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ABSTRACT

Parallel AD converter structures is one way to increase the sam-
pling rate. Instead of increasing the sample rate in one AD con-
verter, several AD converters with lower sampling rate can be used
instead. A problem in these structures is that the time between
samples is usually not equal because there are errors in the de-
lays between the AD converters. We will here present a method to
estimate the timing offset errors. The estimation algorithm works
without any special calibration signal, instead the normal input sig-
nal is used. The only assumption that we need on the input signal is
that most of the energy is concentrated to a low pass band, below
about 1/3 of the Nyquist frequency. Simulations of the time in-
terleaved AD converter show that the method estimates the errors
with high accuracy.

1. INTRODUCTION

Many digital signal processing applications, such as radio base
stations or VDSL modems, require AD converters with very high
sample rate. To achieve high enough sample rates, an array of M
AD converters in parallel can be used. Each ADC should work
at 1/M th of the desired sample rate. To avoid time drift between
the different ADC’s, the same master clock is used for all ADCs,
see figure 1. To get the same sample interval for all samples the
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Fig. 1. M parallel ADC’s with the same master clock.

nth ADC should be delayednTs
M
s, whereTs is the sample interval

for the master sampling clock [1]. If there are errors in the delay
times we will get a non-uniformly sampled signal. If these errors
are not compensated for, the resolution of the ADC will decrease
with several bits [2, 3, 4]. However, if the delay errors are known,
the true signal can be recovered [5, 6]. The errors are assumed to
be static, so that the error is the same in the same AD-converter
from one cycle to the next. There are also random errors in time
and amplitude due to thermal noise, that are different from one

sample to the next. These errors do not have anything to do with
the parallel structure of the AD-converter and are not discussed
further here. There are some presented methods to estimate timing
errors in interleaved AD converters, see [7, 8]. But these methods
assume a known input signal. Here we will present a method for
estimation of these errors with unknown input signal.

2. NOTATION

The analog input signal is denotedu(t). Ts denotes the nomi-
nal sampling time, that we would have without any errors.M is
the number of AD converters in the parallel structure. The time
offset for theith AD converter is denotedti. The output from
the ith AD converter is denotedyi[k] wherek is thekth sample
from that AD converter. Each AD converter form a subsequence,
yi[k] = u((kM + i)Ts + ti). The sample time for each such sub-
sequence is exactlyMTs. These subsequences are merged to the
output signaly[m] = y(mmodM)[bmM c], whereb·c denotes integer
part. The difference between samples from AD converteri − 1
and AD converteri is denoted∆yi[k] = yi[k] − yi−1[k]. We
denote byN the number of data points from each AD converter.
We assume that the same number of samples is taken from all the
AD converters so thatNM is the total number of data. We use the
notationĒ(s(t)) = limn→∞

1
n

∑n
t=1E(s(t)) for quasistationary

signals [9], where the expectation is taken over possible stochastic
parts ofs(t).

3. ESTIMATION METHOD

Throughout the report we will assume that the AD-converters are
infinite precision sampling units, i.e. we have no amplitude quan-
tization. We also assume that amplitude errors are zero.

3.1. Timing offset estimation

For the timing offset estimation algorithm we need a bandwidth
assumption on the input signal, it must have most of its energy
in a frequency band below about1/3 of the Nyquist frequency.
This restriction is not limiting the use of the algorithm since we
need an anti-aliasing filter before the AD converter anyway. The
algorithm is based on the assumption that the signal changes more
on average if it is a long time between the samples than if it is a
short time between them. Therefore we have to assume that the
signal varies slow enough, i.e. has low enough bandwidth. We
look at the difference,∆yi[k], between two adjacent samples and
make a Taylor expansion around the nominal sampling time of AD
converteri− 1.

∆yi[k] = yi[k]− yi−1[k] (1)

≈ (Ts + ti − ti−1)u′(kMTs + (i− 1)Ts)



We calculate the mean squared difference between two adjacent
AD converters:

R̂Ni,i−1[0] =
1

N

N∑
k=1

{∆yi[k]}2 (2)

→ (Ts + ti − ti−1)2Ē{(u′(t))2},N →∞

If the mean value of the input signal derivative is known we can
calculate the time offsets from equation (2) using the first time
offset as reference, i.e. assumingt1 = 0:

ti =
i∑

j=2

(

√
R̂Nj,j−1[0]

E{(u′(t))2} − Ts), i = 2, . . . ,M (3)

Since the mean value of(u′(t))2 is usually unknown we have to
estimate it from the sampled data.E(u′(t))2 can be estimated as
an average over all the AD-converters:

1

M

M∑
i=1

R̂Ni,i−1[0] =
1

NM

N∑
k=1
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(yi[k]− yi−1[k])2

≈ 1
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N∑
k=1

M∑
i=1

(Ts + ti − ti−1)2(u′(kMTs + (i− 1)Ts))
2

→ 1

M

M∑
i=1

(Ts + ti − ti−1)2E{(u′(t))2}

= (T 2
s +

2

M

M∑
i=1

t2i −
2

M

M∑
i=1

titi−1)E{(u′(t))2} (4)

From equation (4) it seems like we have to know the time offset to
calculate the estimate ofE{(u′(t))2}. We can however get a crude
estimate by assuming that2

M

∑M
i=1 t

2
i − 2

M

∑M
i=1 titi−1 is small.

This is a quite reasonable assumption if the timing offset errors are
small on average compared to the nominal sampling time. Using
this estimate we can calculate a crude estimate of the time offsets
using equation (3):

t
(0)
i =

i∑
j=2

(

√√√√ R̂Nj,j−1[0]
1

MT2
s

∑M
i=1 R̂

N
i,i−1[0]

− Ts), i = 2, . . . ,M (5)

With this estimate of the time offsets we can improve the estimate
of E{(u′(t))2} using equation (4). Then the time offset estimates
can be improved by fixed-point iteration [10]:

t
(l)
i =

i∑
j=2

(

√√√√ R̂Nj,j−1[0]
1

a(l−1)

∑M
i=1 R̂

N
i,i−1[0]

− Ts), i = 2, . . . ,M (6)

wherea(l) = M(T 2
s +

2

M

M∑
i=1

(t
(l)
i )2 − 2

M

M∑
i=1

t
(l)
i t

(l)
i−1)

3.2. Noise sensitivity

The algorithm in the previous section is based on the assumption
that adjacent samples are correlated, i.e. that the signal is band-
limited. We will in this section discuss how the estimation is af-
fected by an additive noise term at the output of the AD converter:

yi[k] = u((kM + i)Ts + ti) + ei[k], ei[k] ∈ N(0, λ) (7)

From equation (1) we now have

∆yi[k] ≈ (Ts + ti − ti−1)u′(kMTs + (i− 1)Ts)

+ ei[k]− ei−1[k] (8)

Since we assume that the noise is independent ofu(t) and the dif-
ferent noise sources are independent of each other the cross terms
disappear and we have from equation (8):

R̂Ni,i−1 =
1

N

N∑
k=1

{∆yi[k]}2 (9)

→ (Ts + ti − ti−1)2E{(u′(t))2}+ 2λ,N →∞
With (9) in (7) we can see that the noise will cause an error in the
time error estimates:

t
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(l)
i t

(l)
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Here(R̂Ni,i−1)y0 = 1
N

∑N
k=1{∆y

0
i [k]}2, wherey0

i [k] denotes the
noise-free part ofyi[k]. From the equation above we can see that
the estimates are more accurate when the signal is varying quickly
(the derivatives get larger). The accuracy of the first order Tay-
lor expansion approximation decreases however when the signal
is fast varying. This means that if we can choose the frequency
content in the input signal there is a trade-off between accuracy
of the Taylor approximation and accuracy of the time estimation
algorithm in the noise corrupted case. If the noise variance,λ, is
known, we can compensate for the noise in the algorithm by sub-
tracting2λ in equation (9).

3.3. Estimation of the noise variance

As we saw in the previous section, the performance of the estima-
tion algorithm can be quite bad if there is a lot of noise present in
the signals. To improve the performance of the timing estimation
when we have noisy measurements, we have to estimate the noise
variance,λ, since it is usually unknown. With this algorithm we
can also handle the case where parts of the signal lies in the fre-
quency band above1/3 of the Nyquist frequncy, since this part can
be described by the noise term. The measurement from each ADC
can be described as a regression of old measurements plus some
noise:

yi[k] =
l∑

j=1

ai,jy[(k − 1)M + i− j] + ei[k], i = 1, ...,M

(11)

This model can be used to predict the signal part of the next mea-
surement:

ŷ0
i [k] =

l∑
j=1

ai,jy[(k − 1)M + i− j], i = 1, ...,M (12)

Theai,j coefficients can be estimated from data by minimizing a
loss function, the mean square error:

Vi(ai,j , j = 1, ..., l) =

N∑
k=1

(ŷi[k]− yi[k])2 (13)

(âi,j , j = 1, ..., l) = argminVi(ai,j , j = 1, ..., l) (14)
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Fig. 2. Timing offset estimation, sinusoidal input with frequency
ω = 0.02rad/s.
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Fig. 3. Timing offset estimation, sinusoidal input with frequency
up to the Nyquist frequency.

From the model 11 we can see that

Vi(a
∗
i,j , j = 1, ..., l) =

N∑
k=1

(y0
i [k]− yi[k])2 (15)

=
N∑
k=1

(ei[k])2 = λ (16)

wherea∗i,j are the true parameters, thatâi,j is an estimate of. This
means that the noise variance,λ, can be estimated from data be-
fore the timing error estimation and the estimated value can be
subtracted as described in the previous section.

4. SIMULATIONS

Throughout this section we have simulated 10 AD-converters in
parallel if nothing else is mentioned. We have here assumed that
the AD-converters are perfect samplers so there are no other errors
than timing errors. The precision is assumed to be infinite. The
sample interval is set to one since any other sample interval is just
a scaling under the conditions assumed above.

4.1. The timing offset estimation

In the simulations of AD-converters with timing offsets we have
used random timing offsets between−10% and10% of the nom-
inal sampling time. We have used100000 samples in the simu-
lations if nothing else is mentioned. The nominal sampling fre-
quency isfs = 1Hz in all the simulations. Figure 2 shows the
result of the timing offset estimation when a sinusoidal input with
frequencyω = 0.02rad/s has been used. The estimation algo-
rithm works best for low frequencies, but the errors stay below1%
for frequencies up to about1/3 of the Nyquist frequency. In Fig-
ure 3 the root mean square error is plotted after estimation with
sinusoidal input signals with frequencies up to the Nyquist fre-
quency. If there is additive white noise on the signal the estima-
tion accuracy decreases, especially for low frequency signals. That
is because the derivative of a low frequency signal is small com-
pared to the noise, see Figure 4. The estimation algorithm has
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Fig. 4. Timing offset estimation error, sinusoidal with noise,
SNR = 60dB.
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Fig. 5. Timing offset estimation error, band-limited white noise
with different bandwidths as input signals.

also been tested with other signals, for example sums of sinusoids
and band-limited white noise. In Figure 5 the estimation error is
shown for estimation from band-limited white noise with differ-
ent bandwidths. From all these simulations we can see that the
estimation algorithm works well for most kinds of signals. If the
estimates are updated slowly, e.g. with a forgetting factor close to
one, “bad” parts of the signal will not destroy the estimation accu-
racy. Simulations have also shown that accuracy of the estimates
is significantly improved with more data up to about106 samples,
especially for noisy signals. With more than106 samples the im-
provement is quite small however, see Figure 6. We can also see
that the iteration in equation 6 is quite important. One iteration is,
however, usually enough, see Figure 7.

4.2. Timing offset estimation with estimated noise variance

In this section we have simulated errors between−50% and50%
of the nominal sampling time to see the effects of the noise estima-
tion more clearly. In Figure 8 timing estimation without compen-
sation forλ is compared with timing estimation with compensation
for the trueλ and compensation for the estimatedλ. The estimated
λ has been estimated with a regression of 200 measurements back-
wards in time. We can see here that compensation with estimated
λ gives almost as good timing error estimation as compensation
with the trueλ. Figure 9 shows how estimation accuracy depends
on the length of the regression vector. We can see here that about
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Fig. 6. timing offset estimation errors for different number of data,
between 10 and 1000000.
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Fig. 7. To the left: estimation error before iteration. To the right:
estimation error after one iteration.
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Fig. 8. Comparison of estimation accuracy with and without com-
pensation forλ
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Fig. 9. Estimation accuracy dependence on regression length

150 samples in the regression vector is needed to get a good esti-
mation ofλ.

5. CONCLUSIONS

Parallel AD-converters are used for increasing the sample rate by
letting each AD-converter work at a lower sampling rate. A prob-
lem in these AD-converter structures is the synchronization be-
tween the AD-converters. We have presented a method to estimate
timing offsets in a parallel AD-converter structure. The estimation
works without knowledge of the input signal. The only assump-
tion that is needed about the signal is that the energy spectrum
should be concentrated to the lower frequencies for the timing off-
set estimation to work. The timing offset estimation works well for
signals band-limited to about1/3 of the Nyquist frequency. The
accuracy is however still improved even if the bandwidth is at the
Nyquist frequency. Noisy measurements can be handled by com-
pensating for the noise variance in the algorithm. We have also
presented a method to estimate the noise variance before estimat-
ing the timing errors.
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