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ABSTRACT

A code-constrained inverse filter criterion (CC-IFC) based
approach was presented recently in Tugnait and Li [7, 2000
ICASSP] for blind detection of asynchronous short-code
DS-CDMA (direct sequence code division multiple access)
signals in multipath channels. Only the spreading code of
the desired user is assumed to be known; its transmission
delay may be unknown. The equalizer was determined by
maximizing the magnitude of the normalized fourth cumu-
lant of inverse filtered (equalized) data with respect to the
equalizer coefficients subject to the fact that the equalizer
lies in a subspace associated with the desired user’s code
sequence. In this paper we analyze the identifiability prop-
erties of the approach of [7]. Global maxima and some of the
local maxima of the cost function are investigated. These
aspects were not discussed in [7]. More extensive simulation
comparisons with existing approaches are also provided.

1. INTRODUCTION

Direct sequence code division multiple access (DS-CDMA)
systems have been a subject of intense research interest in
recent years. In CDMA systems multiple users transmit sig-
nals simultaneously leading to multiuser interference (MUI).
In addition to MUI, presence of multipath propagation in-
troduces intersymbol interference (ISI) causing distortion of
the spreading code sequences. Moreover, in reverse links,
unknown transmission delays (user asynchronism) also con-
tribute to performance degradation.

In this paper we consider blind detection (i.e. no train-
ing sequence) of the desired user signal, given knowledge
of its spreading code, in the presence of MUI, ISI and user
asynchronism (lack of knowledge of user transmission de-
lays, including that of the desired user). Past work on blind
detection of DS-CDMA signals include [1]-[3], [5]-[7] and ref-
erences therein. In this paper our focus is on extraction of
a desired user’s signal. Unlike [2],[3], [5] and [4], we do not
assume synchronization with the desired user’s signal. In [7]
we investigated maximization of the normalized fourth cu-
mulant magnitude of inverse filtered (equalized) data w.r.t.
the equalizer coefficients subject to the equalizer lying in a
subspace associated with the desired user’s code sequence.
Constrained maximization leads to extraction of the desired
user’s signal whereas unconstrained maximization leads to
the extraction of any one of the existing users. In this paper
we analyze the identifiability properties of the approach of
[7]. Global maxima and some of the local maxima of the cost
function are investigated. These aspects were not discussed
in [7]. More extensive simulation comparisons with existing
approaches are also provided.

2. SYSTEM MODEL

Consider an asynchronous short-code DS-CDMA system
with M users and N chips per symbol with the j-th user’s
spreading code denoted by ¢; = [c;(0),---,¢;(N—1)]T. Con-
sider a baseband discrete-time model representation. Let
sj(k) denote the j-th user’s k-th symbol. The sequence
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{sj(k)} is zero-mean, independently and identically dis-
tributed (i.i.d.) either QAM Vj or binary Vj. For different
j’s, {sj(k)}’s are mutually independent. In the presence of
a linear dispersive channe, let g;(n) denote the j-th user’s
effective channel impulse response (IR) assuming zero trans-
mission delay, sampled at the chip interval T¢. Let

N-1
hi(n) =Y ¢;(m)g;(n —m), (1)

m=0
where h;(n) represents the effective signature sequence of

user j (i.e. code ¢;j(n) “distorted” due to multipath etc.).
Define a [(d + l)NT X [2N] code matrix

T ¢(0) 0 0
ci(1) c;(0) 0
CjN—l CjO
c = ey o (2)
0 Cj(N—l)
0 0 (N —1)
B o o]

If we collect N chip-rate measurements of received signal
(from all users) into N-vector y(k), then we obtain, at the
symbol rate, the MIMO model (additive white Gaussian
noise w(k) is defined in a manner similar to y(k)):

y(k) =Y hy(0)s;(k = 1) +w(k) (3)

j=1 1=0
where
h;(1) = [h;(IN — dj), -, h;(IN —d; + N = 1)]",  (4)

d; (0 <dj < N) is the (effective) transmission delay (mod

N) of user j in chip intervals and L; + 1 is the length of the
j-th user’s vector IR. It follows that for any d > 0,
d H d

B = [ h(0) (1) - Bl ] =cg ()

where the superscript H denotes the complex conjugate

transpose (Hermitian) operation,

gi(—d; +1) g9;(2N —d; —1) 1",

(6)

h;d) is (d+ 1) N-vector, g; is 2N-vector and we assume that

g;(1) =0 for I > N (in addition to g;(I) = 0 for I < 0), i.e.

the multipath delays can be of at most one symbol duration

(N chips). Not all elements in g; are nonzero. It follows
that h;(l) =0 for [ > 3.

g =1 gi(—d;)



3. CODE-CONSTRAINED INVERSE FILTER
CRITERION (CC-IFC)

3.1. Projection Approach to CC-IFC [7]
Consider an N x 1 vector equalizer {f(i)}2<;" of length L.

symbols (N L chips) operating on the data y(n) (see (3))
to yield
Le—1

e(n) = Y £(i)y(n—i) (7)
where f(7) is N x 1. Deﬁn;

.= [ £7(0) (1) f9(Le—1) ].  (8)
Let cuma(e) denote the fourth-order cumulant of a complex-
valued scalar zero-mean random variable e, defined as

cuma(e) := Efje|'} = 2[B{le[*})* — |B{*}*.  (9)

Following [7] consider maximization of the inverse filter cost
_ |cum4(e(|n )| (10)

T ) = Elem e

for designing the linear equalizer. It is shown in [4] that
under certain mild sufficient conditions, when (10) is max-

imized w.r.t. {f(i)}f;(,_l using a stochastic gradient algo-
rithm, then (12) reduces to

(11)

where complex a # 0, 0 < ng < L — 1+ L; is some integer,
jo indexes some user out of the given M users, i.e., the
equalizer output is a possibly scaled and shifted version of
one of the users. The problem is that there is no control
over which user is extracted.

It has been shown in [7] that in order to extract the de-
sired user (jo = 1) with desired delay (no = d), the linear
equalizer should belong to the null space of a matrix A which

is a function of the desired user’s code matrix ng) and the

data correlation matrix. It is a [N(Le — 2)] X [N L] matrix
given by

e(n) = asj,(n —no),

A=uVrTR,, (12)
where Ry is the [N Le] X [N Lc] data correlation matrix with
ij-th block element Ry, (j — i) = E{y(k+j — i)y (k)},

[ 74 0
T'_[ 0 In@r.-1-a)

Ik denotes a K x K identity matrix,

= [NLe] X [NLe] matrix, (13)

0 0 Iy
Ta=| . | =IN@+ 0 x N@+ 1),
In -~ 0 0

(14)
e .= [ Céd) } = [NLc] x [2N] matrix  (15)

and columns of " denote an orthonormal basis for the
orthogonal complement of Cid). Since C{d) is of full column
rank, UV is an [NL.] X [NL. — 2N] matrix (it can be ob-
tained via an SVD (singular value decomposition) of C%d)).
Thus, the desired solution satisfies (16) in addition

to maximizing (10) (in fact, in addition to being a
stationary point of (10)) where

AF = 0. (16)

By [4] and [7] there exists an equalizer that minimizes (10)
as well satisfies (16).

Let I3 denote the [N L] x [N L] projection matrix onto
the null space of A. The the following iterative, batch,
projection stochastic gradient algorithm was used in [7] to

obtain the desired equalizer. Let i;g(f') denote the data-
based cost (10) and let V. Ja2(f') denote its gradient (N Le-
column) w.r.t. f* evaluated at f’; (the symbol x denotes the

complex conjugation operation). Given the equalizer £ at
n-th iteration, the equalizer update at n + 1st iteration is

calculated as f" T = £(") 4 pITL V5, Jaz (f(™), where p is a
suitable step-size (see [7]). It is a projection algorithm since
any changes in £(™) are forced to lie in (projected onto) the
null space of A. Of course, we choose the initial guess (%
to satisfy (16) [7].

3.2.

We now consider investigate global maxima of (10) subject
o (16). Assume no noise: w(k) = 0. When an equalizer is

Constrained Global Maxima

such that (11) is achieved, Ju2(f) is maximized [4]. It can
be shown that
= |cumy (s;(n))| —
max Juz2(f) = 5255 = [Vusl- 17
e O = Es, ey — el 00

Let fi, be an equalizer for which Jua(fi,) = |7,,] with cor-
responding e(n) = ai1s1(n — d) where a; # 0, i.e. fi, leads
to extraction of user 1 with delay d. Then, by construc-
tion, Afi, = 0 [7]. It follows from the results of [4] that if
Ju2(F) # [9,.], then (11) can not hold true (all stable lo-
cal maxima of Jiz(f) lead to (11) for some jo and no [4]).
Therefore, constrained global maxima of Jy(f) are given by

those f’s for which Juo(f) = [7,,] and Af = 0, equivalently,
for which (11) and (16) hold true. The equalizer that yields
(11) satisfies [4]

Le—1

> i)y (n = i) = 8.4 0nme, 1<5 <M, n>0,
=0

(18)
where §;,; = 1 for j =4, 0 otherwise.

We now characterize the equalizer solutions that satisfy
both (16) and (18). Define the [N Lc]-column vector, for
m=0,---,Le —1+Lj,

. H

h(™ = [ hf(m) --- nl(0) 0 0]". (19
Using (19) and results from [7] and Sec. 3.1, (18) can be
rewritten as (Rss = Ryy under the no noise assumption)

TRyf = aTh, jo € {1,--+, M}, no € {0+, Le—1+Lj, }.

(20)
Therefore, solutions satisfying (16) and (18) are equivalent
to solutions satisfying (16) and (20). Consider

(C1) The [NL.] x 2N + 1] matrix [C¥ : Tfl;m)] has full
column rank for every j € {2,3,---, M} and every m €
{d —1,d} where Lc > d+ 1 and d > 2.



Claim 1: Under (C1), any solution that satisfies (16) and
(20) (i.e. any constrained global maximum of (10)), corre-
sponds to jo =1 and no € {d — 1,d} in (11), (18) and (20).
Proof: Suppose that for fixed j and m, Tﬁ;m) o4 sp{Cid)}7
where sp{B} denotes the linear subspace spanned by the
columns of B. Then UMHTh{™ 0 (i.e. if f satisfies (20)
with jo = j and no = m, then it does not satisfy (16)), else
Tfl;-m) € sp{Cid)}. We now establish that Tfl;-m) =4 sp{Cid)}
for any m > d irrespective of the nature of spreading codes
and of multipaths. Recall that, by assumption, total delay

spread is no more that N + 1 chips for any user. We have
(m >d)

Th{™ = [} (m —d), hf'(m —d+1), ---, b} (m)

hi’(m —d—1), hj'(m —d—2), ---, hj’(0), 0, -+, 0]
(21)
Since h;(0) # 0, it follows that Tﬁ;m) ¢ sp{Cid)} as the
rows in Cid) corresponding to the position of h;(0) in Tflgm)
are all zeros. Therefore, Tfl;-m) ¢ sp{C%d)} for any m > d
and Vj. We now turn to the case of m < d. In this case

Th{™ = [ h(m—d) hi'(m—d+1) h (m)
0o - 0" (22)
We have
Th{™ e sp{C{"} & [h]'(m—d), -, hf'(m)]" € sp{C{”}.
(23)

For (23) to be true, there must exist a 2N-vector g # 0 such
that

[0}’ (m = d), - (m)] " £ C{Vg. (24)
If d — m > 2 (assuming that d > 2), then hj(m — d) =
hj(m —d+ 1) = 0 leading to g = 0 in (24): that is, (23) is
never satisfied if d —m > 2; (since m > 0, this requires that
d > 2.) Thus, Th§m) ¢ sp{C\”} Vj and any m ¢ {d — 1,d}
for any choice of spreading codes and multipaths. Finally,
by construction, Z/I(I)HThgd) = 0. This proves the desired

result. o

If we pick d > 2, then the only possible convergence points
from among (20) are Thém) with m = dorm =d-1
and j = 1,2,---,M. If d = 3, then both 7h{” and 7h{”

contain the entire IR of the j-th user (recall that the IR is
If d = 2, then while
Tfl§~2) contains the entire IR, ’Tﬁ§1> may not since it does
not contain h;(2), which may (or may not) be nonzero. In
order to better distinguish between two distinct users, it is
therefore more prudent to use d > 3.

3.2.1. LOCAL MAXIMA:

Let us allow doubly infinite equalizers {f(i)}2_,,. De-
fine the scalar composite channel-equalizer impulse response
from the j-th user to the equalizer output as

Ejﬁ
77"1(0)7 o '77"1\4(0)77"1(1)7 o '77"1\4(1)77"1(2)7 o ']T .
(26)

It has been shown in [4, Appendix C] that the only stable
local maxima of J42(r)(= Ju2(f)) w.r.t. r are given by the

of maximum length I = 3 symbols).

(n=10), (25)

ro=

solutions (18). In particular, let r, and r; dengte the real
and the imaginary parts, respectively, of r. Let J(r') denote
the the Hessian (second-order derivative) of Js2(r) w.r.t.

vl r7]7 evaluated at r = r’. Let r("070) denote the vector
r specified in (26) with all zero entries except for the one
corresponding to 7j,(no) (see (25)) which equals « (cf. (11)

and (18)). Then by [4, Appendix C], J (r("00)) is negative
definite on the set 7, = {u : u=r — r(70:J0) £ B -
1)r(no.do) V@Y, ie. [uf uiT]j(r("O’jO))[uZ uf]T < 0 for any
u € Fr, u # 0, and it is negative semidefinite in general.
Since any perturbation in « alone in (18) leaves the cost

unchanged (i.e. Ja2 (Br("o’jO)) = Ja2(r(m0:30)) it follows that
[ )7 (00 [l uf]T = 0 for u = (5 — 1)ro),
Thus, J(r) has a strict local maximum at r{"0J0) for r €
({r(no’jO)}U]:;) where Fl. := {r : r = u+r{"0:90) uc £},
and 7 (r) has a local maximum at r("90) Let J(f) denote
the Hessian of Jso (f) w.r.t. the real and the imaginary parts
£, and fi, respectively, of f, evaluated at f = f. By (25),

(26) and the definition of f, it follows that there exists a
complex-valued matrix B = B, + jB;, a function only of
the MIMO channel IR (3), such that

P r, B, -B; £, f.
c-Bi s [T ]-[B B Hfi]_g[f }
(27)
Therefore, we have J(f) = BT J(r)B for any r = Bf.
Let £("0:90) denote an equalizer (not necessarily unique)
corresponding to the composite channel-equalizer response
r("0:do) je Bf(m0o) — p(70.J0)  Then it follows that
J(£(n0:30)) is negative definite on the set F; := {u
f—f(m0do) Bu # (8—1)r(™090) ¥} and negatlve semidef-
inite in general. Note that any perturbations in £("+70) that

leave r("0:90) unperturbed, do not change the IFC cost.
The above discussion pertains to the unconstrained cost.
We now turn to the constrained case where we seek to max-
imize (10) subject to (16). The possible solutions to this
problem are the stationary points of the Lagrangian (28)

w.r.t. f and X [9]
Jaz(F) + ROV £} (28)

where A = (A1 A2 -+ AT, 7 = rank{4} < N(L. - 2),
r X [NLe] matrix Vi¥ of rank r (see [7]) has the same null

space as that of A (so that Af = 0is equivalent to Vif = 0),
Ai’s are the (complex) Lagrange multipliers and R{z} de-
notes the real part of the complex scalar x. These stationary

points satisfy (16) (= V/f = 0) and

(Inp. — ViV V1) 'V Vi Jaa (F) = 0. (29)

Note that Vi#f =0 and (29) is true when f = f1, where fi,
has been deﬁned after (17). More generally, the constrained
global maxima of (10) (see Claim 1) are stationary points

of the Lagrangian (28) since V;. Jaz(f) = 0 at these points
(= (29)), and they also satisfy (16). The Hessian of the
Lagrangian (28) w.r.t. the real and the imaginary parts of f
evaluated at f', denoted by L(f'), clearly equals J(~ ), the

Hessian of Jyo(f) evaluated at f'. Therefore, £(£(0:70)) is
negative definite on the set F; defined earlier. Hence, by [8,

p. 226], a constrained global maximum £(70:90) i5 also a strict
local constrained maximum of Juz2(f) on the set ({f("070)} U



F}) where Fj = {f : f =u+£"090) ue F} anditis a
local constrained maximum of Js2(f), in general.

In summary, we have shown that from among the stable
stationary points of the unconstrained cost (10), only the
solutions that also satisfy (16) are also the stable stationary
points of the Lagrangian (28). Existence and characteriza-
tion of stable stationary points of (28) that are not the stable
stationary points of (10), is an open problem.
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Fig. 1. Probability of symbol error for user 1: 8 chips/symbol,
3 users, equal power users, 4-QAM signals, Lo = 5, d = 3 for
proposed methods, d = 2 for others, 100 Monte Carlo runs.

4. SIMULATION EXAMPLE

We consider the case of 3 users, each transmitting 4-QAM
signals, and short-codes with 8 chips per symbol. The
spreading codes were randomly generated binary (£1, with
equal probability) sequences. The multipath channels for
each user have 4 paths with transmission delays uniformly
distributed over one symbol interval, and the remaining 3
multipaths having mutually independent delays (w.r.t. the
first arrival) uniformly distributed over one symbol interval.
All four multipath amplitudes are complex Gaussian with
zero-mean and identical variance. The channels for each user
were randomly generated in each of the 100 Monte Carlo
runs (i.e. they were different in different runs). Complex
white zero-mean Gaussian noise was added to the received
signal from the 3 users. The SNR refers to the symbol SNR
of the desired user, which was user 1, and it equals the energy
per symbol divided by Ny (= one-sided power spectral den-

sity of noise = 2E{||w(k)||?}/N). In the equal-power case
(0dB MUISs), all users have the same power; in the near-far
case (10dB MUIs), the desired user power is 10 dB below
that of other users.

Equalizer of length (L.) 5 symbols and desired delay (lag)
d = 3 was designed using the proposed approach. Two ver-
sions were considered: the constrained case refers to the ap-
proach outlined in [7]. The unconstrained case refers to fur-
ther optimization of the cost (10) without any constraints,
using the results of constrained optimization as initial guess.
Initialization of the constrained version was done as in [7].
The approach of [3] (equivalent to that of [2]) was also sim-
ulated with a “smoothing factor” (m in [3]) of 5 (=Lc). The
approach of [3] was used to estimate the desired user’s chan-

nel IR which, in turn, was used in a MMSE equalizer with
delay d = 2. We also applied the approach of [1] using equal-
izer of length 5 symbols and desired delay d = 2. We also
simulate an ideal (clairvoyant) matched filter receiver which
is matched to the true effective signature sequence hi(n—d;)
(or hi(1)) of user 1. After designing the equalizers based on
the given data record, the designed equalizer was applied
to an independent record of length 3000 symbols in order
to calculate the probability of symbol detection error P,
and the results were further averaged over 100 Monte Carlo
runs. Figs. 1 and 2 show the results for various SNR’s and
approaches.

Near Far: 10dB MUIs
record length = 300 symbols
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Fig. 2. Probability of symbol error for user 1: near-far case
with the MUIs 10 dB stronger than the desired user, rest as for
Fig. 1.
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