On Learning and Computational Complexity of FIR

Radial Basis Function Networks, Part II: Complexity

Measures

Kayvan Najarian

Computer Science Department, University of North Carolina at Charlotte
9201 University City Blvd., Charlotte, NC 28223, U.S.A.
E-mail: knajaria@uncc.edu

Abstract—Recently, the complexity control of dynamic
neural models has gained significant attention from sig-
nal processing community. The performance of such
a process depends highly on the applied definition of
“model complexity”, i.e. complexity models that give
simpler networks with better model accuracy and re-
liability are preferred. The learning theory creates a
framework to assess the learning properties of models.
These properties include the required size of the train-
ing samples as well as the statistical confidence over the
model. In this paper, we apply the learning properties
of two families of FIR Radial Basis Function Networks
(RBFN’s) to introduce new complexity measures that re-
flect the learning properties of such neural model. Then,
based on these complexity term, we define cost functions,
which provide a balance between the training and test-
ing performances of the model, and give desirable levels

of accuracy and confidence.

Keywords— Radial Basis Function Networks, Compu-
tational Complexity, Computational Learning Theory,
PAC Learning, Finite Impulse Response (FIR) Models

I. INTRODUCTION

The Probably Approximately Correct (PAC) learn-
ing theory, proposed by Valiant [1], deals with the ac-
curacy and confidence of modeling tasks when data is
i.i.d. Recently, new learning schemes are introduced
that extend the results of the PAC learning to non-i.i.d.
cases, and provide us with frameworks to assess learn-
ing properties of the dynamic modeling applications [2]
with “Nonlinear Finite Impulse Response” (Nonlinear
FIR) models. In the first part of this paper [3] using
the extended PAC learning theory, the learning proper-
ties of FIR modeling using two families of Radial Basis
Function Networks (RBFN’s) were evaluated.

Despite the popularity of neural networks, overfitting

is the main drawback of using such complex measures.
The main challenge in minimum-complexity modeling
of complex systems is to find relevant complexity terms
to evaluate and limit the complexity of models. The
complexity measures borrowed from the information
theory and used in signal processing, such as the ones
developed by Zhang and Muhlenbein (see for example
[4]) do not directly address the testing-training balance
and may not be the best choices for some neural model-
ing procedures. There is no evidence that the informa-
tion theory based complexity measure (that mainly use
Rissanen principle) are designed to create models with
small training error and small Kolmogorov description
length. However, there exists to clear mathematical
equation (or inequality) that relates the closeness of
training and testing error to Kolmogorov description
length. It might be possible to create such a bridge by
relating Kolmogrov description length to the Vapnik-
Chervoninkis dimension [5], and as a result relate Kol-
mogorov description length to the overfitting problem;
however this task seems to be a highly complicated one.
Here, we use the results of the PAC learning theory
to present new measures of complexity that target the
overfitting issue directly and provides us with accept-
able levels of the testing-training balance. Therefore, if
the overfitting problem is the main concern in a mod-
eling task, our complexity measures are more relevant
than the Rissanen ones.

The paper is organized as follows: Par I of the paper
[3] describes the basic definitions of the learning the-
ory and gives the learning properties of FIR modeling
using two families of Radial Basis Function Networks
(RBFN’s). In Section II, new complexity measures for

the foresaid family of RBFN’s are presented and the
corresponding cost functions to be minimized during
the training procedure are built. Section IV gives the
results of the simulations performed using the proposed
cost function and is followed by Section V which con-
cludes the paper.

II. MopEL COMPLEXITY AND LEARNING-BASED
CosT FUNCTION

Many practical analysis of the learning results on
modeling applications reveal the inefficiency of the
structural risk minimization algorithm in modeling of
practical systems, where a limited size of data is avail-
able. This means that in a typical practical application,
learning theory requires a huge training set to guaran-
tee acceptable levels of accuracy and confidence, while
in practice, only a limited number of training might be
available. In other words, due to the conservative na-
ture of the upper bounds available in the learning the-
ory, the direct use of the structural risk minimization
algorithm to many practical systems may not be pos-
sible. This observation holds not only for FIR model-
ing (using m-dependent data), but also static modeling
with i.i.d. inputs. Here, we propose an approach that
applies the results of the learning theory to perform
a modeling task that provides us with some degree of
confidence over the proximity of the testing and train-
ing errors. In order to do so, we introduce a complexity
term and incorporate this term into the cost function
to be minimized during the training.

As mentioned in Part I [3], given a fixed size of train-
ing data set, n, and a certain family of networks, PAC
learning theory describes the deviation of the testing
performance from the training performance by e (i.e.
the accuracy) and 0 (i.e. the confidence). Based on
PAC learning theory, in order to avoid overfitting in an
ideal case, both these parameters must be as small as
possible, at the same time. However, from the above
inequalities, it can be seen that with a fixed number
of training data points, reducing the value of the one
of these two parameters would increase the bound on
This means that with a fixed model

and fixed number of training data, if higher accuracy is

the other one.

desired, one has to compromise the level of statistical
confidence and vice versa. This issue parallels the bias-

variance problem reported in the fields such as identi-
fication and modeling and asserts that often, both ac-
curacy and confidence may not be minimized at the
same time. To create a systematic modeling algorithm,
the main objectives of a typical modeling task must be
used with the learning properties to create a balance
between these two parameters. In order to do this, one
of the two parameters is fixed and the complexity mea-
sure is based on the other one. Notice that for a fixed
level of disparity between the empirical error and the
true error, 6 gives the amount of uncertainty over the
model. Therefore, it seems that for a typical modeling
application, § would be a good choice for a complexity
measure to be minimized throughout the training pro-
cess. Defining the complexity measure based on § will
result in complexity measures that are closely related
to the level of smoothness (Lipschitz constant), the size
of the training set as well as the dimension of the input.
This is not surprising, because modeling with functions
that possess higher Lipschitz constants and larger di-
mensionality is known to be more complex and to re-
quire more data points. Assuming that € is constant, if ¢
(or a non-decreasing function of this parameter) is min-
imized during the training procedure, a model will be
found for which the likelihood of having the difference
between testing and training performances limited by €
is maximized. At this point, consider a set of Gausssian
RBFN'’s. Similar procedures that give similar results for
other neural structures are described later. Now, from
Part I of this paper [3]:

2V2A 5y d(B—a)

Ve

§>2] (m +)exp [-ne’/8(m +1)] . (1)

Assume that: o = 0, 8 = 1. The choices of « and 3
are arbitrary and there is nothing special in the above
choices. Also, note that the values of m, n, and § are
fixed during the training procedure. If the value of € is
given, the value of § (or In(d)) is an indication of un-
certainty of the model, i.e. minimizing In(d) leads to
models that are more reliable and perform more simi-
larly on training and testing data sets. Therefore, one
may define the complexity term Cyauss as In(d). How-
ever, a closer look at the term A,4f, is required. As
defined in Part I of this paper, the term A,;s, grades
(nests) the parameter space. In other words, for a cho-

sen value of A,4¢n, the space in which the parameters
are allowed to vary is restricted. Then a higher value
of A, defines a new parameter space which includes
the previous space. In practice it is very difficult to
create such a nested sequence of function sets based
on a term such as A,pfn, and then search for the sim-
plest function set with satisfactory performance. Also,
performing minimization of the error for a fixed value
of A,pfn requires a solid method of constrained opti-
mization to make sure that the resulting set of optimal
parameters is indeed within the space specified by the
prespecified value of A,4¢,. These limitations make the
entire process of optimization within each of the func-
tion sets impractical. In order to obtain a sub-optimal
solution, compromise is necessary. An optimization al-
gorithm that is capable of minimizing non-smooth func-
tions over the entire parameter space allows the use of
a more practical complexity term which is formed by
replacing A4, with Zi |a;|v/b;. During the consecu-
tive iterations, the optimization algorithm now moves
in favor of functions that fall within a smaller param-
eter space and as a result are less complex. This leads
to the following more practical complexity term:

2V2(Y; lai| VBi)d
NG

8(m+1) "

Cguss = 11’1(2)

+ In(m+1)—

(2)

This complexity measure gives an indication of the
testing-training balance and shows how unreliable the
training of such a network is. It is important to no-
tice that the above measure combines the parameter-
space complexity with the complexity due to the num-
ber of neurons (structural complexity), without making
any assumptions on the structure or parameters. This
means that any algorithm that minimizes (2) addresses
the parameter space complexity and the structural com-
plexity at the same time. It can be observed that the
complexity term introduced in (2) takes into consider-
ation the size of available training data set n, the total
dimension of input d, as well as the Lipschitz constant
as an indication of smoothness of the function set. Now,

suppose that during the training algorithm the number
of neurons [is fixed. Then the objective of the optimiza-
tion algorithm is to include both the above complexity
term and the empirical error in a cost function, i.e. :

n

D U@, y) | + ACquss - (3)

i=1

1

Jguss = —

In the above cost function, A is a weighting factor
that determines the relative importance of the empir-
ical error and the complexity term in the overall cost
function. Lower values of A result in models that cre-
ate small training errors but exhibit poor performance
over the testing data. The higher values of A create a
desirable testing-training balance with both testing and
training errors undesirably increased (due to resulting
large empirical errors). The function [(.,.) is chosen to
be a loss function that satisfies a uniform Lipschitz con-
dition as defined in [6]. In the above cost functions, the
values of Zi |a;|\/b; are kept as small as possible with-
out being concerned about the over-all grading of the
space through the fixed values of A,pf,. Even with the
relaxed definitions, since (3) is a non-differentiable func-
tion of the a;’s and perhaps of the b;’s, gradient-based
minimization methods cannot be used for the optimiza-
tion phase. Performing optimization over a;'s and b;’s
thus calls for an algorithm that can minimize nonlin-
early and non-smoothly parameterized models. In [7],
elvolutionary programming is used to minimize similar
inequalities, which can be extended to the optimization
problem discussed above.

Next, following the same type of approach, complex-
ity terms and cost functions are defined for the neu-
ral structures discussed above. Just as for Gaussian
RBFN’s, complexity terms are introduced that reflect
the functional dependency of In(d) and contain informa-
tion about the learning properties of the modeling task.
Starting with RMQ-RBFN’s, use Inequality (7) in Part
I and apply the logarithm on both sides to define the
complexity term and the corresponding cost function as
follows:

43! Jail VBi)d

Crm =
e 3\/§E

In(2)

Tl€2

()
and:
Tema = o | U@ + ACona -)

In the above cost functions, A is a weighting factor
that determines the relative importance of the empir-
ical error and the complexity term in the overall cost
function. Lower values of A result to models that cre-
ate small training errors but might exhibit poor perfor-
mance over the testing data. On the other hand, the
higher values of A create a desirable testing-training bal-
ance; however both testing and training errors might be
too large.

It can be seen that the defined complexity terms de-
pend not only on the number of hidden neurons, but
also the size of the parameter space. This implies that
the number of neurons can not be treated as the unique
indication of model complexity. In some practical mod-
eling algorithms, adding or deleting new neurons is the
only way through which the complexity of a neural
model is controlled. However, according to the above
complexity term, it is possible that a model with fewer
neurons have higher complexity due to its larger pa-
rameter space. This observation was first reported by
Bartlett [8].
of the parameter space plays a more vital role in the

In [8], it is shown that the assumed size

complexity and reliability of a model than the num-
ber of neurons. This re-emphasizes the importance of
considering the size of parameter space while adding or
deleting neurons in designing variable-structure neural
networks.

III. SIMULATION RESULTS

A number of simulations are performed in [9] to eval-
uate the performance of the introduced cost functions.
Due to space limitation, a very brief description of the
simulations is given here. In these simulations, a non-
linear function is modeled using RMQ-RBFN’s with 10
hidden neurons. In the first simulation, the cost func-
tion contains only the empirical error (A = 0). Min-
imizing this cost function results to the training and

testing errors of 0.0854 and 0.0962, respectively. In the
second simulation, the same training and testing data
are used while the cost function contains both the em-
pirical error and the complexity term (A = 1 x 107°).
This simulation results in training and testing errors of
0.0887 and 0.0910, respectively. As can be seen, the dif-
ference between the training and testing errors in the
second simulation is significantly smaller than that of
the first simulation. This shows that the use of the in-
troduced complexity terms in the overall cost function
creates a balance between the training and testing er-
rors and avoids overfitting.

IV. CONCLUSIONS

The cost function presented here applies the results
of the learning theory and creates a balance between the
empirical error and the complexity of RBFN’s. Mini-
mizing the novel complexity terms and cost functions
introduced here result in models that avoid overfitting
and create a suitable balance between the training and
testing performances.

REFERENCES

[1] L.G. Valiant, “A theory of learnable,”
1134-1142, 1984.

[2] K. Najarian, Guy A. Dumont, and Michael S. Davies, “PAC learn-
ing in Nonlinear FIR Models,” submitted to: Journal of Adaptive

Comm. ACM, pp. pp-

Control and Signal Processing, To appear.

[3] K. Najarian, “On Learning and Computational Complexity of
FIR Radial Basis Function Networks, Part I: Learning of FIR
RBFN’s,” Submitted to ICASSP’2001, May 2001.

[4] H. Muhlenbein,

on evolution theory, combinatorial optimization, and related topics.

Evolution and optimization ’89. Selected papers

Papers from the International Workshop on Evolution Theory and
Combinatorial Optimization held in Eisenach, Akademie-Verlag,
Berlin, 1990.

[5] V.N. Vapnik and A.Y. Chervonenkis,
gence of relative frequencies of events to their probabilities,”

“On the uniform conver-

The-
ory of Probability and its Applications, vol. 16, no. 2, pp. 264-280,
1971.

[6] K. Najarian, G.A. Dumont, M.S. Davies, N.E. Heckman, “Learn-
ing of FIR Models Under Uniform Distribution,” Proc. The Amer-
ican Control Conference, San Dieo, U.S.A. (ACC1999), pp. 864—
869, June 1999.

[7] K. Najarian, G.A. Dumont and M.S. Davies, “A learning-theory-
based training algorithm for variable-structure dynamic neural
modeling,” Proc. Inter. Joint Conf. Neural Networks (IJCNN99),
1999.

[8] P. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than
the size of the network,” Amer. Statistical Assoc. Math. Soc. Trans-
actions, vol. 17, pp. 277-364, 1996.

[9] K. Najarian,
dynamic systems, Ph.D. thesis, Dpartment of Electrical and Com-
puter Engineering, University of British Columbia, 2000.

Appliation of learning theory in neural modeling of

