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ABSTRACT

In thiswork, we develop four maximumlikelihood(ML) methods
to localize a moving tamget using a network of acousticalsensor
arrays.Eacharraytransmitsa direction-of-arrval (DOA) estimate
to acentralprocessqmwhich emplg/s oneof thelocalizationtech-
niques. Thefour ML approachesisedifferenttarget signalmod-
elswherethetime retardatiorfactorfor thetamgetpositionandthe
degradationof thetargetsignalthroughtheair may or maynotbe
includedin the model. We comparethesemethodsalongwith a
linear leastsquaresapproachthrougha numberof simulationsat
varioussignalto noiselevels.

1. INTRODUCTION

Bearings-onlytarget localizationtechniquesprovide a key ingre-
dient to the developmentof an unattendedyroundsensor(UGS)
network. The military is interestedn UGStechnologybecausét
promisesto provide a low cost,low powver andhigh performance
solutionfor battlefieldsuneillance. The network is attractve be-
causdt canactasonegiantarray However, bandwidthis limited
becausehe transmissiorof a bit of information betweennodes
drainsmuchmorebatterypowerthanasinglecomputatioroneach
nodes processorin orderto consere enegy, somenodesgener
ate and transmita direction-of-arnval (DOA) estimateto a node
thatis actingasthe centralprocessorThe centralnodeprocesses
the bearinginformation to localize and track tamgets of interest.
A distributedsensomanagemergtratgly dynamicallydesignates
theactive nodesandassignsiodesthe centralprocessingask.

In this paper we describeandtestfour maximumlikelihood
(ML) techniqueshatlocalize(or triangulate)a moving targettrav-
eling througha passie acousticalUGS network. Eachnodeis a
very small baselinearray of omni-directionalmicrophonescon-
figuredin a wagonwheelpatternas shawvn in Figure 1la. Previ-
ous methodsto triangulatea stationarytarget via active electro-
magneticsensorsare presentedn [1]. One suchmethodis one
of the four ML localizationtechniquesconsideredn this paper
However, this particularestimatorassumeghat the targetis sta-
tionary Becausehe speedof soundis not ordersof magnitude
greaterthatthe target's speedwe develop two alternatve ML lo-
calizationtechniqueghataccountfor the target's velocity. Simi-
lar to the large baselineacousticakracker presentedn [2], these
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Fig. 1. Thegeometryof the acousticalUGS: (a) The singlenode,
and(b) triangulationusingmultiple nodes.

techniquesisesa time retardatiorfactorto accountfor the move-
mentof the target during the propagationof the signal[2]. All
four localizationtechniquegprovide estimateghatcanbe usedas
measurement®r a tracker suchasthe Kalmanfilter.

This paperin organizedasfollows. Section2 describeghe
geometryof the singleUGS nodeaswell asthe network anddis-
cusseshe DOA errors.Theseerrorsleadsto thetargetmodelthat
is presentedn Section3. Section4 introducesthe linear least
squaregLLS) localizationtechnique. Then, Section5 develops
the ML localizationtechniquefor the target model of Section3
andotherML techniquegor varioussimplificationsof this model.
This sectionalsodiscusseshe CramerRaoboundsfor theseML
methods Thepapercompareshedifferentlocalizationalgorithms
throughMonte-Carlosimulationsas describedn Section6. Fi-
nally, Section7 providessomeconcludingremarks.

2. UGSGEOMETRY

For this paperwe considera UGS network of only acousticaken-
sors.As shawvn in Figurela,eachUGSnodeis anacousticahrray
consistingof M = 9 omni-directionamicrophonesvhereM — 1
sensorsaredistributedevenly over a circle of radiusd = .1 me-
tersaroundthe centralsensar The centralmicrophoneis labeled
assensori = 0, andthe other M — 1 outersensorsarelabeled
1=1,2,... , M —1. Eachsensoof theUGSsamplesanacoustic
signalsf;(t). A DOA algorithmexploitstime of arrival differences
from IV samplesf signal f;(t) to extractthebearingestimate An
expressiorfor thevarianceof DOA estimatesisingtheMUSIC al-
gorithmfor a narravbandtargetsignatureappearsn Eqn. (42) of



[3]. Simplificationof this expressiorfor thegeometryin Figurela
leadsto anerrorvarianceof

g2 (A M-SNR+1 O
= \2rd) M(M —1)N-SNR’

where is the wavelengthof the narrovbandtargetsignatureand
SNRis thesignalto noiseratio.

The geometryof the UGS network is illustratedin Figure1lb.
Thelocationsof the N, sensonodesarelabeledS; = (S, ;, Sy.i)T
fori =1,..., Ns. Notethatthe sensomodesarestationary The
targetis moving throughthesensofield. Thepositionandvelocity
of thetargetattimet isP, = (Pz.t, Py,t) andV; = (Vaort, Vit) ™,
respectiely. At well definedtime incrementswhich we referto
assnapshotsall the functionalnodescollecttheir DOA estimate
andsendit to a designatectentralprocessingiode. The central
nodeappliesa localizationalgorithmto estimatethe position,and
possiblythevelocity, of thetarget.

3. THE TARGET MODEL

Thetargetmodelrepresentthe DOA estimateateachnodefor one
snapshoasthe true bearingangleembeddedn additve Gaussian
noise,i.e.,

A

0; = 0; + n;, )

wheren; ~ N(0,0?). For simplicity, we setthe snapshotime
to bet = 0. We assumehatthe nodesaresuficiently separated
sothatthenoisetermsn; areindependentThetruebearingangle
reflectsthelocationof thetargetattheretardedime whenit emit-
tedthesignalthatis processedy thesensonodeThelocalization
algorithmsassumethat the velocity of the targetis constantover
thelargestretardatiortime sothatﬁt = 130+ﬂ7. Fortheconstant
velocity target, theretardedimeis givenby

g S |2 S
(DEV + \/‘DZTV‘ + (e — vz)DiTDi)

c2 —p?

Ty = — 3

whereD; = §; — Py, ¢ = 347m/s s the speedof soundand
v = ||V]| is the speedof the target. Because is a significant
fractionof ¢, thetargetcanmove appreciablyfrom theretardedo
snapshotime. Thetruebearinganglebecomes

Thevarianceof theadditive noises? is anincreasingunction
of the distancebetweenthe sensorand the retardedtarmget loca-
tion. Thisis dueto therelationshipbetweerthe bearingerrorand
SNRin (1), andthe SNR deggradesasthe tamgetsignalpropagates
throughtheair. Thedegradationof SNRalonga particularpathis
acomple functionof the meteorologicatonditions.At thistime,
we assumehatthe degradatiorof the SNRfollows al/r? law. As
aresult,theerrorvariances
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wherer; = ||S; — P.,|| and SNR; is the normalizedSNR at a
distanceof onemeter

4. LINEAR LEAST SQUARESLOCALIZATION

The position linear least squares (P-LLS) localizationmethod
assumeshatthetargetis stationaryandthatthe bearingestimate
pointsin the directionof the target. For sensori, the target must
belocatedontheline describedby

tan 6,z + y = Si,z tan 6; + Si,y.

Usingall sensordeadsto N; linearequationsandtwo unknavns.
Becauseof the DOA estimationerror, an exact solution for the
N; equationgdoesnot exist in general. To compensatéor these
errors,we usetheleastsquaresolutionof the N, equationsasthe
localizationestimatesothat

Py = (ATA)"ATB,

S1,0 tan 61 + S1 4
A= : : and b= ;

SNs,z tanéNs + SNg,y

5. MAXIMUM LIKELIHOOD ESTIMATION

In this section,we developfour ML localizationalgorithmsbased
uponvarioussimplificationsof the target modelfrom Section3.
TheseML techniquesre:

e Position-Velocity ML (PV-ML): The ML estimatorfor thetar
getmodelin Section3. Thistechniqgueassumeshetargetis mov-
ing at a constantvelocity and the DOA measuremengrror de-
gradesvia (3) asthedistanceto the targetincreasesThe position

and velocity estimatesﬁo and 17, minimize the following cost
function

Ns
CPV*ML = Z (

i=1

1 4 O,
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e Position ML (P-ML): The ML estimatorwhenthetametis as-
sumedto be stationaryandthe DOA measuremergrror degrades
via (3) asthe distanceto the targetincreasesFor this model, the

time retardatiorfactoris ignored. The position estimateP mini-
mizesthefollowing costfunction

N,
Cp_mL = Z ( 1 |éz — Z(S’l —.ﬁ)l2 +lna;-2> .
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e Position-Velocity Nonlinear Least Squares (PV-NLS): The
ML estimatomwhenthetargetis moving ataconstanwelocity and
themeasuremersgrroris the samefor every sensoin thenetwork.

The positionandvelocity estimatesﬁo and 17, minimizethefol-
lowing costfunction

N,
Cpv_nNLS = Z 6: — £(Si — P,,)|”.
=1
e Position Nonlinear Least Squares(P-NLS): TheML estimator

whenthetametis stationaryandthemeasuremerdrroris thesame
for every sensorin the network. For this model, both the time



retardatiorfactorsandthesensor/tagetdistancesreignored.The
positionestimatd3 minimizesthefollowing costfunction
N,
Cp_NLs = Z 0; — £(Si — P)|.

i=1

This algorithmhasalreadybeendevelopedfor bearing-onlylocal-

ization using electro-magnetisignals[1, 4]. When appliedfor

electro-magnetisignals,the speedof light is significantlylarger
thanthetargetvelocity. Therefore the triangulationmethodre-
sentedn theelectro-magnetitteratureignorethetimeretardation
effectsbecausehey areinsignificant.

All four ML techniquegequireaninitial guessfor the loca-
tion of the tamget. In addition, the PV methodsalso requirean
initial guessfor the tamget velocity. To find the minima from the
initial guesswe employ the NelderMeadsimplex (directsearch)
method whichis implementedriathe FM NS commandn Mat -
| ab. As aninitial comparisorof the differentmethodswe use
theactualparametewaluesto searchor the nearestocal minima,
which shouldcorrespondo the global minima. In practice,the
localizationalgorithmsrequireanintelligentapproactio initialize
the search.As the tagetmodelbecomesnore sophisticatedthe
resultingML decisionsurfacebecomesnore complec and more
sensitve to theinitialization. Therefore to initialize the PV-ML,
we begin with the P-LLS position estimateand minimize the P-
NLS costfunction. Theresultingpositionestimateanda zerove-
locity initializesthe PV-NLS search Finally, thePV-ML estimates
areobtainedby initializing with the outputof the PV-NLS.

We have determinedexpressionsfor the CramerRao (CR)

boundsfor the four ML localizationtechniques.The boundfor
the PV-ML methodis

Ns . . -1
T — [Z ((vpa?xvpa,?)T . <vpaz><2vpez>T>] 7
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wherethetrueanglef; = £(S; — Pr;) andve = [%, ﬁ,
70 vy 1T
Due to spaceconsiderationsye do not include expressions
for the gradientsof the DOA error varianceand the true angle,
andwe do noincludethe CR boundsfor the otherthreeML tech-
niques. The diagonalof the covariancematrix C' representshe
lower boundfor theestimatiorerrorvarianceof thetargetposition
andvelocity parametersTheseboundsareafunctionof thesensor

configurationg‘i andthetamget’s positionandvelocity at thetime
of thesnapshot.

6. SSMULATION RESULTS

To demonstratehe localizationapproachesywe ran a numberof

simulationsusing the target model describedn Section3 where
the targetemitsa 100Hznarravbandsignaturesothat A = 3.5m

andeachmicrophonecollects N = 100 samplesof the receved
signalto obtainthe DOA estimate Thenumberof nodesV; varies
from four to forty. For asetvalueof N, we consider20 different
randomconfigurationsvherethe sensorsreuniformly distributed
in acircle of radius0.5km aroundthe targetandthetargetis trav-

eling at a speedof 48 km/hr (30 mi/hr) in arandomheading.
Wenormalizethe SNRataonemeterstandof rangeto either90dB
or 60dB, which leadsto anaveragebearingerror of about0.1° or

3.5°, respectiely. For eachconfigurationwe run 50 Monte Carlo
simulationsto obtainthe root meansquared RMS) error for the
position and speedestimates.In addition, we usethe CR bound

N; | Initialization | Avg. Min. Median Max.

5 P-LLS 7.7096 0.6225 5.8119 18.5457
5 TrueValue | 6.2213 0.0002 2.0833 18.5456
14 P-LLS 22,230 278.00 450.55 111,599
14 | TrueValue | 0.6177 0.0001 0.2133 1.8558

Table 1. Statisticsfor the RMS positionerror of the sensoffiled
configurationin Figure3.

from (4) to estimatehe RMS lower boundsfor positionandspeed
as

RMS{p} ~4/C1,1+ C22 and RMS{U} ~ /C33+ Cyu4, (5)
respectiely. We then averagetheseresultsover the 20 different
configurationgo generateperformanceplots asfunction of num-
berof nodes.

Whenthe true target parametersire usedat the initial condi-
tion for the searchthe four ML methodsshouldconverge to the
global minimum. The resultsusing true value initialization are
presentedn [5]. They indicatethatat high SNRthetime retarda-
tion factor makes a significantdifferenceat a high SNR (90dB)
while the signal degradationfactoris lessimportant. As men-
tionedin Section5, we arecurrentlyusinga cascadef theP-LLS,
P-NLS and PV-NLS localizationsto initialize PV-ML technique.
Figures2a andb shawv the position RMS error resultsafter each
stagefor 90dB and 60dB normalizedSNR, respectiely. Due to
spacelimitations, we do include the velocity RMS error results.
Thesdiiguresalsoincludethebounds WhenN; < 10, thePV-ML
corvergesto the bestestimate However, for somelargervaluesof
N;, thelikelihoodtechniquesonvergedto poorresultswherethe
resultis worst asthe sophisticationof the modelincreases.The
bad estimateaverethe resultof a few outlier configurations.An
exampleof sucha configurationrwhen N, = 14 is shavn in Fig-
ure3. The‘x’ marlersrepresenthe sensomodesthe’{’ repre-
sentsthe target, andthe line originatingform the targetindicates
thetargetheading Figures2c andd shav theresultswhenremor-
ing the problemconfigurationdrom the averaging. Most of the
time, the PV-ML methodprovidesthe bestlocalizationat 90dB.
At low SNR, the likelihood methodsnever perform significantly
betterthanthe P-LLS technique.

ThepoorPV-ML resultswhenN; > 10 couldbeattributedto
a morecomple costfunction so thatthe searchingnethoddoes
not find the global minimum. In fact, a subsetof the nodescan
allow the PV-ML to cornvergeto a betteranswerin practice.As an
example,we useonly a subsef nodesin Figure3 aslabeledby
the‘o’ symbols.The statisticsfor the RMS positionerroris listed
in Table1l whenusingall nodesor thefive nodesubsefor boththe
realizablenitialization beginningwith the P-LLS or usingthetrue
target position and velocity parameterdor initialization. While
thefull setof nodedeadsto aminimacloserto thetruevalue,the
practicalPV-ML findsa betterminimafor thefive nodesubset.

7. CONCLUSIONS

This paperinvestigatesa numberof ML techniquego triangulate
the position of a target using bearings-onlymeasurementfrom
anacousticalUGS network. For high SNR casesthe localization
techniqueshouldconsidertime retardatiorfactors. For low SNR
caseshowever, thetime retardatiorfactoris lessimportant. Un-
fortunately the estimatesresensitve to goodinitialization of the
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Fig. 2. Simulationresultsthatbegin initialization with the P-LLS
algorithm: (a) PositionRMS for SNR, = 90dB, (b) positionRMS
for SNRy = 60dB, (c) position RMS for SNRy, = 90dB with
outlier removal and (d) position RMS for SNRy, = 60dB with
outlierremoval.
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Fig. 3. Exampleof the badsensorconfigurationwhen Ny = 14.
TherealizablePV-ML performsbetterover a subsebf five nodes.

minimization method. In the future, we plan to researchbetter
waysto initialize the ML algorithmsandinclude othermodifica-
tion in orderto localize multiple targets. One suchmethodis to
develop a tracker wherethe outputof the localizationalgorithm
at multiple snapshotprovidesthe tracking input measurements.
As thetime progresseshetracker shouldpredictbetterestimates
of the target parameterswhich in turns, leadsto a lower occur
renceof corverging to poorlocalizationestimate.To sa/e powet,
we alsoplanto work on sensomanagemennethodshatfind the
bestsubsebf nodego activateduringeachsnapshotLimiting the
numberof active nodesto lessthanten shouldalso alleviate the
initialization problem.
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