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Abstract—Recently, the complexity control of dynamic

neural models has gained significant attention from sig-

nal processing community. The performance of such

a process depends highly on the applied definition of

“model complexity”, i.e. complexity models that give

simpler networks with better model accuracy and re-

liability are preferred. The learning theory creates a

framework to assess the learning properties of models.

These properties include the required size of the train-

ing samples as well as the statistical confidence over the

model. In this paper, we apply the learning properties

of two families of FIR Radial Basis Function Networks

(RBFN’s) to introduce new complexity measures that re-

flect the learning properties of such neural model. Then,

based on these complexity term, we define cost functions,

which provide a balance between the training and test-

ing performances of the model, and give desirable levels

of accuracy and confidence.
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I. Introduction

When linear models are unable to address the com-

plexity of a signal (or a system), nonlinear models prove

to be useful. Neural networks are known as powerful

nonlinear tools in signal and image processing. The

fact that neural networks can be easily and efficiently

implemented using VLSI has made these models more

appealing.

It is well-known that despite the popularity of neu-

ral networks, the difference between the training and

testing behaviour of the neural networks has remained

as the main concern in using such models. The ma-

jor negative effect of an undesirable difference between

the testing and training performances is a phenomenon

known as “overfitting”. Overfitting occurs when the

trained model successfully fits the training data and

fails to do so in the case of the testing data. It is well

known that the difference between the testing and train-

ing performances of a model depends on how complex

the model is. Therefore, in order to maintain a reason-

able degree of the testing-training balance, one has to

minimize the complexity of the model.

The Probably Approximately Correct (PAC) learn-

ing theory, proposed by Valiant [1], deals with the ac-

curacy and confidence of the above-mentioned modeling

task. PAC learning and other similar learning schemes

allow quantitative evaluation of the learning properties

of modeling procedures in which the data are indepen-

dently and identically distributed (i.i.d.) in accordance

to a probability measure P . PAC learning theory ex-

plores the difference between the testing and training

performances of different types of function sets and eval-

uates the reliability of the developed models. Recently,

new learning schemes are introduced that extend the

results of the PAC learning to non-i.i.d. cases, and pro-

vide us with frameworks to assess learning properties

of the dynamic modeling applications [2]. Since many

dynamic systems can be efficiently modeled using “Non-

linear Finite Impulse Response” (Nonlinear FIR) mod-

els, the main focus of the present paper will be “neural

FIR models”.

The paper is organized as follows: Section II describes

the basic definitions of the learning theory and is fol-

lowed by Section III which gives the recent results on

the learning properties of FIR modeling using two fam-

ilies of Radial Basis Function Networks (RBFN’s). In

Section IV, the results of the previous section is dis-



cussed and one possible application of the developed

theory is introduced. Section V concludes the paper.

The Part II of the paper [3], based on the results of

the first part, new complexity measures for the fore-

said family of neural models are presented and the cor-

responding cost functions to be minimized during the

training procedure are built.

II. Basic Definitions

In this section, some of the basic concepts of sta-

tistical learning theory, including learning with m-

dependency data, are reviewed. We start this section

with the definition of m-dependent random variables

(r.v.s):

Definition II.1: A set of r.v.s {Yi}n
i=1 is said to be

m-dependent iff for all j and k, r.v.s Yj and Yk are in-

dependent if |j − k| > m. In other words, in a set of

m-dependent r.v.s, the radius of dependency is limited

to the integer m.

Now, suppose X = [α, β]d ⊂ Rd is an arbitrary set.

Also suppose that S and P denote a σ-algebra of sub-

sets of X and a probability measure on (X,S), respec-

tively. A function set F is defined as a set of measurable

functions f : X → [−1/2, 1/2]. There is nothing spe-

cial about the interval [-1/2,1/2] and it can be replaced

throughout by any bounded interval.

In a typical modeling task, an unknown function

f ∈ F is to be estimated. In order to perform the es-

timation, a set of training data has to be generated as:

zn = {(xi, f(xi))}n
i=1. Also, assume that each xi’s are

m-dependent random variables identically distributed

according to the probability measure P . An algorithm

A, based on the training data zn, generates a function

h ∈ F as an approximator of f . At this point, we can

define the concept of learning as follows:

Definition II.2: it Suppose that based on zn, where

(x1, . . . , xn) is a sequence of m-dependent r.v.s

marginally-distributed according to the probability P.

An approximation task is to be performed as described

above. Then a function set F is said to be PAC learn-

able iff an algorithm “A” can be found based on which

for any ε and δ, there exists “n” such that:

supf∈FPr{dP (f, h) ≤ ε} ≥ (1− δ) (1)

where dP (f, h) is a distance between f and h defined in

terms of the probability distribution P, and Pr repre-

sents the probability of an outcome.

Another useful concept in function learning is an ε-

cover of a function set which is defined as a set of func-

tions {gi}q
i=1 in F such that for any function f ∈ F ,

there is a gj where: dP (f, gj) < ε. An ε-cover with

minimal size is called a minimal ε-cover, and its size is

denoted as N(ε,F , dP ). The generic algorithm used in

the PAC learning theory is ”empirical risk minimiza-

tion algorithm” [4], which is used to compare learning

with different function sets. A brief definition of this

algorithm is given below:

Definition II.3: Let ε > 0 be specified, and let {gi}q
i=1

be an ε/2-cover (not necessarily minimal) of F with re-

spect to dP where dP is defined above.

Then the empirical risk minimization algorithm is as

follows: Draw a set of samples (x1, . . . , xn) ∈ Xn, dis-

tributed in accordance with P. Define the cost functions:

Ĵi = 1
n

∑n

j=1
|f(xj) − gi(xj)| , i = 1, . . . , q. Now the

output of the algorithm is a function h = gl such that:

Ĵl = min1≤i≤qĴi.

III. Learning Properties of RBFN’s

Since in many practical applications, the sequence of

input data is generated based on a uniform distribu-

tion, in this paper we restrict ourselves to the modeling

with uniformly-distributed m-dependent data. In such

a training environment, it has been shown that the em-

pirical risk minimization algorithm performed over dif-

ferent families of neural networks is learnable, and the

upper bounds on the sample complexity (the minimum

number of data points required for training) for such

methods have been presented ([2] and [5]). An RBFN

is defined as follows:

f(x) =
∑l

i=1
aiφi(ri)

where: l is the number of neurons (basis functions),

a = (a1, . . . , al) forms the weight vector of the network

with |ai| < Ma < ∞ for all i, φi(.)’s are the bounded

differentiable radial basis functions in which ri = ‖x−
ci‖, and ci is the center of the ith basis function.

Here, we review the available results on the learn-

ing of two families of RBFN’s, i.e Gaussian and RMQ

RBFN’s. In a Gaussian RBFN:



φi(ri) = exp(−bir
2
i )− exp(−bi‖ci‖2) (2)

where 0 < bi < ∞ is the width (or scattering) parame-

ter of the ith basis function. The second term normal-

izes each basis function and guarantees that f(0) = 0.

The second type of RBFN’s to be considered here is the

Reciprocal Multi-Quadratic RBFN’s (RMQ-RBFN’s).

In this type of RBFN’s, the basis functions are defined

as:

φi(ri) =
1√

1 + bir2
i

− 1√
1 + bi‖ci‖2

(3)

where 0 < bi < ∞ is the width (or scattering) parame-

ter of the ith basis function. Similar to Gaussian func-

tions, the second term normalizes each basis function

so that f(0) = 0.

For a RBDFN’s network, the following theorem is

proved in [6].

Theorem III.1: Consider the Gaussian and RMQ

RBFN’s introduced above and suppose that φi(ri)’s are

given as (2). Forming b as:

b = (b1, b2, . . . , bl)

define:

Arbfn = supa,b

∑l

i=1
|ai|

√
bi .

Then, the empirical risk minimization algorithm with

m-dependent data performed over a minimal ε/2-cover

results in the PAC learning with m-dependency. More-

over, in the case of Gaussian RBFN’s, the sample com-

plexity of the algorithm is given by:

n ≥ 8(m + 1)

ε2
×{[

2
√

2Arbfnd(β − α)

ε
√

e

]d

ln2 + ln
(m + 1)

δ

}

(4)

or equivalently:

δ ≥ 2

[
2
√

2Arbfnd(β−α)

ε
√

e

]d

(m + 1)× exp
[
−nε2/8(m + 1)

]
.

(5)

Similarly, in the case of RMQ-RBFN’s, sample com-

plexity is bounded by:

n ≥ 8(m + 1)

ε2
×{[

4Arbfnd(β − α)

3
√

3 ε

]d

ln2 + ln
(m + 1)

δ

}

(6)

or equivalently:

δ ≥ 2

[
4Arbfnd(β−α)

3
√

3 ε

]d

(m + 1)× exp
[
−nε2/8(m + 1)

]
.

(7)

Theorem III.1 provides a framework for learning of neu-

ral models using Gaussian and RMQ-RBFN’s.

In the simplest form of modeling, the information re-

garding the structure of the network (such as the num-

ber of neurons and the size of the parameter space) is

known, and the objective is to use a set of input-output

samples to find the optimal values for the network’s pa-

rameters. In other words, a modeling task based on the

empirical risk minimization works only when the struc-

ture of the function set is known beforehand. In many

practical applications, however, the exact prior infor-

mation regarding the structure of the unknown network

f ( e.g. the number of neurons l) is not available. In

such cases, a more sophisticated method should be used

to provide us with not only the optimal set of param-

eters, but also the minimal structural complexity. One

such method, introduced by Vapnik in [7], is known as

“structural risk minimization method”. Applying this

procedure to RBFN’s, one can search for the number

of required neurons as well as the best set of parame-

ters. In other words, the structural risk minimization

uses the simplest function that provides learning with

the pre-specified values of the accuracy, the confidence

and the training data size.



IV. Discussion

The results given above evaluate the learning proper-

ties of two families of RBFN’s. Using these bounds, the

accuracy and confidence of the resulting models can be

guaranteed. This in turn guarantees that unlike many

practical use of neural networks, the neural models ob-

tained with this learning-based algorithm avoid over-

fitting the data. The fact that overfitting is avoided

encourages the use of neural networks in more sensitive

applications (such as remote sensing and medical diag-

nostics, as described below), where the reliability of the

model is most important.

One specific application of the developed theory is

biomedical modeling and signal processing. Modeling

and identification of biomedical signals and systems are

highly sensitive processes in which based on the devel-

oped models, the biomedical signals or systems are di-

agnosed. Any incorrect prediction or diagnosis can re-

sult to great harms to the patient’s health. Due to the

sensitive nature of this matter, if physicians are to rely

on the prediction or diagnosis made by an algorithm,

they would like to have a quantitative guarantee (even

with high probability) over the accuracy of the algo-

rithms (models). As mentioned above, neural networks

can be easily overfitted and this might result to neu-

ral models that are not reliable enough to be used for

biomedical applications. Considering the fact that for

many biomedical signals and systems there exist huge

data repositories, if neural networks are trained with

data sets that satisfy the (conservative) learning in-

equalities, they can create accurate models that give

quantitative guarantees to physicians. Again, the con-

servative nature of the bounds developed here implies

that the neural models can be trained by smaller train-

ing sets; however, since the huge data sets are available

and the desirable processing capabilities of neural net-

works are required in biomedical applications, the de-

veloped bounds can still form reliable neural models of

biomedical systems.

The conservative bounds created above can also be

used to generate learning-based complexity measures

that attempt to avoid the use of overcomplex models,

which will be discussed in Part II of the paper [3]. By in-

cluding the learning-based complexity term to the cost

functions to be minimized during the optimization, one

can limit the complexity of the model during the opti-

mization phase.

V. Conclusions

The learning properties of FIR RBFN’s are evalu-

ated. These properties include the number of training

data points that guarantee pre-specified values of accu-

racy and confidence. These results will be used in the

second part of the paper to develop complexity terms

that create a balance between the training and testing

performance of the models and avoid overfitting.

References

[1] L.G. Valiant, “A theory of learnable,” Comm. ACM, pp. pp.

1134–1142, 1984.

[2] K. Najarian, Guy A. Dumont, and Michael S. Davies, “PAC learn-

ing in Nonlinear FIR Models,” submitted to: Journal of Adaptive

Control and Signal Processing, To appear.

[3] K. Najarian, “On Learning and Computational Complexity of

FIR Radial Basis Function Networks, Part II: Complexity Mea-

sures,” Submitted to ICASSP’2001, May 2001.

[4] M. Vidyasagar, A Theory of Learning and Generalization, Springer,

1997.

[5] K. Najarian, G.A. Dumont and M.S. Davies, “A learning-theory-

based training algorithm for variable-structure dynamic neural

modeling,” Proc. Inter. Joint Conf. Neural Networks (IJCNN99),

1999.

[6] K. Najarian, Appliation of learning theory in neural modeling of

dynamic systems, Ph.D. thesis, Dpartment of Electrical and Com-

puter Engineering, University of British Columbia, 2000.

[7] V.N. Vapnik and A.Y. Chervonenkis, “On the uniform conver-

gence of relative frequencies of events to their probabilities,” The-

ory of Probability and its Applications, vol. 16, no. 2, pp. 264–280,

1971.


