BLIND ESTIMATION OF TIMING ERRORS IN INTERLEAVED AD CONVERTERS

J. Elbornsson J-E. Eklund
Linkopings universitet
Department of Electrical Engineering
SE-581 83 Linkping, SWEDEN
jonas@isy.liu.se

Ericsson Microelectronics AB
SE-581 17 Linkping, SWEDEN
jan-erik.eklund@mic.ericsson.se

ABSTRACT sample to the next. These errors do not have anything to do with

Parallel AD converter structures is one way to increase the sam-tn€ parallel structure of the AD-converter and are not discussed

pling rate. Instead of increasing the sampie rate in one AD con- further here. There are some presented methods to estimate timing
verter, several AD converters with lower sampling rate can be used€'Tors in interleaved AD converters, see [7, 8]. But these methods

instead. A problem in these structures is that the time between@SSUme a known input signal. Here we will present a method for

samples is usually not equal because there are errors in the de€Stimation of these errors with unknown input signal.

lays between the AD converters. We will here present a method to
estimate the timing offset errors. The estimation algorithm works
without any special calibration signal, instead the normal input sig-
nal is used. The only assumption that we need on the input signal is . . . .
that most of the engrgy is C(F))ncentrated to a low pass t?and,gbelow-rhe analog input signal is denotedt). 7 denotes the nomi-
about 1/3 of the Nyquist frequency. Simulations of the time in- Nal sampling time, that we would have without any errais.is

terleaved AD converter show that the method estimates the errordh® number of AD converters in the parallel structure. The time
with high accuracy. offset for theith AD converter is denoted;. The output from

the ith AD converter is denoted;[k] wherek is the kth sample
from that AD converter. Each AD converter form a subsequence,
1. INTRODUCTION yi[k] = w((EM +4)Ts + t;). The sample time for each such sub-
o ) ] o ) sequence is exactly/T,. These subsequences are merged to the
Many digital signal processing applications, such as radio baseoutput signal[m] = y(mmodr) [ 22 ]|, where|-] denotes integer
stations or VDSL modems, require AD converters with very high part. The difference between samples from AD conveiterl
sample rate. To achieve high enough sample rates, an array of Mand AD converter is denotedAy; [k] = wilk] — vi—1[k]. We
AD converters in parallel can be used. Each ADC should work denote byN the number of data points from each AD converter.
at1/Mth of the desired sample rate. To avoid time drift between We assume that the same number of samples is taken from all the
the different ADC's, the same master clock is used for all ADCs, AD converters so tha¥V M is the total number of data. We use the
see figure 1. To get the same sample interval for all samples thenotationE (s(t)) = lim,— oo % Z?:1 E(s(t)) for quasistationary
signals [9], where the expectation is taken over possible stochastic

2. NOTATION

i
Sompling parts ofs(t).
3. ESTIMATION METHOD
Throughout the report we will assume that the AD-converters are
delayl . 2 infinite precision sampling units, i.e. we have no amplitude quan-
tization. We also assume that amplitude errors are zero.
—

ﬂ 3.1. Timing offset estimation

For the timing offset estimation algorithm we need a bandwidth

M assumption on the input signal, it must have most of its energy

in a frequency band below abouf3 of the Nyquist frequency.
Fig. 1. M parallel ADC'’s with the same master clock. This restriction is not limiting the use of the algorithm since we
need an anti-aliasing filter before the AD converter anyway. The
algorithm is based on the assumption that the signal changes more
on average if it is a long time between the samples than if it is a
short time between them. Therefore we have to assume that the
signal varies slow enough, i.e. has low enough bandwidth. We
look at the differenceAy; k], between two adjacent samples and

nth ADC should be deIaye@NTT-‘ s, whereTy is the sample interval
for the master sampling clock [1]. If there are errors in the delay
times we will get a non-uniformly sampled signal. If these errors
are not compensated for, the resolution of the ADC will decrease : ; P

with several bits [2, 3, 4]. However, if the delay errors are known, &iﬁ%ﬁ;?)ﬂolr expansion around the nominal sampling time of AD
the true signal can be recovered [5, 6]. The errors are assumed to ’
be static, so that the error is the same in the same AD-converter
from one cycle to the next. There are also random errors in time
and amplitude due to thermal noise, that are different from one

Ayik] = wilk] — yi—1[k] (1)
(TS +t; — tifl)u,(kMTs =+ (Z — I)Ts)

Q



We calculate the mean squared difference between two adjacenErom equation (1) we now have
AD converters: ,
Ayl[k] I~ (TS +t; — tl;l)u (kMTS -+ (Z — I)Ts)

N
~ 1 + ekl —ei—1]k 8
R0 = NZ{Ayi[k]}z @ el ©

= Since we assume that the noise is independent©fand the dif-
ferent noise sources are independent of each other the cross terms

2
— (T +ti— i) B{(v/(£)*}, N — o0 disappear and we have from equation (8):

If the mean value of the input signal derivative is known we can
calculate the time offsets from equation (2) using the first time /RN =~ — 1 Z{Ayi K]} ©)
offset as reference, i.e. assuming= 0: ’ N

- (0] — (T +ti— i) B{(/ (1))} + 2\, N — o0
ti = Z( E{E’j (1))2} T,),i=2,....,.M ©) With (9) in (7) we can see that the noise will cause an error in the

j=2 time error estimates:
Since the mean value ¢f'(¢))? is usually unknown we have to W : (R;Vj g0 +2X
estimate it from the sampled dat& (v’ (¢))? can be estimated as i = Z( Z (BN )+ o -1T5)
an average over all the AD-converters: J=2 aU D 4,i—1/y0 (’ 1>
i = 2,...,M
iiRN- :Lii k] —yi1[k])? l 2 2K 1,0
a2 0= a7 2. 2 - o= M4 Y - MZt“ t0)  (10)
i=1
1 - 2, 1 . 2 1 N 0 2 0
~ NI Z Z(Ts +ti —tic1) (uw (AMTs + (i — 1)T%)) Here(RY, 1),0 = & S n_ {Ay?[k]}?, wherey? k] denotes the
k=1 i=1 noise-free part ofj;[k]. From the equation above we can see that
1M the estimates are more accurate when the signal is varying quickly
- = Z(TS +t; — ti_l)QE{(u/(t))Q} (the derivatives get larger). The accuracy of the first order Tay-
M~ lor expansion approximation decreases however when the signal

is fast varying. This means that if we can choose the frequency
B 2 content in the input signal there is a trade-off between accuracy
= T+ Zt M Zt tia) B{(u' (1))} ) of the Taylor approximation and accuracy of the time estimation
algorithm in the noise corrupted case. If the noise variancés
known, we can compensate for the noise in the algorithm by sub-

From equation (4) it seems like we have to know the time offset to tracting2)\ in equation (9).

calculate the estimate &f{ (v’ (¢ )) } We can however get a crude

estimate by assuming tha >, t7 — 2 S2M | tit;_y is small.
This is a quite reasonable assumptlon |ffthe timing offset errors are
small on average compared to the nominal sampling time. Using As we saw in the previous section, the performance of the estima-
this estimate we can calculate a crude estimate of the time offsetsion algorithm can be quite bad if there is a lot of noise present in
using equation (3): the signals. To improve the performance of the timing estimation
when we have noisy measurements, we have to estimate the noise
i J2n variance,), since it is usually unknown. With this algorithm we
tEO) - Z( J]VJ[ 1 —T.),i=2,...,M (5) can also handle the case where parts of the signal lies in the fre-

= W Do RfVZ 110] quency band abovi/3 of the Nyquist frequncy, since this part can

be described by the noise term. The measurement from each ADC

can be described as a regression of old measurements plus some
noise:

3.3. Estimation of the noise variance

With this estimate of the time offsets we can improve the estimate

of E{(«/(t))?} using equation (4). Then the time offset estimates
can be improved by fixed-point iteration [10]: !
yl[k] = E ai,jy[(kfl)M+ifj]+e¢[k], i=1,... M

0

[ RN

D =37 T IRN S -T)i=2. M () an
" a(l 7 2o il This model can be used to predict the signal part of the next mea-
surement:
wherea?) — M(T? + = Z(tmf Z HOMON
S M i
i=1

1
Bk = aisyl(k - DM +i—jl, i=1,..,M (12

3.2. Noise sensitivit
y Thea;,; coefficients can be estimated from data by minimizing a

The algorithm in the previous section is based on the assumpt|0n|oss function, the mean square error:
that adjacent samples are correlated, i.e. that the signal is band-
limited. We will in this section discuss how the estimation is af- ) N )
fected by an additive noise term at the output of the AD converter: Vi@ig,j =1,.,0) = > (:lk] — vl K]) (13)
k=1
yilk] = w((kM +4)Ts + i) + eilk], eilk] € N(0,A)  (7) (45,5, =1,..,1) = argminVi(a; ;,5 =1,...,1) (14)
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Fig. 2. Timing offset estimation, sinusoidal input with frequency Fig. 4. Timing offset estimation error, sinusoidal with noise,
w = 0.02rad/s. SNR = 60dB.
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Fig. 5. Timing offset estimation error, band-limited white noise
Fig. 3. Timing offset estimation, sinusoidal input with frequency ~With different bandwidths as input signals.

up to the Nyquist frequency.
also been tested with other signals, for example sums of sinusoids
From the model 11 we can see that and band-limited white noise. In Figure 5 the estimation error is
N shown for estimation from band-limited white noise with differ-
. 0 2 ent bandwidths. From all these simulations we can see that the
Vilaijg =11 = Z(yi (k] = wilk]) (15) estimation algorithm works well for most kinds of signals. If the
estimates are updated slowly, e.g. with a forgetting factor close to
N 9 one, “bad” parts of the signal will not destroy the estimation accu-
= Z(ei (K] = A (16) racy. Simulations have also shown that accuracy of the estimates
k=1 is significantly improved with more data up to abaof samples,
especially for noisy signals. With more th&a6® samples the im-
provement is quite small however, see Figure 6. We can also see
that the iteration in equation 6 is quite important. One iteration is,
however, usually enough, see Figure 7.

wherea; ; are the true parameters, tlgf; is an estimate of. This
means that the noise variance,can be estimated from data be-
fore the timing error estimation and the estimated value can be
subtracted as described in the previous section.

4. SIMULATIONS 4.2. Timing offset estimation with estimated noise variance

In this section we have simulated errors betweéi% and50%

of the nominal sampling time to see the effects of the noise estima-

Yion more clearly. In Figure 8 timing estimation without compen-

'Sation for) is compared with timing estimation with compensation

€ for the true\ and compensation for the estimatedThe estimated

St\ has been estimated with a regression of 200 measurements back-
wards in time. We can see here that compensation with estimated
A gives almost as good timing error estimation as compensation

4.1. The timing offset estimation with the true). Figure 9 shows how estimation accuracy depends

on the length of the regression vector. We can see here that about

Throughout this section we have simulated 10 AD-converters in
parallel if nothing else is mentioned. We have here assumed tha
the AD-converters are perfect samplers so there are no other erro
than timing errors. The precision is assumed to be infinite. Th
sample interval is set to one since any other sample interval is ju
a scaling under the conditions assumed above.

In the simulations of AD-converters with timing offsets we have

used random timing offsets betweerl0% and10% of the nom- 10°
inal sampling time. We have usd®0000 samples in the simu-
lations if nothing else is mentioned. The nominal sampling fre-
quency isfs = 1Hz in all the simulations. Figure 2 shows the
result of the timing offset estimation when a sinusoidal input with
frequencyw = 0.02rad/s has been used. The estimation algo-
rithm works best for low frequencies, but the errors stay bélw
for frequencies up to about/3 of the Nyquist frequency. In Fig-
ure 3 the root mean square error is plotted after estimation with 107
sinusoidal input signals with frequencies up to the Nyquist fre-
quency. If there is additive white noise on the signal the estima-
tion accuracy decreases, especially for low frequency signals. ThatFig. 6. timing offset estimation errors for different number of data,
is because the derivative of a low frequency signal is small com- between 10 and 1000000.

pared to the noise, see Figure 4. The estimation algorithm has
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Fig. 7. To the left: estimation error before iteration. To the right:

estimation error after one iteration.
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Fig. 9. Estimation accuracy dependence on regression length

150 samples in the regression vector is needed to get a good esti-
mation of .

5. CONCLUSIONS

Parallel AD-converters are used for increasing the sample rate by
letting each AD-converter work at a lower sampling rate. A prob-
lem in these AD-converter structures is the synchronization be-
tween the AD-converters. We have presented a method to estimate
timing offsets in a parallel AD-converter structure. The estimation
works without knowledge of the input signal. The only assump-
tion that is needed about the signal is that the energy spectrum
should be concentrated to the lower frequencies for the timing off-
set estimation to work. The timing offset estimation works well for
signals band-limited to aboudt/3 of the Nyquist frequency. The
accuracy is however still improved even if the bandwidth is at the
Nyquist frequency. Noisy measurements can be handled by com-
pensating for the noise variance in the algorithm. We have also
presented a method to estimate the noise variance before estimat-
ing the timing errors.
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