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Abstract|Recently, the complexity control of dynamic

neural models has gained signi�cant attention from sig-

nal processing community. The performance of such

a process depends highly on the applied de�nition of

\model complexity", i.e. complexity models that give

simpler networks with better model accuracy and re-

liability are preferred. The learning theory creates a

framework to assess the learning properties of models.

These properties include the required size of the train-

ing samples as well as the statistical con�dence over the

model. In this paper, we apply the learning properties

of two families of FIR Radial Basis Function Networks

(RBFN's) to introduce new complexity measures that re-


ect the learning properties of such neural model. Then,

based on these complexity term, we de�ne cost functions,

which provide a balance between the training and test-

ing performances of the model, and give desirable levels

of accuracy and con�dence.
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I. Introduction

The Probably Approximately Correct (PAC) learn-

ing theory, proposed by Valiant [1], deals with the ac-

curacy and con�dence of modeling tasks when data is

i.i.d. Recently, new learning schemes are introduced

that extend the results of the PAC learning to non-i.i.d.

cases, and provide us with frameworks to assess learn-

ing properties of the dynamic modeling applications [2]

with \Nonlinear Finite Impulse Response" (Nonlinear

FIR) models. In the �rst part of this paper [3] using

the extended PAC learning theory, the learning proper-

ties of FIR modeling using two families of Radial Basis

Function Networks (RBFN's) were evaluated.

Despite the popularity of neural networks, over�tting

is the main drawback of using such complex measures.

The main challenge in minimum-complexity modeling

of complex systems is to �nd relevant complexity terms

to evaluate and limit the complexity of models. The

complexity measures borrowed from the information

theory and used in signal processing, such as the ones

developed by Zhang and Muhlenbein (see for example

[4]) do not directly address the testing-training balance

and may not be the best choices for some neural model-

ing procedures. There is no evidence that the informa-

tion theory based complexity measure (that mainly use

Rissanen principle) are designed to create models with

small training error and small Kolmogorov description

length. However, there exists to clear mathematical

equation (or inequality) that relates the closeness of

training and testing error to Kolmogorov description

length. It might be possible to create such a bridge by

relating Kolmogrov description length to the Vapnik-

Chervoninkis dimension [5], and as a result relate Kol-

mogorov description length to the over�tting problem;

however this task seems to be a highly complicated one.

Here, we use the results of the PAC learning theory

to present new measures of complexity that target the

over�tting issue directly and provides us with accept-

able levels of the testing-training balance. Therefore, if

the over�tting problem is the main concern in a mod-

eling task, our complexity measures are more relevant

than the Rissanen ones.

The paper is organized as follows: Par I of the paper

[3] describes the basic de�nitions of the learning the-

ory and gives the learning properties of FIR modeling

using two families of Radial Basis Function Networks

(RBFN's). In Section II, new complexity measures for



the foresaid family of RBFN's are presented and the

corresponding cost functions to be minimized during

the training procedure are built. Section IV gives the

results of the simulations performed using the proposed

cost function and is followed by Section V which con-

cludes the paper.

II. Model Complexity and Learning-Based

Cost Function

Many practical analysis of the learning results on

modeling applications reveal the ineÆciency of the

structural risk minimization algorithm in modeling of

practical systems, where a limited size of data is avail-

able. This means that in a typical practical application,

learning theory requires a huge training set to guaran-

tee acceptable levels of accuracy and con�dence, while

in practice, only a limited number of training might be

available. In other words, due to the conservative na-

ture of the upper bounds available in the learning the-

ory, the direct use of the structural risk minimization

algorithm to many practical systems may not be pos-

sible. This observation holds not only for FIR model-

ing (using m-dependent data), but also static modeling

with i.i.d. inputs. Here, we propose an approach that

applies the results of the learning theory to perform

a modeling task that provides us with some degree of

con�dence over the proximity of the testing and train-

ing errors. In order to do so, we introduce a complexity

term and incorporate this term into the cost function

to be minimized during the training.

As mentioned in Part I [3], given a �xed size of train-

ing data set, n, and a certain family of networks, PAC

learning theory describes the deviation of the testing

performance from the training performance by � (i.e.

the accuracy) and Æ (i.e. the con�dence). Based on

PAC learning theory, in order to avoid over�tting in an

ideal case, both these parameters must be as small as

possible, at the same time. However, from the above

inequalities, it can be seen that with a �xed number

of training data points, reducing the value of the one

of these two parameters would increase the bound on

the other one. This means that with a �xed model

and �xed number of training data, if higher accuracy is

desired, one has to compromise the level of statistical

con�dence and vice versa. This issue parallels the bias-

variance problem reported in the �elds such as identi-

�cation and modeling and asserts that often, both ac-

curacy and con�dence may not be minimized at the

same time. To create a systematic modeling algorithm,

the main objectives of a typical modeling task must be

used with the learning properties to create a balance

between these two parameters. In order to do this, one

of the two parameters is �xed and the complexity mea-

sure is based on the other one. Notice that for a �xed

level of disparity between the empirical error and the

true error, Æ gives the amount of uncertainty over the

model. Therefore, it seems that for a typical modeling

application, Æ would be a good choice for a complexity

measure to be minimized throughout the training pro-

cess. De�ning the complexity measure based on Æ will

result in complexity measures that are closely related

to the level of smoothness (Lipschitz constant), the size

of the training set as well as the dimension of the input.

This is not surprising, because modeling with functions

that possess higher Lipschitz constants and larger di-

mensionality is known to be more complex and to re-

quire more data points. Assuming that � is constant, if Æ

(or a non-decreasing function of this parameter) is min-

imized during the training procedure, a model will be

found for which the likelihood of having the di�erence

between testing and training performances limited by �

is maximized. At this point, consider a set of Gausssian

RBFN's. Similar procedures that give similar results for

other neural structures are described later. Now, from

Part I of this paper [3]:
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Assume that: � = 0; � = 1. The choices of � and �

are arbitrary and there is nothing special in the above

choices. Also, note that the values of m; n; and Æ are

�xed during the training procedure. If the value of � is

given, the value of Æ (or ln(Æ)) is an indication of un-

certainty of the model, i.e. minimizing ln(Æ) leads to

models that are more reliable and perform more simi-

larly on training and testing data sets. Therefore, one

may de�ne the complexity term Cgauss as ln(Æ). How-

ever, a closer look at the term Arbfn is required. As

de�ned in Part I of this paper, the term Arbfn grades

(nests) the parameter space. In other words, for a cho-



sen value of Arbfn, the space in which the parameters

are allowed to vary is restricted. Then a higher value

of Arbfn de�nes a new parameter space which includes

the previous space. In practice it is very diÆcult to

create such a nested sequence of function sets based

on a term such as Arbfn and then search for the sim-

plest function set with satisfactory performance. Also,

performing minimization of the error for a �xed value

of Arbfn requires a solid method of constrained opti-

mization to make sure that the resulting set of optimal

parameters is indeed within the space speci�ed by the

prespeci�ed value of Arbfn. These limitations make the

entire process of optimization within each of the func-

tion sets impractical. In order to obtain a sub-optimal

solution, compromise is necessary. An optimization al-

gorithm that is capable of minimizing non-smooth func-

tions over the entire parameter space allows the use of

a more practical complexity term which is formed by

replacing Arbfn with
Pl

i
jaij

p
bi. During the consecu-

tive iterations, the optimization algorithm now moves

in favor of functions that fall within a smaller param-

eter space and as a result are less complex. This leads

to the following more practical complexity term:

Cguss =
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This complexity measure gives an indication of the

testing-training balance and shows how unreliable the

training of such a network is. It is important to no-

tice that the above measure combines the parameter-

space complexity with the complexity due to the num-

ber of neurons (structural complexity), without making

any assumptions on the structure or parameters. This

means that any algorithm that minimizes (2) addresses

the parameter space complexity and the structural com-

plexity at the same time. It can be observed that the

complexity term introduced in (2) takes into consider-

ation the size of available training data set n, the total

dimension of input d, as well as the Lipschitz constant

as an indication of smoothness of the function set. Now,

suppose that during the training algorithm the number

of neurons l is �xed. Then the objective of the optimiza-

tion algorithm is to include both the above complexity

term and the empirical error in a cost function, i.e. :

Jguss =
1

n

"
nX
i=1

l(f(xi); yi)

#
+ �Cguss : (3)

In the above cost function, � is a weighting factor

that determines the relative importance of the empir-

ical error and the complexity term in the overall cost

function. Lower values of � result in models that cre-

ate small training errors but exhibit poor performance

over the testing data. The higher values of � create a

desirable testing-training balance with both testing and

training errors undesirably increased (due to resulting

large empirical errors). The function l(:; :) is chosen to

be a loss function that satis�es a uniform Lipschitz con-

dition as de�ned in [6]. In the above cost functions, the

values of
Pl

i
jaij

p
bi are kept as small as possible with-

out being concerned about the over-all grading of the

space through the �xed values of Arbfn. Even with the

relaxed de�nitions, since (3) is a non-di�erentiable func-

tion of the ai's and perhaps of the bi's, gradient-based

minimization methods cannot be used for the optimiza-

tion phase. Performing optimization over ai's and bi's

thus calls for an algorithm that can minimize nonlin-

early and non-smoothly parameterized models. In [7],

elvolutionary programming is used to minimize similar

inequalities, which can be extended to the optimization

problem discussed above.

Next, following the same type of approach, complex-

ity terms and cost functions are de�ned for the neu-

ral structures discussed above. Just as for Gaussian

RBFN's, complexity terms are introduced that re
ect

the functional dependency of ln(Æ) and contain informa-

tion about the learning properties of the modeling task.

Starting with RMQ-RBFN's, use Inequality (7) in Part

I and apply the logarithm on both sides to de�ne the

complexity term and the corresponding cost function as

follows:

Crmq =
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and:

Jrmq =
1

n

"
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l(f(xi); yi)

#
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In the above cost functions, � is a weighting factor

that determines the relative importance of the empir-

ical error and the complexity term in the overall cost

function. Lower values of � result to models that cre-

ate small training errors but might exhibit poor perfor-

mance over the testing data. On the other hand, the

higher values of � create a desirable testing-training bal-

ance; however both testing and training errors might be

too large.

It can be seen that the de�ned complexity terms de-

pend not only on the number of hidden neurons, but

also the size of the parameter space. This implies that

the number of neurons can not be treated as the unique

indication of model complexity. In some practical mod-

eling algorithms, adding or deleting new neurons is the

only way through which the complexity of a neural

model is controlled. However, according to the above

complexity term, it is possible that a model with fewer

neurons have higher complexity due to its larger pa-

rameter space. This observation was �rst reported by

Bartlett [8]. In [8], it is shown that the assumed size

of the parameter space plays a more vital role in the

complexity and reliability of a model than the num-

ber of neurons. This re-emphasizes the importance of

considering the size of parameter space while adding or

deleting neurons in designing variable-structure neural

networks.

III. Simulation results

A number of simulations are performed in [9] to eval-

uate the performance of the introduced cost functions.

Due to space limitation, a very brief description of the

simulations is given here. In these simulations, a non-

linear function is modeled using RMQ-RBFN's with 10

hidden neurons. In the �rst simulation, the cost func-

tion contains only the empirical error (� = 0). Min-

imizing this cost function results to the training and

testing errors of 0.0854 and 0.0962, respectively. In the

second simulation, the same training and testing data

are used while the cost function contains both the em-

pirical error and the complexity term (� = 1 � 10�6).

This simulation results in training and testing errors of

0.0887 and 0.0910, respectively. As can be seen, the dif-

ference between the training and testing errors in the

second simulation is signi�cantly smaller than that of

the �rst simulation. This shows that the use of the in-

troduced complexity terms in the overall cost function

creates a balance between the training and testing er-

rors and avoids over�tting.

IV. Conclusions

The cost function presented here applies the results

of the learning theory and creates a balance between the

empirical error and the complexity of RBFN's. Mini-

mizing the novel complexity terms and cost functions

introduced here result in models that avoid over�tting

and create a suitable balance between the training and

testing performances.
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