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ABSTRACT

The problem of structurefrom motion (SFM) isto extract the
three-dimensional model of amoving scenefrom aseguence
of images. Most of the algorithmswhich work by fusing the
two-frame depth estimates (observations) assume an under-
lying statistical model for the observations and do not eval-
uate the quality of the individual observations. However, in
real scenarios, it isoften difficult to justify the statistical as-
sumptions. Also, outliers are present in any observation se-
guence and need to be identified and removed from the fu-
sion algorithm. In this paper, we present a recursive fusion
algorithm using Robbins-Monro stochastic approximation
(RMSA) which takes care of both these problemsto provide
an estimate of thereal depth of the scene point. The estimate
converges to the true value asymptotically. We also propose
a method to evaluate the importance of the successive ob-
servations by computing the Fisher information (FI) recur-
sively. Though we apply our algorithm in the SFM problem
by modeling of human face, it can be easily adopted to other
data fusion applications.

1. INTRODUCTION

The SfM algorithmsextract the 3-D model of amoving scene
from a sequence of images. Traditional SfM algorithms[1],
[2] recover a 3D scene structure from two images. How-
ever, these algorithms often produce inaccurate reconstruc-
tionsof thescene, mainly dueto incorrect estimation of cam-
eramotion. Recently, techniques have been developed that

use multipleimagesfor scene reconstruction, achieving greater

robustness and accuracy by fusing the two-frame estimates
(multi-frame SfM or MFSEM) [3], [4], [5], [6], [7]-

One obvious strategy in MFSEM algorithmsiis the inte-
gration over time approach [7]. However, this method can
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be potentially unstable if theinitial estimate of the structure
isinaccurate. An alternativeisto obtain astructure estimate
from the most recent pair of images using a two-frame al-
gorithm, which isthen fused with the previous estimate [6].
However, fusion techniquesrequireareliableestimate of the
error, which is difficult to obtain for many two-frame algo-
rithms and even when possible, will be dependent on that
particular method.

Thispaper describesanew datafusion algorithm applied
to multi-framestructurefrom motion using stochasti c approx-
imation (SA). The method can be easily extended to other
data fusion applications also. We assume that the 2-frame
estimates (observations) areavailablefrom asuitable 2-frame
SfM algorithm. *

We propose a recursive strategy for estimating the true
depth given the two-frame observations. The method does
not require the statistics of the error in the observations and
takes care of eliminating outliers by using the least median
of squares estimator instead of the more conventional |east
mean square. We use the Robbins-M onro stochastic approx-
imation [8] technique as a solution to the problem. The es-
timates obtained by this method asymptotically converge to
the true value. We al so propose a method for evaluating the
importance of successive observations (i.e. the number of
framesto consider) by evaluating the Fisher Information (FI)
recursively. The results of our algorithm are demonstrated
by applying them on image sequences of a human face.

2. PROBLEM FORMULATION

It isassumed that the cameraismovingin an unknown, fixed
environment, consisting of isolated 3D points. Thegoal isto
determine the locations of the 3D pointsin some coordinate
system. Before we venture to describe the algorithm, afew

1The particular two-frame algorithm chosen here is the one described
in [2] because of its speed of computation, but our fusion algorithm is not
specific to this particular method.



important points are worth noting.

Observation Statistics Assumptionsof normally distributed,
independent observations are abundantly used in many es-
timation problems because of the central limit theorem and
mathematical tractability. However, in many natural situa-
tions these assumptions are not valid and their application
can give highly erroneousresults. In Fig. 1, we plot the es-
timates of thefirst six moments and the first four cumulants
of the two-frame depths values. For Gaussian random vari-
ables, all odd central moments are identically zero and all
cumulantsgreater than two are zero, which is not the case as
seen from thefigure. Regarding independence, since we use
the same algorithm for every pair of images, there is every
reason to believe that the errors will actually be dependent.

Robust EstimatorsFig. (2) plotsthe depth valuesacross 50
frames for four randomly chosen pointsin animage. It can
be seen that there are isolated outliersin all the four cases.
Application of |east squares estimationtechniquesin the pres-
ence of such outlierswill severely affect the estimation tech-
nigue. One bad datum is sometimes enough to perturb least
squares completely. In order to make our algorithm robust
to outliers, we use the least median of squares (LMedS) cost
function rather than the least mean square (LMS) [9]. The
medianisapreferred estimator asit hashigh breakdown point.
Also, theefficiency of LMedSispoor inthe presence of Gaus-
sian noise. Since the noise in the structure estimates devi-
ates appreciably from Gaussianity, as discussed above, it is
agood choice for our application.

Two-frame Algorithm The SfM estimate is an extraordi-
narily complex function of image data and to expect a sin-
gleerror analysisto work in all domainswould be naive. It
isthus desirable that we design algorithmsfor specific prob-
lem domains. Our algorithm will work well under the con-
ditionswherethe error analysis of the underlying two-frame
algorithm conforms approximately to the experimental ob-
servations outlined above. It is more general than [6] in the
sensethat it does not require us to compute the error covari-
ancefor every two-framealgorithm separately; infact, since
it doesnot require an explicit expression for the error, it can
be applied even when such acomputation is very difficult or
impossible. Another point that needsto be bornein mind is
that fusion is essentially no more robust than the few-image
intermediate reconstructions it is based on. Though fusion
can improve the result of reasonably accurate intermediate
reconstructions, it can also fail miserably when they are not.

On the basis of the observations outlined above, the cost
function we optimizeis

u* = argmin (median(d; — u)?) (1)
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Fig. 1. Thetop six figures plot the estimates of the first six
moments of the observation vector and the bottom four fig-
ures plot thefirst four cumulants. The horizontal axis repre-
sents the pixel number. The first column represents the odd
central moments/cumulants and the second column the even
ones.
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Fig. 2. A plot of the depth values across 50 frames for four
randomly chosen points. It can be seenthat there areisol ated
outliersin all the four cases.

where {d;} is the sequence of depth values, u belongsto a
predefined search set ¢/ consisting of possible values of the
true depth at that point and «* is the optimal value obtained
after the minimization. The disadvantage of this method is
that we no longer have aclosed form solution for the optimal
estimate as we had for the mean-square error criterion.

3. ARECURSIVE ALGORITHM USING
STOCHASTIC APPROXIMATION

3.1. TheRobbins-Monro Algorithm

The Robbins-Monro stochastic approximation (RMSA) al-
gorithm is a stochastic search technique for finding the root
6* to g(#) = 0 based on noisy measurements of g(9), i.e.
Yie(0) = g(8) + ex(0),k = 1,..., K, where ex(f) is as-



sumed to bethe noiseterm, K isthe number of observations
and E[Y (6, )] = g(f) (E denotes expectation over e). The
RMSA algorithm obtains the estimate by the following re-
cursion,

ék+1 = ék — akYk(ék). (2)

whereay, isan appropriately chosen sequence. Detailsof the
algorithm can befoundin[8]. Wewill outlinethemethod for
obtaining the sol ution for our specific problem. Supposethat
Fx(z) isthe unknown distribution of a sequence of obser-
vations Xy, X1, ... and we are interested in finding the root
of the equation g(6) = Fx(#) — 0.5 = 0, i.e. the median of
the distribution. Since

EYy(ap)lug] = Elsp(ur)|ar] — 0.5
= E[ Xk<uk] 0.5
= (Xk < uk) —0.5

= Fx(uk) — 05 = g(uk),
the Robbins-Monro recursion is as follows[8]:
ék+1 = ék - ak(sk(ék) - 05) (3)

where s, (ék) = I[ X. <6, (I represents the indicator func-
tion). The choice of the gal n sequence ay, is determined by
the convergence properties of the algorithm [8]. 2

The seguence in consideration in our case is X;(u) =
(d; — u)?. The minimization is carried out over a predeter-
mined search set ¢/ and the number of framesis determined
by analyzing the Fisher information of theobservations. Since
the depth observations {d; } are the result of a 2-frame SfM
algorithm, they are corrupted by noise whose distribution is
in general unknown. However, since RMSA solves for the
estimate in the situation where the distributi on of the obser-
vationsisunknown, it is robust enough to deal with our par-
ticular problem.

3.2. Convergence Properties of the Algorithm

Itiswell known that the RMSA estimateis strongly consis-
tent and the error in the estimate converges in distribution
to anormal with zero mean and suitable covariance matrix
which depends on the Jacobian of ¢(#) and a, [8]. Thus
given asuitably large number of frames, the estimate of the
depth obtained by our recursion can be arbitrarily close to
the true value.

3.3. Estimating the Fisher Information

We evaluate the importance of the consecutive observations
by recursively estimating the Fisher information[10]. Given

2We used the commonly chosen gain sequenceay, = 0.1/(k + 1)-5°1.

the observations denoted by Y, the Fisher information ma-
trix is

1(0) = Eo[(7s In(fo(Y) (Ve In(f6(Y)))']  (4)

where 6 is the parameter to be estimated given the observa-
tions, 3 We estimate the Fisher information using simultane-
ous perturbation for the gradient approximation and averag-
ing for the expectation operation [11]. For the observation
model X = 6 + N, N ~ fn(n), * where N isarandom
variable with adensity fy denoting the noise in the obser-
vations, we can write

d d
T log fx (x) 7 log fx(x —0)
d d
1 di(t)
fN( ) dt

The estimate of the gradient of f(¢) withrespecttot € R?:
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where A = (Aq, ..., A,) and the components of A arein-
dependent Bernoulli random variables. The steps in com-
puting the Fisher information are:

Step 1 Given 6, in (3), generate a set of k pseudo measure-
ments according to the empirical distribution of the obser-
vations. Denote these by z,.u4.(k). Caculate the gradi-
ent according to (5). It may be necessary to average several
gradient estimates with independent values of A. Compute
the term within the expectation operator in the definition of
Fisher information (4).

Step 2 Repeat Step 1 a large number of times. Average the
estimates obtained. Thisisthe estimate of the Fisher infor-
mation, Fy (6 ).

We can evaluate the rel ative importance of the observations,
and hence the number of frames needed for the recursion, by
looking at increase in the Fisher information (see Fig. 3).

4. RESULTSAND ANALYSIS

We applied our algorithm for 3-D modeling of human faces
from 2-D images. Given a sequence of images, we used the
two framealgorithm described in [ 2] to obtain thedepth map.
In this method, a fast partial search is used to compute the
motion and structure. The least squares error of the system
is computed using Fourier techniques and the focus of ex-
pansion is estimated in O(N? log N) operationsfor a N x

3, represents expectation with respect to § and <7 representsthe gra-
dient with respect to 6.
4z isthe realization of arandom variable X



Fig. 3. Thefigure showsthe variation of the Fisher informa-
tion (FI) over increasing frames.

Fig. 4. Thefirst two columns show the first and last frames
used to compute the depth. The last two columns repre-
sent views from camera positions not part of the original se-
quence.

N flow field. The two-frame depths were then fused by the
method described above. A 3-D model was created by inter-
polating the values at the pixels at which the depth was not
obtained. From this model, we synthesized viewswhich are
not part of the original image sequence (Fig. 4). Toillustrate
the point that fusion improves upon the individual observa-
tions, we plot the two frame and fused depth maps in Fig.
5.

Fig. 5. Thefirst two columns show the first and last frames
used to compute the depth. The third column shows the
depth map from two frames and the last figure represents
fused depth map.

5. CONCLUSION

Inthispaper we have presented arecursiveal gorithmfor fus-
ing two-frame depth estimates over time using stochastic ap-
proximation techniques. Our method is applicableto alarge
classof two-frame algorithmsas it does not require separate
computation of the error. The method isrobust to stray erro-
neous values in the depth and the estimate converges to the
true value given a sufficiently large number of frames. The
number of framesis estimated by recursively computing the
Fisher information of the observations. The work was ap-
plied to the modeling of human faces and results have been
presented.

6. REFERENCES

[1] J.Oliensis, “A critiqueof structurefrom motion algorithms,”
NECI TR, 1997.

[2] S. Shridhar, “Extracting structure from optical flow using
fast error search technique,” CfAR Technical Report, Uni-
versity of Maryland, CAR-TR-893, 1998.

[3] T.J Broidaand R. Chellappa, *“Estimating the kinematics
and structure of arigid object from a sequence of monocu-
lar images,” |EEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 13(6), pp. 497-513, 1991.

[4] T.KanadeL. Matthiesand R. Szeliski, “Kaman filtering al-
gorithms for estimating depth from image sequences,” In-
ternational Journal of Computer Vision, vol. 3, pp. 209-236,
1989.

[5] R.Szeliski and S.B.Kang, “Recovering 3d shape and motion
fromimage streams using non-linear least squares,” Journal
of Visual Computation and Image Representation, vol. 5(1),
pp. 10-28, 1994.

[6] JInigo Thomasand J. Oliensis, “Dealing with noisein mul-
tiframe structure from motion,” Computer Vision and Image
Understanding, vol. 76(2), pp. 109-124, 1999.

[7] S. Soatto and R. Brockett, “Optimal structure from motion:
Local ambiguities and global estimates,” in |EEE Computer
Vision and Pattern Recognition, Santa Barbara, CA, 1998,
pp. 282-288.

[8] Lenart Ljung and Torsten Soderstorm, Theory and Practice
of Recursive ldentification, MIT Press, 1987.

[9] PJ.Rousseeuw, “Least median of square regression,” Jour-
nal of the American Satistical Association, vol. 79, pp. 871—
880, 1984.

[10] R.E. Blahut JA.O'Sullivan and D.L. Snyder, “Information
theoretic image formation,” |EEE Trans. on Information
Theory, vol. 44(6), 1998.

[11] J.C.Spall, “Resampling-based cal culation of the information
matrix for general identification problems,” in Proc. of the
American Control Conf., PA, 1998.



