarray. However, bandwidthis limited
becausethe transmissionof a bit of information betweennodes
drainsmuchmorebatterypowerthanasinglecomputationoneach
node’s processor. In orderto conserve energy, somenodesgener-
ateand transmita direction-of-arrival (DOA) estimateto a node
that is actingasthecentralprocessor. Thecentralnodeprocesses
the bearinginformation to localize and track targetsof interest.
A distributedsensormanagementstrategy dynamicallydesignates
theactive nodesandassignsnodesthecentralprocessingtask.

In this paper, we describeandtest four maximumlikelihood
(ML) techniquesthatlocalize(or triangulate)amoving targettrav-
eling througha passive acousticalUGS network. Eachnodeis a
very small baselinearray of omni-directionalmicrophonescon-
figured in a wagonwheelpatternasshown in Figure1a. Previ-
ous methodsto triangulatea stationarytarget via active electro-
magneticsensorsare presentedin [1]. One suchmethodis one
of the four ML localizationtechniquesconsideredin this paper.
However, this particularestimatorassumesthat the target is sta-
tionary. Becausethe speedof soundis not ordersof magnitude
greaterthat the target’s speed,we develop two alternative ML lo-
calizationtechniquesthataccountfor the target’s velocity. Simi-
lar to the large baselineacousticaltracker presentedin [2], these
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Fig. 1. Thegeometryof theacousticalUGS:(a) Thesinglenode,
and(b) triangulationusingmultiple nodes.

techniquesusesa time retardationfactorto accountfor themove-
ment of the target during the propagationof the signal [2]. All
four localizationtechniquesprovide estimatesthatcanbeusedas
measurementsfor a tracker suchastheKalmanfilter.

This paperin organizedas follows. Section2 describesthe
geometryof thesingleUGSnodeaswell asthenetwork anddis-
cussestheDOA errors.Theseerrorsleadsto thetargetmodelthat
is presentedin Section3. Section4 introducesthe linear least
squares(LLS) localizationtechnique. Then,Section5 develops
the ML localizationtechniquefor the target model of Section3
andotherML techniquesfor varioussimplificationsof thismodel.
This sectionalsodiscussestheCramer-Raoboundsfor theseML
methods.Thepapercomparesthedifferentlocalizationalgorithms
throughMonte-Carlosimulationsasdescribedin Section6. Fi-
nally, Section7 providessomeconcludingremarks.

2. UGS GEOMETRY

For this paperwe considera UGSnetwork of only acousticalsen-
sors.As shown in Figure1a,eachUGSnodeis anacousticalarray
consistingof ���
	 omni-directionalmicrophoneswhere ����

sensorsaredistributedevenly over a circle of radius ������
 me-
tersaroundthecentralsensor. Thecentralmicrophoneis labeled
assensor����� , andthe other ����
 outersensorsare labeled����
���� �!�!�"�#�$���%
 . Eachsensorof theUGSsamplesanacoustic
signals&('*),+.- . A DOA algorithmexploitstimeof arrival differences
from / samplesof signal & ' ),+*- to extractthebearingestimate.An
expressionfor thevarianceof DOA estimatesusingtheMUSIC al-
gorithmfor a narrowbandtargetsignatureappearsin Eqn. (42) of



[3]. Simplificationof thisexpressionfor thegeometryin Figure1a
leadsto anerrorvarianceof0213 � 465�(7#��8 1 �:9 SNR ;<
�=)>�:�?
(-@/A9 SNR1 � (1)

where
5

is thewavelengthof thenarrowbandtargetsignatureand
SNRis thesignalto noiseratio.

Thegeometryof theUGSnetwork is illustratedin Figure1b.
Thelocationsof the /�B sensornodesarelabeled CD ' �E) DGF�H ' � DGI�H ' -@J
for �K�=
��!�!�!�L�./ B . Notethatthesensornodesarestationary. The
targetismoving throughthesensorfield. Thepositionandvelocity
of thetargetat time + is CM2N �E) M F�H N � M I�H N - and COPN �E) O F�H N � O I�H N - J ,
respectively. At well definedtime increments,which we refer to
assnapshots, all the functionalnodescollect their DOA estimate
andsendit to a designatedcentralprocessingnode. The central
nodeappliesa localizationalgorithmto estimatetheposition,and
possiblythevelocity, of thetarget.

3. THE TARGET MODEL

ThetargetmodelrepresentstheDOA estimateateachnodefor one
snapshotasthetruebearingangleembeddedin additive Gaussian
noise,i.e., QR 'S� R 'P;UT#'*� (2)

where T '�V /W)X� � 0 1' - . For simplicity, we set the snapshottime
to be +Y�Z� . We assumethat thenodesaresufficiently separated
sothatthenoisetermsT ' areindependent.Thetruebearingangle
reflectsthelocationof thetargetat theretardedtimewhenit emit-
tedthesignalthatis processedby thesensornodeThelocalization
algorithmsassumethat the velocity of the target is constantover
thelargestretardationtimesothat CM N ��CMS[ ;%+LCO � For theconstant
velocity target,theretardedtime is givenby

\ ' ��� ] C^ J' CO ;`_ aaa C^ J' CO aaa 1 ;
)cb 1 �ed 1 - C^ J' C^ 'Xfb 1 �Wd 1 �
where C^ ' � CD ' � CM2[ , bW�hg�ikj m/s is the speedof soundandd<�:l�CO l is the speedof the target. Becaused is a significant
fractionof b , thetargetcanmove appreciablyfrom theretardedto
snapshottime. ThetruebearinganglebecomesR ' �=m )#CMSnpo ��CD ' -��

Thevarianceof theadditivenoise0 1' is anincreasingfunction
of the distancebetweenthe sensorand the retardedtarget loca-
tion. This is dueto therelationshipbetweenthebearingerrorand
SNRin (1), andtheSNRdegradesasthetargetsignalpropagates
throughtheair. Thedegradationof SNRalonga particularpathis
acomplex functionof themeteorologicalconditions.At this time,
weassumethatthedegradationof theSNRfollowsa 
(q(r 1 law. As
a result,theerrorvarianceis021' � 4s5�(7#��8 1 
/W)>�t�u
�- 4 r 1'

SNR
[ ; r�v'�:9 SNR1[ 8 � (3)

where r ' ��lKCD ' �:CMSn@o l andSNR
[

is the normalizedSNR at a
distanceof onemeter.

4. LINEAR LEAST SQUARES LOCALIZATION

The position linear least squares (P-LLS) localizationmethod
assumesthat the target is stationaryandthat thebearingestimate
pointsin thedirectionof the target. For sensor� , the targetmust
belocatedon theline describedbyw$x�y QR 'cz{;}|~� D ' H F w$x�y QR 'P; D ' H I �
Usingall sensorsleadsto /�B linearequationsandtwo unknowns.
Becauseof the DOA estimationerror, an exact solution for the/�B equationsdoesnot exist in general.To compensatefor these
errors,weusetheleastsquaressolutionof the /�B equationsasthe
localizationestimatesothatQMS[ �E)X� J ��-��2�*� J C� �
where���=��������������� �
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5. MAXIMUM LIKELIHOOD ESTIMATION

In this section,we developfour ML localizationalgorithmsbased
uponvarioussimplificationsof the target model from Section3.
TheseML techniquesare:£ Position-Velocity ML (PV-ML): TheML estimatorfor thetar-
getmodelin Section3. This techniqueassumesthetargetis mov-
ing at a constantvelocity and the DOA measurementerror de-
gradesvia (3) asthedistanceto thetarget increases.Theposition

and velocity estimates,

Q CM¤[ and

Q CO , minimize the following cost
function¥§¦L¨ �G©{ª �¬« �­ '¯® � 4 
0 1'±° QR ' � m ) CD ' � CMSn@o - ° 1 ;U² y 0S1' 8 �£ Position ML (P-ML): TheML estimatorwhenthetarget is as-
sumedto bestationaryandtheDOA measurementerrordegrades
via (3) asthedistanceto the target increases.For this model,the

time retardationfactoris ignored. Thepositionestimate

Q CM mini-
mizesthefollowing costfunction¥§¦ �G©{ª �¬« �­ '¯® � 4 
0 1'±° QR ' � m ) CD ' � CM - ° 1 ;�² y 0S1' 8 �£ Position-Velocity Nonlinear Least Squares (PV-NLS): The
ML estimatorwhenthetargetis moving ataconstantvelocityand
themeasurementerroris thesamefor everysensorin thenetwork.

Thepositionandvelocity estimates,

Q CM¤[ and

Q CO , minimizethefol-
lowing costfunction¥§¦L¨ � « ª´³ �¬« �­ '¯® � ° QR ' � m ) CD ' � CM2n@o - ° 1 �£ Position Nonlinear Least Squares (P-NLS): TheML estimator
whenthetargetis stationaryandthemeasurementerroris thesame
for every sensorin the network. For this model, both the time



retardationfactorsandthesensor/targetdistancesareignored.The

positionestimate

Q CM minimizesthefollowing costfunction¥§¦ � « ªµ³ �¬« �­ '¶® � ° QR ' � m ) CD ' � CM - ° 1 �
Thisalgorithmhasalreadybeendevelopedfor bearing-onlylocal-
ization using electro-magneticsignals[1, 4]. When appliedfor
electro-magneticsignals,the speedof light is significantly larger
thanthetargetvelocity. Therefore,thetriangulationmethodspre-
sentedin theelectro-magneticliteratureignorethetimeretardation
effectsbecausethey areinsignificant.

All four ML techniquesrequirean initial guessfor the loca-
tion of the target. In addition, the PV methodsalso requirean
initial guessfor the target velocity. To find the minima from the
initial guess,we employ theNelder-Meadsimplex (directsearch)
method,which is implementedvia theFMINS commandin Mat-
lab. As an initial comparisonof the differentmethods,we use
theactualparametervaluesto searchfor thenearestlocalminima,
which shouldcorrespondto the global minima. In practice,the
localizationalgorithmsrequireanintelligentapproachto initialize
the search.As the targetmodelbecomesmoresophisticated,the
resultingML decisionsurfacebecomesmorecomplex andmore
sensitive to the initialization. Therefore,to initialize the PV-ML,
we begin with the P-LLS positionestimateandminimize the P-
NLS costfunction. Theresultingpositionestimateanda zerove-
locity initializesthePV-NLS search.Finally, thePV-ML estimates
areobtainedby initializing with theoutputof thePV-NLS.

We have determinedexpressionsfor the CramerRao (CR)
boundsfor the four ML localizationtechniques.The boundfor
thePV-ML methodis·¹¸ �ºµ»(¼ �½±¾ �Z¿À ���Áo¶Â �±Ã ¸,Ä§ÅLÆÈÇo ¾ ¸¯Ä§Å#ÆÈÇo ¾�ÉÊ ÆkËo � ¸¯Ä§Å2� o ¾ ¸¯Ä§Å#� o ¾>ÉÆ Ço ÌKÍÎ�Ï � ¼

(4)

wherethetrueangle
R '2� m ) CD 'L� CM n o - and Ä Å �WÐ=ÑÑ Å �(� » ¼ ÑÑ Å  �� » ¼ÑÑ�Ò � ¼ ÑÑ�Ò  �Ó É ¢

Due to spaceconsiderations,we do not include expressions
for the gradientsof the DOA error varianceand the true angle,
andwe do no includetheCR boundsfor theotherthreeML tech-
niques. The diagonalof the covariancematrix

¥
representsthe

lowerboundfor theestimationerrorvarianceof thetargetposition
andvelocityparameters.Theseboundsareafunctionof thesensor
configuration CD ' andthe target’s positionandvelocity at the time
of thesnapshot.

6. SIMULATION RESULTS

To demonstratethe localizationapproaches,we ran a numberof
simulationsusing the target modeldescribedin Section3 where
thetargetemitsa 100Hznarrowbandsignatureso that

5 �Ôgµ� Õ×Ö
andeachmicrophonecollects /Ø�Ù
���� samplesof the received
signalto obtaintheDOA estimate.Thenumberof nodes/ B varies
from four to forty. For a setvalueof / B , we consider20 different
randomconfigurationswherethesensorsareuniformly distributed
in a circleof radius0.5km aroundthetargetandthetargetis trav-
eling at a speedof 48 ÚµÖ�q�ÛÜr (30 Ö%��q�ÛÜr ) in a randomheading.
WenormalizetheSNRataonemeterstandoff rangeto either90dB
or 60dB,which leadsto anaveragebearingerrorof about �µ��
�Ý org � Õ�Ý , respectively. For eachconfiguration,we run50MonteCarlo
simulationsto obtainthe root meansquared(RMS) error for the
positionandspeedestimates.In addition,we usethe CR bound

/ B Initialization Avg. Min. Median Max.
5 P-LLS 7.7096 0.6225 5.8119 18.5457
5 TrueValue 6.2213 0.0002 2.0833 18.5456
14 P-LLS 22,230 278.00 450.55 111,599
14 TrueValue 0.6177 0.0001 0.2133 1.8558

Table 1. Statisticsfor theRMS positionerrorof the sensorfiled
configurationin Figure3.

from (4) to estimatetheRMSlowerboundsfor positionandspeed
as

RMSÞpß´àâá¡ã ä � H �2å ä 1 H 1 and RMSÞ�æ�à§á¡ã äSç H ç å ä v H v � (5)

respectively. We thenaveragetheseresultsover the 20 different
configurationsto generateperformanceplotsasfunctionof num-
berof nodes.

Whenthe true targetparametersareusedat the initial condi-
tion for the search,the four ML methodsshouldconverge to the
global minimum. The resultsusing true value initialization are
presentedin [5]. They indicatethatat high SNRthetime retarda-
tion factormakes a significantdifferenceat a high SNR (90dB)
while the signal degradationfactor is less important. As men-
tionedin Section5, wearecurrentlyusingacascadeof theP-LLS,
P-NLS andPV-NLS localizationsto initialize PV-ML technique.
Figures2a andb show the positionRMS error resultsafter each
stagefor 90dB and60dB normalizedSNR, respectively. Due to
spacelimitations, we do include the velocity RMS error results.
Thesefiguresalsoincludethebounds.When / BYè 
�� , thePV-ML
convergesto thebestestimate.However, for somelargervaluesof/�B , thelikelihoodtechniquesconvergedto poorresultswherethe
result is worst as the sophisticationof the model increases.The
badestimateswerethe resultof a few outlier configurations.An
exampleof sucha configurationwhen /�B��A
"i is shown in Fig-
ure3. The‘ é ’ markersrepresentthesensornodes,the‘ ê ’ repre-
sentsthe target,andthe line originatingform the target indicates
thetargetheading.Figures2candd show theresultswhenremov-
ing the problemconfigurationsfrom the averaging. Most of the
time, the PV-ML methodprovides the bestlocalizationat 90dB.
At low SNR, the likelihoodmethodsnever performsignificantly
betterthantheP-LLS technique.

ThepoorPV-ML resultswhen /�BYë`
�� couldbeattributedto
a morecomplex cost function so that the searchingmethoddoes
not find the global minimum. In fact, a subsetof the nodescan
allow thePV-ML to convergeto a betteranswerin practice.As an
example,we useonly a subsetof nodesin Figure3 aslabeledby
the‘ ì ’ symbols.Thestatisticsfor theRMS positionerror is listed
in Table1 whenusingall nodesor thefivenodesubsetfor boththe
realizableinitializationbeginningwith theP-LLSor usingthetrue
target position and velocity parametersfor initialization. While
thefull setof nodesleadsto a minimacloserto thetruevalue,the
practicalPV-ML findsa betterminimafor thefivenodesubset.

7. CONCLUSIONS

This paperinvestigatesa numberof ML techniquesto triangulate
the position of a target using bearings-onlymeasurementsfrom
anacousticalUGSnetwork. For high SNRcases,the localization
techniqueshouldconsidertime retardationfactors.For low SNR
cases,however, the time retardationfactoris lessimportant. Un-
fortunately, theestimatesaresensitive to goodinitialization of the
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Fig. 2. Simulationresultsthatbegin initialization with theP-LLS
algorithm:(a)PositionRMSfor SNR

[ �í	�� dB, (b) positionRMS
for SNR

[ ��î�� dB, (c) position RMS for SNR
[ �h	�� dB with

outlier removal and (d) position RMS for SNR
[ �ïî�� dB with

outlier removal.
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Fig. 3. Exampleof thebadsensorconfigurationwhen /�B{�ð
!i .
TherealizablePV-ML performsbetterover a subsetof five nodes.

minimization method. In the future, we plan to researchbetter
waysto initialize theML algorithmsandincludeothermodifica-
tion in orderto localizemultiple targets. Onesuchmethodis to
develop a tracker wherethe outputof the localizationalgorithm
at multiple snapshotsprovides the tracking input measurements.
As thetime progresses,thetracker shouldpredictbetterestimates
of the target parameters,which in turns, leadsto a lower occur-
renceof converging to poor localizationestimate.To save power,
we alsoplanto work onsensormanagementmethodsthatfind the
bestsubsetof nodesto activateduringeachsnapshot.Limiting the
numberof active nodesto lessthan ten shouldalsoalleviate the
initialization problem.
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