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ABSTRACT
The problem of structure from motion (SFM) is to extract the
three-dimensional model of a moving scene from a sequence
of images. Most of the algorithms which work by fusing the
two-frame depth estimates (observations) assume an under-
lying statistical model for the observations and do not eval-
uate the quality of the individual observations. However, in
real scenarios, it is often difficult to justify the statistical as-
sumptions. Also, outliers are present in any observation se-
quence and need to be identified and removed from the fu-
sion algorithm. In this paper, we present a recursive fusion
algorithm using Robbins-Monro stochastic approximation
(RMSA) which takes care of both these problems to provide
an estimate of the real depth of the scene point. The estimate
converges to the true value asymptotically. We also propose
a method to evaluate the importance of the successive ob-
servations by computing the Fisher information (FI) recur-
sively. Though we apply our algorithm in the SFM problem
by modeling of human face, it can be easily adopted to other
data fusion applications.

1. INTRODUCTION

The SfM algorithms extract the 3-D model of a moving scene
from a sequence of images. Traditional SfM algorithms [1],
[2] recover a 3D scene structure from two images. How-
ever, these algorithms often produce inaccurate reconstruc-
tions of the scene, mainly due to incorrect estimation of cam-
era motion. Recently, techniques have been developed that
use multiple images for scene reconstruction, achieving greater
robustness and accuracy by fusing the two-frame estimates
(multi-frame SfM or MFSfM) [3], [4], [5], [6], [7].

One obvious strategy in MFSfM algorithms is the inte-
gration over time approach [7]. However, this method can
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be potentially unstable if the initial estimate of the structure
is inaccurate. An alternative is to obtain a structure estimate
from the most recent pair of images using a two-frame al-
gorithm, which is then fused with the previous estimate [6].
However, fusion techniques require a reliable estimate of the
error, which is difficult to obtain for many two-frame algo-
rithms and even when possible, will be dependent on that
particular method.

This paper describes a new data fusion algorithm applied
to multi-frame structure from motion using stochastic approx-
imation (SA). The method can be easily extended to other
data fusion applications also. We assume that the 2-frame
estimates (observations) are available from a suitable 2-frame
SfM algorithm. 1

We propose a recursive strategy for estimating the true
depth given the two-frame observations. The method does
not require the statistics of the error in the observations and
takes care of eliminating outliers by using the least median
of squares estimator instead of the more conventional least
mean square. We use the Robbins-Monro stochastic approx-
imation [8] technique as a solution to the problem. The es-
timates obtained by this method asymptotically converge to
the true value. We also propose a method for evaluating the
importance of successive observations (i.e. the number of
frames to consider) by evaluating the Fisher Information (FI)
recursively. The results of our algorithm are demonstrated
by applying them on image sequences of a human face.

2. PROBLEM FORMULATION

It is assumed that the camera is moving in an unknown, fixed
environment, consisting of isolated 3D points. The goal is to
determine the locations of the 3D points in some coordinate
system. Before we venture to describe the algorithm, a few

1The particular two-frame algorithm chosen here is the one described
in [2] because of its speed of computation, but our fusion algorithm is not
specific to this particular method.



important points are worth noting.

Observation Statistics Assumptions of normally distributed,
independent observations are abundantly used in many es-
timation problems because of the central limit theorem and
mathematical tractability. However, in many natural situa-
tions these assumptions are not valid and their application
can give highly erroneous results. In Fig. 1, we plot the es-
timates of the first six moments and the first four cumulants
of the two-frame depths values. For Gaussian random vari-
ables, all odd central moments are identically zero and all
cumulants greater than two are zero, which is not the case as
seen from the figure. Regarding independence, since we use
the same algorithm for every pair of images, there is every
reason to believe that the errors will actually be dependent.

Robust Estimators Fig. (2) plots the depth values across 50
frames for four randomly chosen points in an image. It can
be seen that there are isolated outliers in all the four cases.
Application of least squares estimation techniques in the pres-
ence of such outliers will severely affect the estimation tech-
nique. One bad datum is sometimes enough to perturb least
squares completely. In order to make our algorithm robust
to outliers, we use the least median of squares (LMedS) cost
function rather than the least mean square (LMS) [9]. The
median is a preferred estimator as it has high breakdown point.
Also, the efficiency of LMedS is poor in the presence of Gaus-
sian noise. Since the noise in the structure estimates devi-
ates appreciably from Gaussianity, as discussed above, it is
a good choice for our application.

Two-frame Algorithm The SfM estimate is an extraordi-
narily complex function of image data and to expect a sin-
gle error analysis to work in all domains would be naive. It
is thus desirable that we design algorithms for specific prob-
lem domains. Our algorithm will work well under the con-
ditions where the error analysis of the underlying two-frame
algorithm conforms approximately to the experimental ob-
servations outlined above. It is more general than [6] in the
sense that it does not require us to compute the error covari-
ance for every two-frame algorithm separately; in fact, since
it does not require an explicit expression for the error, it can
be applied even when such a computation is very difficult or
impossible. Another point that needs to be borne in mind is
that fusion is essentially no more robust than the few-image
intermediate reconstructions it is based on. Though fusion
can improve the result of reasonably accurate intermediate
reconstructions, it can also fail miserably when they are not.

On the basis of the observations outlined above, the cost
function we optimize is�������
	���
�����������������! #"$�&%(' �*)�+-,/. (1)

0 2 4 6 8

x 10
4

−100

0

100

0 2 4 6 8

x 10
4

0

1

2
x 10

4

0 2 4 6 8

x 10
4

0

2

4
x 10

6

0 2 4 6 8

x 10
4

0

5

10
x 10

8

0 2 4 6 8

x 10
4

0

1

2
x 10

11

0 2 4 6 8

x 10
4

0

2

4
x 10

13

0 2 4 6 8

x 10
4

−100

0

100

0 2 4 6 8

x 10
4

0

1

2
x 10

4

0 2 4 6 8

x 10
4

−2

0

2
x 10

6

0 2 4 6 8

x 10
4

−2

0

2
x 10

8

Fig. 1. The top six figures plot the estimates of the first six
moments of the observation vector and the bottom four fig-
ures plot the first four cumulants. The horizontal axis repre-
sents the pixel number. The first column represents the odd
central moments/cumulants and the second column the even
ones.
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Fig. 2. A plot of the depth values across 50 frames for four
randomly chosen points. It can be seen that there are isolated
outliers in all the four cases.

where 0 �&%$1 is the sequence of depth values, � belongs to a
predefined search set 2 consisting of possible values of the
true depth at that point and � � is the optimal value obtained
after the minimization. The disadvantage of this method is
that we no longer have a closed form solution for the optimal
estimate as we had for the mean-square error criterion.

3. A RECURSIVE ALGORITHM USING
STOCHASTIC APPROXIMATION

3.1. The Robbins-Monro Algorithm

The Robbins-Monro stochastic approximation (RMSA) al-
gorithm is a stochastic search technique for finding the root3 � to 4 " 3 )5�76 based on noisy measurements of 4 " 3 ) , i.e.8(9 " 3 ):� 4 " 3 )<; � 9 " 3 )=.?>@�BAC.ED�DFD�.?G , where � 9 " 3 ) is as-



sumed to be the noise term, G is the number of observations
and HJI 8 " 3 . � )LKM� 4 " 3 ) ( H denotes expectation over � ). The
RMSA algorithm obtains the estimate by the following re-
cursion, N3 9EO#P � N3 9 'Q� 9E8(9 "

N3 9 )=D (2)

where � 9 is an appropriately chosen sequence. Details of the
algorithm can be found in [8]. We will outline the method for
obtaining the solution for our specific problem. Suppose thatR#S "LT ) is the unknown distribution of a sequence of obser-
vations UWV . U P .ED�DFD and we are interested in finding the root
of the equation 4 " 3 )X� R S " 3 ) ' 6YD Z[�\6 , i.e. the median of
the distribution. Since

HWI 8 9 "
N� 9 )�] N� 9 K^� HWI`_ 9 "

N� 9 )�] N� 9 K ' 6aD`Z� HWI b=c Sedgf/h� dji K ' 6aD`Z� k " U 9ml
N� 9 ) ' 6aD`Z� R#S "

N� 9 ) ' 6YD Zn� 4 "
N� 9 )-.

the Robbins-Monro recursion is as follows [8]:N3 9EO#P � N3 9 'Q� 9 " _ 9 "
N3 9 ) ' 6aD`Z&) (3)

where _ 9 "
N3 9 )W� b c S d f ho d i (I represents the indicator func-

tion). The choice of the gain sequence � 9 is determined by
the convergence properties of the algorithm [8]. 2

The sequence in consideration in our case is U %�" ��)p�"L�&%(' �*) + . The minimization is carried out over a predeter-
mined search set 2 and the number of frames is determined
by analyzing the Fisher information of the observations. Since
the depth observations 0 � % 1 are the result of a 2-frame SfM
algorithm, they are corrupted by noise whose distribution is
in general unknown. However, since RMSA solves for the
estimate in the situation where the distribution of the obser-
vations is unknown, it is robust enough to deal with our par-
ticular problem.

3.2. Convergence Properties of the Algorithm

It is well known that the RMSA estimate is strongly consis-
tent and the error in the estimate converges in distribution
to a normal with zero mean and suitable covariance matrix
which depends on the Jacobian of 4 " 3 ) and � 9 [8]. Thus
given a suitably large number of frames, the estimate of the
depth obtained by our recursion can be arbitrarily close to
the true value.

3.3. Estimating the Fisher Information

We evaluate the importance of the consecutive observations
by recursively estimating the Fisher information [10]. Given

2We used the commonly chosen gain sequence qEr�s5t
u v-wExzy({Wv-|$} ~$��� .

the observations denoted by � , the Fisher information ma-
trix is �

" 3 )X� H o I "L� o*� � "$� o " � )�)�) "L� o#� � "$� o " � )�)�)���K (4)

where
3

is the parameter to be estimated given the observa-
tions, 3 We estimate the Fisher information using simultane-
ous perturbation for the gradient approximation and averag-
ing for the expectation operation [11]. For the observation
model U � 3 ;\�5.?��� �E��"$ ) , 4 where � is a random
variable with a density �E� denoting the noise in the obser-
vations, we can write�� 3 �F� � � S "$T )�� �� 3 ��� � �E��"LT�' 3 )� ��g� ��� � �E��"�� ) �
�� 3 . � � T�' 3� ' A

�E��"�� ) �$� � "��
)

�g� D
The estimate of the gradient of �("�� ) with respect to ������� :N4 "�� )�� �M"�� ;��W) '��M"���' �W)�
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where �£� " � P .ED�D�DF.?� � ) and the components of � are in-
dependent Bernoulli random variables. The steps in com-
puting the Fisher information are:
Step 1 Given

N3 9
in (3), generate a set of > pseudo measure-

ments according to the empirical distribution of the obser-
vations. Denote these by T �
¤�¥ �C¦j§ " >a) . Calculate the gradi-
ent according to (5). It may be necessary to average several
gradient estimates with independent values of � . Compute
the term within the expectation operator in the definition of
Fisher information (4).
Step 2 Repeat Step 1 a large number of times. Average the
estimates obtained. This is the estimate of the Fisher infor-
mation,

NR¨9 "
N3 9 ) .

We can evaluate the relative importance of the observations,
and hence the number of frames needed for the recursion, by
looking at increase in the Fisher information (see Fig. 3).

4. RESULTS AND ANALYSIS

We applied our algorithm for 3-D modeling of human faces
from 2-D images. Given a sequence of images, we used the
two frame algorithm described in [2] to obtain the depth map.
In this method, a fast partial search is used to compute the
motion and structure. The least squares error of the system
is computed using Fourier techniques and the focus of ex-
pansion is estimated in © " � + �F� �/�p) operations for a �«ª

3 ¬¨­ represents expectation with respect to ® and ¯ ­ represents the gra-
dient with respect to ® .

4 ° is the realization of a random variable ±
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Fig. 3. The figure shows the variation of the Fisher informa-
tion (FI) over increasing frames.

Fig. 4. The first two columns show the first and last frames
used to compute the depth. The last two columns repre-
sent views from camera positions not part of the original se-
quence.

� flow field. The two-frame depths were then fused by the
method described above. A 3-D model was created by inter-
polating the values at the pixels at which the depth was not
obtained. From this model, we synthesized views which are
not part of the original image sequence (Fig. 4). To illustrate
the point that fusion improves upon the individual observa-
tions, we plot the two frame and fused depth maps in Fig.
5.

Fig. 5. The first two columns show the first and last frames
used to compute the depth. The third column shows the
depth map from two frames and the last figure represents
fused depth map.

5. CONCLUSION

In this paper we have presented a recursive algorithm for fus-
ing two-frame depth estimates over time using stochastic ap-
proximation techniques. Our method is applicable to a large
class of two-frame algorithms as it does not require separate
computation of the error. The method is robust to stray erro-
neous values in the depth and the estimate converges to the
true value given a sufficiently large number of frames. The
number of frames is estimated by recursively computing the
Fisher information of the observations. The work was ap-
plied to the modeling of human faces and results have been
presented.
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