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ABSTRACT

A code-constrained inverse filter criterion (CC-IFC) based
approach was presented recently in Tugnait and Li [7, 2000
ICASSP] for blind detection of asynchronous short-code
DS-CDMA (direct sequence code division multiple access)
signals in multipath channels. Only the spreading code of
the desired user is assumed to be known; its transmission
delay may be unknown. The equalizer was determined by
maximizing the magnitude of the normalized fourth cumu-
lant of inverse filtered (equalized) data with respect to the
equalizer coefficients subject to the fact that the equalizer
lies in a subspace associated with the desired user’s code
sequence. In this paper we analyze the identifiability prop-
erties of the approach of [7]. Global maxima and some of the
local maxima of the cost function are investigated. These
aspects were not discussed in [7]. More extensive simulation
comparisons with existing approaches are also provided.

1. INTRODUCTION

Direct sequence code division multiple access (DS-CDMA)
systems have been a subject of intense research interest in
recent years. In CDMA systems multiple users transmit sig-
nals simultaneously leading to multiuser interference (MUI).
In addition to MUI, presence of multipath propagation in-
troduces intersymbol interference (ISI) causing distortion of
the spreading code sequences. Moreover, in reverse links,
unknown transmission delays (user asynchronism) also con-
tribute to performance degradation.
In this paper we consider blind detection (i.e. no train-

ing sequence) of the desired user signal, given knowledge
of its spreading code, in the presence of MUI, ISI and user
asynchronism (lack of knowledge of user transmission de-
lays, including that of the desired user). Past work on blind
detection of DS-CDMA signals include [1]-[3], [5]-[7] and ref-
erences therein. In this paper our focus is on extraction of
a desired user’s signal. Unlike [2],[3], [5] and [4], we do not
assume synchronization with the desired user’s signal. In [7]
we investigated maximization of the normalized fourth cu-
mulant magnitude of inverse filtered (equalized) data w.r.t.
the equalizer coefficients subject to the equalizer lying in a
subspace associated with the desired user’s code sequence.
Constrained maximization leads to extraction of the desired
user’s signal whereas unconstrained maximization leads to
the extraction of any one of the existing users. In this paper
we analyze the identifiability properties of the approach of
[7]. Global maxima and some of the local maxima of the cost
function are investigated. These aspects were not discussed
in [7]. More extensive simulation comparisons with existing
approaches are also provided.

2. SYSTEM MODEL

Consider an asynchronous short-code DS-CDMA system
with M users and N chips per symbol with the j-th user’s
spreading code denoted by cj = [cj(0), · · · , cj(N−1)]T . Con-
sider a baseband discrete-time model representation. Let
sj(k) denote the j-th user’s k-th symbol. The sequence
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{sj(k)} is zero-mean, independently and identically dis-
tributed (i.i.d.) either QAM ∀j or binary ∀j. For different
j’s, {sj(k)}’s are mutually independent. In the presence of
a linear dispersive channe, let gj(n) denote the j-th user’s
effective channel impulse response (IR) assuming zero trans-
mission delay, sampled at the chip interval Tc. Let

hj(n) =

N−1∑
m=0

cj(m)gj(n−m), (1)

where hj(n) represents the effective signature sequence of
user j (i.e. code cj(n) “distorted” due to multipath etc.).
Define a [(d+ 1)N ] × [2N ] code matrix

C
(d)
j :=




cj(0) 0 · · · 0

cj(1) cj(0)
. . . 0

...
. . .

. . .
...

cj(N − 1)
. . .

. . . cj(0)

0 cj(N − 1)
. . .

...
...

. . .
. . .

...
0 0 · · · cj(N − 1)
...

... · · ·
...

0 0 · · · 0




. (2)

If we collect N chip-rate measurements of received signal
(from all users) into N-vector y(k), then we obtain, at the
symbol rate, the MIMO model (additive white Gaussian
noise w(k) is defined in a manner similar to y(k)):

y(k) =

M∑
j=1

Lj∑
l=0

hj(l)sj(k − l) +w(k) (3)

where

hj(l) = [hj(lN − dj), · · · , hj(lN − dj +N − 1)]T , (4)

dj (0 ≤ dj < N) is the (effective) transmission delay (mod
N) of user j in chip intervals and Lj +1 is the length of the
j-th user’s vector IR. It follows that for any d ≥ 0,

h
(d)
j :=

[
hH

j (0) hH
j (1) · · · hH

j (d)
]H

= C
(d)
j gj (5)

where the superscript H denotes the complex conjugate
transpose (Hermitian) operation,

gj := [ gj(−dj) gj(−dj + 1) · · · gj(2N − dj − 1) ]
T
,

(6)

h
(d)
j is (d+1)N-vector, gj is 2N-vector and we assume that

gj(l) = 0 for l > N (in addition to gj(l) = 0 for l < 0), i.e.
the multipath delays can be of at most one symbol duration
(N chips). Not all elements in gj are nonzero. It follows
that hj(l) = 0 for l ≥ 3.



3. CODE-CONSTRAINED INVERSE FILTER
CRITERION (CC-IFC)

3.1. Projection Approach to CC-IFC [7]

Consider an N × 1 vector equalizer {f(i)}Le−1
i=0 of length Le

symbols (NLe chips) operating on the data y(n) (see (3))
to yield

e(n) =

Le−1∑
i=0

fH(i)y(n− i) (7)

where f(i) is N × 1. Define

f̃H :=
[
fH(0) fH(1) · · · fH(Le − 1)

]
. (8)

Let cum4(e) denote the fourth-order cumulant of a complex-
valued scalar zero-mean random variable e, defined as

cum4(e) := E{|e|4} − 2[E{|e|2}]2 − |E{e2}|2. (9)

Following [7] consider maximization of the inverse filter cost

J42(f̃) :=
|cum4(e(n))|
[E{|e(n)|2}]2 (10)

for designing the linear equalizer. It is shown in [4] that
under certain mild sufficient conditions, when (10) is max-

imized w.r.t. {f(i)}Le−1
i=0 using a stochastic gradient algo-

rithm, then (12) reduces to

e(n) = αsj0 (n− n0), (11)

where complex α 
= 0, 0 ≤ n0 ≤ Le − 1+Lj is some integer,
j0 indexes some user out of the given M users, i.e., the
equalizer output is a possibly scaled and shifted version of
one of the users. The problem is that there is no control
over which user is extracted.
It has been shown in [7] that in order to extract the de-

sired user (j0 = 1) with desired delay (n0 = d), the linear
equalizer should belong to the null space of a matrix A which

is a function of the desired user’s code matrix C
(d)
1 and the

data correlation matrix. It is a [N(Le − 2)]× [NLe] matrix
given by

A = U(1)HT Ryy (12)

where Ryy is the [NLe]×[NLe] data correlation matrix with
ij-th block element Ryy(j − i) = E{y(k + j − i)yH(k)},

T :=
[ Td 0

0 IN(Le−1−d)

]
= [NLe]× [NLe] matrix, (13)

IK denotes a K ×K identity matrix,

Td :=




0 · · · 0 IN

0 · · · IN 0
...

. . .
...

...
IN · · · 0 0


 = [N(d + 1)]× [N(d + 1)],

(14)

C(d)
1 :=

[
C

(d)
1
0

]
= [NLe]× [2N ] matrix (15)

and columns of U(1) denote an orthonormal basis for the
orthogonal complement of C(d)

1 . Since C(d)
1 is of full column

rank, U(1) is an [NLe] × [NLe − 2N ] matrix (it can be ob-

tained via an SVD (singular value decomposition) of C(d)
1 ).

Thus, the desired solution satisfies (16) in addition

to maximizing (10) (in fact, in addition to being a
stationary point of (10)) where

Af̃ = 0. (16)

By [4] and [7] there exists an equalizer that minimizes (10)
as well satisfies (16).

Let Π⊥
A denote the [NLe]× [NLe] projection matrix onto

the null space of A. The the following iterative, batch,
projection stochastic gradient algorithm was used in [7] to

obtain the desired equalizer. Let Ĵ42(f̃) denote the data-

based cost (10) and let ∇f̃∗ Ĵ42(f̃
′) denote its gradient (NLe-

column) w.r.t. f̃∗ evaluated at f̃ ′; (the symbol ∗ denotes the

complex conjugation operation). Given the equalizer f̃ (n) at
n-th iteration, the equalizer update at n + 1st iteration is

calculated as f̃ (n+1) = f̃ (n) + ρΠ⊥
A∇f̃∗ Ĵ42(f̃

(n)), where ρ is a
suitable step-size (see [7]). It is a projection algorithm since

any changes in f̃ (n) are forced to lie in (projected onto) the

null space of A. Of course, we choose the initial guess f̃ (0)

to satisfy (16) [7].

3.2. Constrained Global Maxima

We now consider investigate global maxima of (10) subject
to (16). Assume no noise: w(k) ≡ 0. When an equalizer is

such that (11) is achieved, J42(f̃) is maximized [4]. It can
be shown that

max
f̃

J42(f̃) =
|cum4(sj(n))|
(E{|sj(n)|2})2

=: |γ4s|. (17)

Let f̃1o be an equalizer for which J42(f̃1o) = |γ4s| with cor-

responding e(n) = α1s1(n − d) where α1 
= 0, i.e. f̃1o leads
to extraction of user 1 with delay d. Then, by construc-
tion, Af̃1o = 0 [7]. It follows from the results of [4] that if

J42(f̃) 
= |γ4s|, then (11) can not hold true (all stable lo-

cal maxima of J42(f̃) lead to (11) for some j0 and n0 [4]).

Therefore, constrained global maxima of J42(f̃) are given by

those f̃ ’s for which J42(f̃) = |γ4s| and Af̃ = 0, equivalently,
for which (11) and (16) hold true. The equalizer that yields
(11) satisfies [4]

Le−1∑
i=0

fH(i)hj(n− i) = αδj,j0δn,n0 , 1 ≤ j ≤ M, n ≥ 0,

(18)
where δj,i = 1 for j = i, 0 otherwise.
We now characterize the equalizer solutions that satisfy

both (16) and (18). Define the [NLe]-column vector, for
m = 0, · · · , Le − 1 + Lj,

h̃
(m)
j :=

[
hH

j (m) · · · hH
j (0) 0 · · · 0

]H
. (19)

Using (19) and results from [7] and Sec. 3.1, (18) can be
rewritten as (Rss = Ryy under the no noise assumption)

T Ryy f̃ = αT h̃(n0)
j0

, j0 ∈ {1, · · · ,M}, n0 ∈ {0, · · · , Le−1+Lj0}.
(20)

Therefore, solutions satisfying (16) and (18) are equivalent
to solutions satisfying (16) and (20). Consider

(C1) The [NLe] × [2N + 1] matrix [C(d)
1

... T h̃(m)
j ] has full

column rank for every j ∈ {2, 3, · · · ,M} and every m ∈
{d − 1, d} where Le ≥ d+ 1 and d ≥ 2.



Claim 1: Under (C1), any solution that satisfies (16) and
(20) (i.e. any constrained global maximum of (10)), corre-
sponds to j0 = 1 and n0 ∈ {d− 1, d} in (11), (18) and (20).

Proof: Suppose that for fixed j and m, T h̃(m)
j 
∈ sp{C(d)

1 },
where sp{B} denotes the linear subspace spanned by the

columns of B. Then U(1)HT h̃(m)
j 
= 0 (i.e. if f̃ satisfies (20)

with j0 = j and n0 = m, then it does not satisfy (16)), else

T h̃(m)
j ∈ sp{C(d)

1 }. We now establish that T h̃(m)
j 
∈ sp{C(d)

1 }
for any m > d irrespective of the nature of spreading codes
and of multipaths. Recall that, by assumption, total delay
spread is no more that N + 1 chips for any user. We have
(m > d)

T h̃(m)
j =

[
hH

j (m− d), hH
j (m− d+ 1), · · · , hH

j (m)

hH
j (m− d− 1), hH

j (m− d− 2), · · · , hH
j (0), 0, · · · , 0

]H

(21)

Since hj(0) 
= 0, it follows that T h̃(m)
j 
∈ sp{C(d)

1 } as the

rows in C(d)
1 corresponding to the position of hj(0) in T h̃(m)

1

are all zeros. Therefore, T h̃(m)
j 
∈ sp{C(d)

1 } for any m > d
and ∀j. We now turn to the case of m ≤ d. In this case

T h̃(m)
j =

[
hH

j (m− d) hH
j (m− d+ 1) · · · hH

j (m)

0 · · · 0 ]H (22)

We have

T h̃(m)
j ∈ sp{C(d)

1 } ⇔ [hH
j (m−d), · · · ,hH

j (m)]H ∈ sp{C(d)
1 }.
(23)

For (23) to be true, there must exist a 2N-vector g 
= 0 such
that

[hH
j (m− d), · · · ,hH

j (m)]H
?
= C

(d)
1 g. (24)

If d − m ≥ 2 (assuming that d ≥ 2), then hj(m − d) =
hj(m− d+ 1) = 0 leading to g = 0 in (24): that is, (23) is
never satisfied if d−m ≥ 2; (since m ≥ 0, this requires that

d ≥ 2.) Thus, T h̃(m)
j 
∈ sp{C(d)

1 } ∀j and any m /∈ {d − 1, d}
for any choice of spreading codes and multipaths. Finally,

by construction, U(1)HT h̃(d)
1 = 0. This proves the desired

result. •
If we pick d ≥ 2, then the only possible convergence points

from among (20) are T h̃(m)
j with m = d or m = d − 1

and j = 1, 2, · · · ,M . If d = 3, then both T h̃(3)
j and T h̃(2)

j

contain the entire IR of the j-th user (recall that the IR is

of maximum length L = 3 symbols). If d = 2, then while

T h̃(2)
j contains the entire IR, T h̃(1)

j may not since it does

not contain hj(2), which may (or may not) be nonzero. In
order to better distinguish between two distinct users, it is
therefore more prudent to use d ≥ 3.

3.2.1. LOCAL MAXIMA:
Let us allow doubly infinite equalizers {f(i)}∞i=−∞. De-

fine the scalar composite channel-equalizer impulse response
from the j-th user to the equalizer output as

rj(n) :=

∞∑
l=−∞

fH(l)hj(n− l), (25)

r := [· · · , r1(0), · · · , rM(0), r1(1), · · · , rM(1), r1(2), · · ·]T .
(26)

It has been shown in [4, Appendix C] that the only stable

local maxima of J42(r)(= J42(f̃)) w.r.t. r are given by the

solutions (18). In particular, let rr and ri denote the real
and the imaginary parts, respectively, of r. Let J̄ (r′) denote

the the Hessian (second-order derivative) of J42(r) w.r.t.

[rT
r rT

i ]
T evaluated at r = r′. Let r(n0,j0) denote the vector

r specified in (26) with all zero entries except for the one
corresponding to rj0(n0) (see (25)) which equals α (cf. (11)

and (18)). Then by [4, Appendix C], J̄ (r(n0,j0)) is negative

definite on the set Fr = {u : u = r − r(n0,j0), u 
= (β −
1)r(n0,j0) ∀β}, i.e. [uT

r uT
i ]J̄ (r(n0,j0))[uT

r uT
i ]

T < 0 for any
u ∈ Fr, u 
= 0, and it is negative semidefinite in general.
Since any perturbation in α alone in (18) leaves the cost

unchanged (i.e. J42(βr
(n0,j0)) = J42(r

(n0,j0)), it follows that

[uT
r uT

i ]J̄ (r(n0,j0))[uT
r uT

i ]
T = 0 for u = (β − 1)r(n0,j0).

Thus, J̄ (r) has a strict local maximum at r(n0,j0) for r ∈
({r(n0,j0)}∪F ′

r) where F ′
r := {r : r = u+r(n0,j0), u ∈ Fr},

and J̄ (r) has a local maximum at r(n0,j0). Let J (f̃ ′) denote

the Hessian of J42(f̃) w.r.t. the real and the imaginary parts

f̃r and f̃i, respectively, of f̃ , evaluated at f̃ = f̃ ′. By (25),

(26) and the definition of f̃ , it follows that there exists a
complex-valued matrix B = Br + jBi, a function only of
the MIMO channel IR (3), such that

r = Bf̃ ⇒
[
rr

ri

]
=

[
Br −Bi

Bi Br

] [
f̃r
f̃i

]
=: B

[
f̃r
f̃i

]
.

(27)

Therefore, we have J (f̃) = BT J̄ (r)B for any r = Bf̃ .

Let f̃ (n0,j0) denote an equalizer (not necessarily unique)
corresponding to the composite channel-equalizer response
r(n0,j0), i.e. Bf̃ (n0,j0) = r(n0,j0). Then it follows that
J (f̃ (n0,j0)) is negative definite on the set Ff := {u :

f̃− f̃ (n0,j0), Bu 
= (β−1)r(n0,j0) ∀β}, and negative semidef-

inite in general. Note that any perturbations in f̃ (n0,j0) that
leave r(n0,j0) unperturbed, do not change the IFC cost.
The above discussion pertains to the unconstrained cost.

We now turn to the constrained case where we seek to max-
imize (10) subject to (16). The possible solutions to this
problem are the stationary points of the Lagrangian (28)

w.r.t. f̃ and λ [9]

J42(f̃) + �{λT V H
1 f̃} (28)

where λ = [λ1 λ2 · · · λr]
T , r = rank{A} ≤ N(Le − 2),

r × [NLe] matrix V H
1 of rank r (see [7]) has the same null

space as that ofA (so thatAf̃ = 0 is equivalent to V H
1 f̃ = 0),

λi’s are the (complex) Lagrange multipliers and �{x} de-
notes the real part of the complex scalar x. These stationary
points satisfy (16) (≡ V H

1 f̃ = 0) and

(INLe − V1(V
H
1 V1)

−1V H
1 )∇f̃∗J42(f̃) = 0. (29)

Note that V H
1 f̃ = 0 and (29) is true when f̃ = f̃1o where f̃1o

has been defined after (17). More generally, the constrained
global maxima of (10) (see Claim 1) are stationary points

of the Lagrangian (28) since ∇f̃∗J42(f̃) = 0 at these points
(⇒ (29)), and they also satisfy (16). The Hessian of the

Lagrangian (28) w.r.t. the real and the imaginary parts of f̃

evaluated at f̃ ′, denoted by L(f̃ ′), clearly equals J (f̃ ′), the

Hessian of J42(f̃) evaluated at f̃ ′. Therefore, L(f̃ (n0,j0)) is
negative definite on the set Ff defined earlier. Hence, by [8,

p. 226], a constrained global maximum f̃ (n0,j0) is also a strict

local constrained maximum of J42(f̃) on the set ({f̃ (n0,j0)}∪



F ′
f ) where F ′

f := {f̃ : f̃ = u+ f̃ (n0,j0), u ∈ Ff}, and it is a

local constrained maximum of J42(f̃), in general.
In summary, we have shown that from among the stable

stationary points of the unconstrained cost (10), only the
solutions that also satisfy (16) are also the stable stationary
points of the Lagrangian (28). Existence and characteriza-
tion of stable stationary points of (28) that are not the stable
stationary points of (10), is an open problem.
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Fig. 1. Probability of symbol error for user 1: 8 chips/symbol,
3 users, equal power users, 4-QAM signals, Le = 5, d = 3 for
proposed methods, d = 2 for others, 100 Monte Carlo runs.

4. SIMULATION EXAMPLE

We consider the case of 3 users, each transmitting 4-QAM
signals, and short-codes with 8 chips per symbol. The
spreading codes were randomly generated binary (±1, with
equal probability) sequences. The multipath channels for
each user have 4 paths with transmission delays uniformly
distributed over one symbol interval, and the remaining 3
multipaths having mutually independent delays (w.r.t. the
first arrival) uniformly distributed over one symbol interval.
All four multipath amplitudes are complex Gaussian with
zero-mean and identical variance. The channels for each user
were randomly generated in each of the 100 Monte Carlo
runs (i.e. they were different in different runs). Complex
white zero-mean Gaussian noise was added to the received
signal from the 3 users. The SNR refers to the symbol SNR
of the desired user, which was user 1, and it equals the energy
per symbol divided by N0 (= one-sided power spectral den-
sity of noise = 2E{‖w(k)‖2}/N). In the equal-power case
(0dB MUIs), all users have the same power; in the near-far
case (10dB MUIs), the desired user power is 10 dB below
that of other users.
Equalizer of length (Le) 5 symbols and desired delay (lag)

d = 3 was designed using the proposed approach. Two ver-
sions were considered: the constrained case refers to the ap-
proach outlined in [7]. The unconstrained case refers to fur-
ther optimization of the cost (10) without any constraints,
using the results of constrained optimization as initial guess.
Initialization of the constrained version was done as in [7].
The approach of [3] (equivalent to that of [2]) was also sim-
ulated with a “smoothing factor” (m in [3]) of 5 (=Le). The
approach of [3] was used to estimate the desired user’s chan-

nel IR which, in turn, was used in a MMSE equalizer with
delay d = 2. We also applied the approach of [1] using equal-
izer of length 5 symbols and desired delay d = 2. We also
simulate an ideal (clairvoyant) matched filter receiver which
is matched to the true effective signature sequence h1(n−dj)
(or h1(l)) of user 1. After designing the equalizers based on
the given data record, the designed equalizer was applied
to an independent record of length 3000 symbols in order
to calculate the probability of symbol detection error Pe,
and the results were further averaged over 100 Monte Carlo
runs. Figs. 1 and 2 show the results for various SNR’s and
approaches.
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Fig. 2. Probability of symbol error for user 1: near-far case
with the MUIs 10 dB stronger than the desired user, rest as for
Fig. 1.
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