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ABSTRACT

This paper concerns the estimation of a frequency o�set of
a known (pilot) signal propagated through a slowly fading
multipath channel, such that channel parameters are con-
sidered to be constant over the observation interval. We
derive a Cramer-Rao Lower Bound (CRLB) and maximum
likelihood (ML) frequency estimation algorithm for additive
Gaussian noise and path amplitudes having complex zero-
mean Gaussian distribution when covariance matrices of the
fading and noise are known. In particular, we consider the
scenarios with white noise, independent fading of path am-
plitudes and pilot signals with a diagonal correlation ma-
trix. We compare simulation results for the ML estimator
with the CRLB. We also show that the results obtained can
be extended to scenarios with fast fading channels.

1. INTRODUCTION

Frequency estimation in multipath fading channels has been
widely addressed in the literature [1] [2] [3] [4] [5] [6]. In
most publications frequency selectivity is considered as a
distortion and multipath diversity is not used to improve
the accuracy performance of the algorithms. However, sim-
ilar to the way in which a Rake receiver improves the de-
tection performance in multipath channels [7], frequency
estimators can also exploit multipath diversity to improve
the estimation accuracy. Below we derive a CRLB for the
frequency estimation problem and propose a ML frequency
estimator exploiting multipath diversity and knowledge of
channel statistics to improve the accuracy performance. We
will restrict attention to slowly fading channels, assuming
the channel parameters to be constant over the observation
interval. However, the results obtained can be extended to
fast fading channels and we discuss such an extension.

The paper is organised as follows. Section 2 describes
channel and signal models. In section 3 we derive the
ML frequency estimator for multipath fading channels with
known statistics and section 4 presents the derivation of
the CRLB. Section 5 gives simulation results and section 6
contains conclusions. In the Appendix we derive the Fisher
information for the frequency estimation problem.

2. SIGNAL AND CHANNEL MODELS

Using complex-envelope notation, the observed signal can
be modelled as

z(t) = A(t)ej!t + n(t); t = 0; : : : ; N � 1; (1)

where ! is an unknown frequency o�set to be estimated and
N is the number of samples observed. The additive com-
plex zero-mean Gaussian noise samples n(t) have the covari-
ance matrix Rn with elements [Rn]t1; t2 = Efn(t1)n

�(t2)g

where Ef�g denotes the statistical expectation and (�)� de-
notes complex conjugate. For stationary white noise Rn =
�2I where the noise variance is �2 = Efjn(t)j2g and I is
an N �N identity matrix. The complex envelope A(t) can

be represented as A(t) =
PM

m=1 am'm(t) where 'm(t) =
s(t� �m), s(t) is the pilot signal, M is the number of paths
in the channel, famg

M
m=1 and f�mg

M
m=1 are amplitudes and

delays of the paths, respectively. Note that the functions
f'm(t)g

M
m=1 make up a basis for expansion of the complex

envelope A(t).
We consider f�mg

M
m=1 as an admissible set of delays, for

example, �m = (m�1)=fs where fs is a sampling frequency;
for the sake of simplicity, we consider that fs = 1. For
derivation of the ML frequency estimation algorithm we
assume the delays to be known.

The model (1) is based on the assumption that all the
paths have the same frequency o�set. For example, this
assumption is valid when there exists a frequency o�set be-
tween carrier frequencies of the transmitter and the receiv-
er, and the frequency o�sets due to the Doppler e�ect are
negligible.

The signal model (1) can be arranged in matrix form as

z = 	a+ n; 	 = �� (2)

where z and n are N � 1 column vectors with elements z(t)
and n(t), respectively, a=[a1; : : : ; aM ]T is an M� 1 column
vector of path amplitudes, � is an N �M matrix with el-
ements [�]tm = 'm(t) and � = diag(1; ej!1; : : : ; ej!(N�1)).
Then the probability density function (PDF) of the received
signal vector z can be written as

p(zj!;a) = ��N jRnj
�1expf�(z�	a)HR�1

n (z�	a)g
(3)

where (�)H denotes Hermitian transposition. The ampli-
tudes of the paths famg

M
m=1 are complex-valued zero-mean

random variables with the Gaussian PDF

f(a) = ��M jRaj
�1expf�aHR�1

a ag (4)

where Ra is an M �M covariance matrix. The function
f(a) (4) de�nes the multipath fading channel. If the com-
plex amplitudes famg

M
m=1 of the paths are uncorrelated, the

covariance matrix is diagonal

Ra = diag(�21 ; �
2
2; : : : ; �

2
M) (5)



with the path amplitude variances �2m, m = 1; : : : ;M .
For the given model the signal-to-noise ratio (SNR) is

SNR =
E
�
aH	H	a

	
E fnHng

=
tr[�Ra]

tr[Rn]
(6)

where tr[�] is the trace operator and � = �H�. For ex-
ample, for the additive white noise and pilot signals with
a diagonal correlation matrix � = diag(
11; : : : ; 
MM) we
have

SNR =
1

N�2

MX
m=1


mm�
2
m: (7)

3. ML FREQUENCY ESTIMATION

We now consider estimating the parameter ! provided that
the path delays f�mg

M
m=1 are known and amplitudes famg

M
m=1

have the PDF (4) with a known covariance matrix Ra. To
get the frequency estimator we use the Bayesian approach
by integrating out the nuisance parameters famg

M
m=1[8].

The ML frequency estimator is derived by maximising the
function p(zj!):

!̂ = argmax
!2


fp(zj!)g (8)

where 
 is the frequency acquisition range (e.g., 
 = [��; �]),

p(zj!) =

Z
p(zj!;a)f(a)Re[a]Im[a] (9)

where Re[�] and Im[�] denote the real and imaginary parts
of a complex-valued number respectively, the PDF f(a) is
de�ned by (4) and the PDF p(zj!;a) is de�ned by (3).
Integrating in (9) gives

p(zj!) =
e�z

H
R
�1

n z

�N jRnj
�

eW

jRaT + Ij
; (10)

where

W = LH(T +R�1

a )�1L; (11)

L = 	
H
R
�1

n z; T =	
H
R
�1

n 	: (12)

Assuming the noise covariance matrix Rn to be known we
can omit the �rst factor in (10) and rewrite (8) as

!̂ = argmax
!2


f�ln(jRaT + Ij) +W g: (13)

The estimate (13) is the ML estimate of the frequency !
when the covariance matrix of the complex amplitudes of
the paths are known.

(a) Additive white noise

For the additive white noise we have Rn = �2I where
I is an N � N identity matrix. Then from (12), using the
identity �H� � I, we can write

L = ��2F; F =	
H
z; T = ��2�H

�: (14)

Note that now the matrix T does not depend on the fre-
quency ! and, hence, the �rst additive in (13) is indepen-
dent of the frequency ! as well. Thus, the frequency esti-
mate is

!̂ = argmax
!2


fFH(T +R�1

a )�1Fg: (15)

Elements F!;m of the vector F are the Discrete Fourier
Transforms (DFTs) of the product z(t)s�(t� �m):

F!;m =

N�1X
t=0

z(t)s�(t� �m)e
�j!t (16)

i.e. F!;m is the output of a matched �lter that correlates
the received signal z(t) with a delayed and frequency shift-
ed complex conjugate version of the pilot signal s(t).

(b) Additive white noise, pilot signals with a diagonal
correlation matrix, and independent fadings of path ampli-
tudes

In the case of independent 
uctuations of the path am-
plitudes, the covariance matrix Ra is diagonal and de�ned
by (5). For pilot signals with a diagonal correlation matrix
�, T is a diagonal matrix

T = ��2� = ��2diag(
11; 
22; : : : ; 
MM) (17)

where 
mn = (�H�)mn =
PN�1

t=0 s�(t� �m)s(t� �n). The
relationship (17) means that 
mn = �mn
mm where �mn is
the Dirac delta function. In this case, the ML estimate is

!̂ = argmax
!2


(
MX
m=1

�mjF!;mj
2

)
(18)

where �m = (
mm + 1=�2m)
�1. This shows that the fre-

quency estimator combines the periodograms jF!;mj
2 of the

paths with weights depending on the signal-to-noise ratio
in these paths. This is similar to a Rake receiver combining
multipath components of a received signal [7]. Note that
the property 
mn = �mn
mm can be satis�ed only approx-
imately, for example, for large N and pseudo-noise pilot
signals.

(c) Additive white noise and frequency-
at fading

For a one-path channel with a known delay the algo-
rithm transforms to the well-known ML frequency estima-
tor based on maximising the periodogram [9]

!̂ = argmax
!2


�
jF!;1j

2
	
: (19)

We can summarise results of this section as follows.
(1) Provided that the statistics of fading and noise are

known, i.e. the covariance matrices Ra and Rn are speci-
�ed, the ML frequency estimate is de�ned by (13) with L
and T from (12), and W from (11).

(2) If the additive noise is white, the ML frequency es-
timate is de�ned by (15) with L and T from (14).

(3) For multipath channels with independent Rayleigh
fading of path amplitudes, additive white noise and pilot
signals possessing a diagonal correlation matrix, the ML



frequency estimate is de�ned by (18) with F!;m from (16)
and T from (17).

(4) Finally, for a one-path (frequency-
at) Rayleigh fad-
ing channel the ML frequency estimate is a maximiser of the
periodogram (19).

4. CRLB

The CRLB (CRB!) for frequency estimation in slowly fad-
ing multipath channels with arbitraty covariances of the
noise Rn and fading Ra is CRB! = I�1!! where the value
I!! derived in Appendix is

I!! = 2Reftr[�Ra�N
�1 +WRaT N

�1

� �RaT N
�1 _T N�1]g (20)

where N = T +R�1
a , T = 	HR�1

n 	, � = 	HR�1
n

_	,W =
_	HR�1

n
_	 and we use the following notation for derivatives

with respect to !: _	 = @
@!
	, _T = @

@!
T , etc.

We now consider several particular cases of the channel
and signal models.

(a) Additive white noise

In this case we have Rn = �2I, T = ��2�H� = ��2�
and _T = 0. Then we get from (20)

CRB�1
! = 2tr[�H

K
2
�Ra�(�+R�1

a )�1

� �
H
K�Ra�

H
K�(�+R�1

a )�1] (21)

where Ra = ��2Ra and K = diag(0; 1; : : : ;N�1). Here we
used the relations �H� = I, 	H _	 = j�HK�, _	H _	 =
�HK2� and the fact that Ra and � are Hermitian matri-
ces.

(b) Additive white noise, pilot signals with a diagonal
correlation matrix, and independent fadings of path ampli-
tudes

In this case, we have Ra = diag(�21 ; : : : ; �
2
M) and T =

��2diag(
11; : : : ; 
MM). From (21) we get the CRLB

CRB�1
! = 2

MX
m=1


mm

�
�2m
�2

�2

mm

�
�2m
�2

�
+ 1

N�1X
t=0

t2j'm(t)j
2

� 2

MX
m=1

MX
l=1

�2m
�2

�
�2
l

�2


l
�2
l

�2
+ 1

�����
N�1X
t=0

t'�m(t)'l(t)

�����
2

:(22)

If, additionally, Ra = �2aI and � = 
I, then

CRB�1
! = 2



�
�2
a

�2

�2


�2a
�2

+ 1

"
MX
m=1

N�1X
t=0

t2j'm(t)j
2

�
1




MX
m=1

MX
l=1

�����
N�1X
t=0

t'�m(t)'l(t)

�����
2#

: (23)
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Fig. 1. Dependence of the frequency error on SNR.

(c) Additive white noise and frequency-
at fading

For the case of single path propagation (frequency-
at
fading) when z(t) = as(t)ej!t + n(t) we get from (23)

CRB�1
! = 2



�
�2a
�2

�2


�2a
�2

+ 1

"
N�1X
t=0

t2js(t)j2 �
1




 
N�1X
t=0

tjs(t)j2

!2#

(24)

where 
 =
PN�1

t=0
js(t)j2. When js(t)j � 1, taking into

account that 
 = N , we get

CRB�1
! =

N
�
�2a
�2

�2
N

�2a
�2

+ 1

N(N2 � 1)

6
: (25)

When SNR� (1=N), the CRLB is approximately

CRB�1
! = SNR

N(N2 � 1)

6
(26)

where SNR = �2a=�
2.

5. SIMULATION RESULTS

We consider the following simulation scenario. A bina-
ry maximum length sequence (m-sequence), representing a
pilot signal, is transmitted through a Rayleigh multipath
channel with independent 
uctuations of path amplitudes
and with additive white noise. The length of the sequence
is N = 15, N = 63 or N = 255. We simulate M = 6 of
paths with the amplitude variances equal to each other. We

calculate the frequency error �f =

q
1

Nmc

PNmc

i=1 (f � f̂i)2

where f = !=2� is an analysed frequency and f̂i = !̂i=2�
is a frequency estimate in the i-th simulation trial; Nmc =
10000 is the total number of simulation trials. Fig.1 shows
the dependence of the frequency error on SNR for f = 0:2
for the ML frequency estimator (15) and the CRLB (21).
It can be seen that at high SNRs the frequency error ap-
proaches the CRLB for all the sequence lengths.



6. CONCLUSIONS

We have considered the frequency estimation in slowly fad-
ing multipath channels. We have derived a ML algorithm
and CRLB for a multipath fading channel with additive
Gaussian noise and path amplitudes having Rayleigh dis-
tribution when covariance matrices of the fading and noise
are known. We have also considered particular cases of
the additive white noise, independent fading of path ampli-
tudes, pilot signals with a diagonal correlation matrix and
frequency 
at fading. The ML frequency estimator exploits
multipath diversity by combining periodograms of multi-
path signal components and searching for the maximum of
the combined statistic. The simulation has shown that at
high SNRs the variance of the frequency error for the ML
frequency estimator approaches the CRLB.

For the sake of simplicity we have restricted attention
to slowly fading channels, assuming the channel parameters
to be constant over the observation interval. However, the
results obtained are also applicable to fast fading multipath
channels. Note that for such channels the complex envelope
A(t) can be represented as [10]

A(t) =

PX
p=1

MX
m=1

amps(t� �m)e
�j!pt =

QX
q=1

aq'q(t) (27)

where q = (m;p) is a multiindex, Q = MP , 'q(t) =
s(t � �m)e

�j!pt are basis functions for expansion of the
complex envelope, !p 2 
d and 
d is the frequency range

of Doppler spreading. Using the basis functions f'q(t)g
Q
q=1

instead of f'm(t)gMm=1 for calculation of the matrix � and
substituting Q instead of M we get ML frequency estima-
tion algorithms and the CRLB for fast fading channels.
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8. APPENDIX

Let the complex-valued vector z in (2) have the Gaussian
distribution with zero mean and covariance matrix Rz and
! is an unknown frequency. In our case the Fisher informa-
tion matrix contains only one element [8]

I!! = tr

��
R
�1

z

@Rz

@!

�2�
= �tr

�
@Rz

@!

@R�1

z

@!

�
: (28)

Since the vectors a and n are statistically independent we
have

Rz = 	Ra	
H +Rn: (29)

For the sake of simplicity, we use the notation: _	 = @
@!
	.

Using (29) and relations R�1

z = R�1

n �R�1

n 	N�1	HR�1

n ,

N = T + R�1
a , T = 	HR�1

n 	, � = 	HR�1
n
_	 and

W = _	HR�1
n

_	 we obtain the following expressions for
derivatives:

@Rz

@!
= _	Ra	

H
+	Ra

_	
H
; (30)

@R�1

z

@!
= �R�1

n
_	N�1

	
H
R
�1

n �R�1

n 	N�1 _	
H
R
�1

n

+ R
�1

n 	N�1 _T N�1
	
H
R
�1

n : (31)

Then, substituting (29)-(31) in (28) we get

I!! = trf[ _	Ra	
H
+	Ra

_	
H
][R�1

n
_	N�1	

H
R�1
n

+ R�1
n 	N�1 _	

H
R�1
n �R�1

n 	N�1 _T N�1	
H
R�1
n ]g

=trf[ _	Ra	
H
R�1

n
_	N�1	

H
R�1

n +	Ra
_	
H
R�1

n
_	N�1	

H
R�1

n

+ _	Ra	
H
R�1

n 	N�1 _	
H
R�1

n +	Ra
_	
H
R�1

n �N�1 _	
H
R�1

n

� _	Ra	
H
R�1
n 	N�1 _T N�1	

H
R�1
n

�	Ra
_	
H
R�1

n 	N�1 _T N�1	
H
R�1

n ]g
= trf[�N�1�Ra +WN�1TRa +RaT N

�1W
+�HN�1�HRa � T N�1 _T N�1�Ra ��

HN�1 _T N�1TRa]g
= 2Reftr[�N�1�Ra +RaT N

�1W ��RaT N
�1 _T N�1]g

= 2Reftr[�Ra�Ra(TRa + I)
�1 +RaT Ra(TRa + I)

�1W
��RaT Ra(TRa + I)

�1 _T Ra(TRa + I)
�1]g.

Here we used the following relations:
T N�1R�1

a = (Ra(T +R�1
a )T �1)�1 = (Ra + T �1)�1,

R�1

a N�1T = (T �1(T +R�1

a )Ra)
�1 = (Ra + T �1)�1,

N�1 = (T +R�1
a )�1 = ((TRa + I)R

�1
a )�1 = Ra(TRa + I)

�1,
RaT N

�1 = RaTRa(TRa + I)
�1.


