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ABSTRACT

Weproposeanew structurefor blindequalizationwith spatio-
temporaldiversityatthereceiver(SIMOsystem).Thisstruc-
ture is derived from the Wienerfilter. It is composedby a
prefilter deducedfrom the dataspectraldensity(no blind
criterion is needed)anda FIR filter, independentfrom the
noiselevel, to beobtainedblindly. Thenew prefilter is ro-
bust to a total lack of effective diversityandbenefitsfrom
any availablediversity. Simulationsshow thatthisnew blind
equalizerperformssimilarly to theWienerfilter evenwith a
very smallamountof data.

1. INTR ODUCTION

It is crucial for many applicationsof digital communica-
tion (suchaseavesdropping)to bypassthe trainingperiod.
Blind techniques(i.e. without training)have alsoreceived
an increasinginterestin both last decades.In this paper,
we considera filter at thereceiver front endto improve the
blind equalizationperformance. The referencealgorithm
in this context is the ConstantModulusAlgorithm (CMA)
[1]. Unfortunately, this algorithmrequiresa largenumber
of samplesto give a good estimationfor its fourth order
statisticselements.However in high-ratewirelessapplica-
tions,thechannelmayvary rapidly. Onechallengeof blind
equalizationis alsoto achieve goodperformanceevenwith
a smallnumberof samples(lessthan500).To speedup the
convergence,a possiblechoiceconsistsin whiteningthere-
ceiveddatabeforeCMA asin [2]. Its convergenceanalysis
is studiedin [3].

To improvetheblind equalizationperformance,wecon-
siderequalizationstructuresusingtraining.Optimalperfor-
manceto reducethe intersymbolinterferences(ISI) intro-
ducedby thefrequency selective channelis achievedby the
MaximumLikelihoodSequenceEstimationreceiver(MLSE).
Unfortunately, the MLSE hasa computationalcomplexity
thatgrows exponentiallywith the channeltime dispersion.�
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In mostchannelsof practicalinterest,sucha largecomputa-
tional complexity is prohibitively expensive to implement.
A suboptimumchannelequalizationapproachto compen-
satefor the ISI employsthe Wiener filter minimizing the
MeanSquareError (MSE). For a Finite ImpulseResponse
(FIR) channeleven with spatio-temporaldiversity, the op-
timal MMSE filter is recursive [4]. In this paper, we also
designa prefilter directly derived from the structureof the
Wienerfilter in the context of spatio-temporaldiversity at
the receiver (oversamplingor multisensor).The recursive
filter beingoptimizedfrom secondorderstatisticsonly, it
requiresfew samplesto beestimated.Moreover, we show
it is ableto fully benefitfrom spatio-temporaldiversity.

Section2 containsa descriptionof the systemmodel.
Section3 shows how to adaptthe structureof the Wiener
receiver in a blind context with diversity. Simulationsand
analysisaredescribedrespectively in sections4 and5.

2. PROBLEM FORMULA TION

2.1. Channelmodelization

We areinterestedin the multichannelcommunicationsys-
temobtainedfrom spatio-temporaldiversityat thereceiver.
A datastream,��� ��� is transmittedat therate �
	���
 overafre-
quency selectivechannelcorruptedbyadditivenoise.At the����� sensor, the receivedcontinuoustime basebandsignal
canbewritten as: ����������� �"!$#&%'�'�)(*��+��,�-�.�*�0/1(2� 
 �43657��� �
where +8�,�-�.�*� � is theoverall channelresponse(propagation
channelto the �9�:� antenna+ transmitfilters). Oversam-
pling the signalat the receiver at N timesthe symbolrate�
	���
 leadsto amultivariatediscrete-timemodelat thesym-
bol ratethatcanbeexpressedas:; �)���<!>= %6? �)(*�2���)�@/1(��A3CBD� ��� (1)
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[3>�:R\/]�U�^�<P.�T_ and ? �)���of degree `ba is definedaccordingly. (1) canbeviewedasa



convolutive SingleInput/Multiple Outputs(SIMO) system
with `c!>RDd outputs.

Let ; �:e'� betherepresentationof ; �)��� usingthez-transform.
Similarly, wedefine? �:e'� and BD��e�� . With thesedefinitions,
wemaywrite: ; ��e��b! ? �:e'�f�'�:e'�43CBD�:e'� (2)

2.2. Linear equalizer

We arelooking for anequalizerasa linearfilter gb�:e'� . The
equalizeddataare:h �:e'�O!ji����e'�k!]g4l
��e'� ; �:e'�.Q

In thecontext of spatio-temporaldiversity, a FIR Zero-
Forcingequalizerexistsif theconvolutionmatrixof thechan-
nel mn� ? � is left-invertible, i.e. full rank which implies in
particularnocommonzeroto thecomponentsof ? �:e'� . How-
ever, in thepresenceof additive noise,theMinimum MSE
(MMSE) is achievedby anIIR filter asexplainedbelow.

3. A PREFILTERED BLIND STRUCTURE

3.1. Structure motivation: MMSE equalizer

Assuming��� ��� is white,unit varianceanduncorrelatedwith
thewhitenoise5o�)��� , thefilter optimizingtheMSEcriterionp ��qH�k!]rs�ut h � ����/v���)�9/1wH� t x^� is describedby:g MMSE �:e'�b!>e WLy ��z x
{K| 3 ? ��e W4Y � ? l
��e��M� WZY ? �:e W4Y � (3)

where z�x denotesthenoisevariance[4].
Usingthematrix inversionlemma1, it canberewritten as,g MMSE ��e��}! eHW<yz x ~ {K| / ? ��eHW4Y � ? l ��e��z x 3 ? l ��e'� ? ��e WZY �L� ? ��e W4Y �! e W<y �z x 3 ? l ��e�� ? ��e W4Y � ? ��e W4Y � (4)g MMSE �:e'� canbedecomposedin a scalarrecursive filterq AR �:e'�X! Y�'� �L�.� �,�.� � �,�
���M� ! Y� � ���9� ����)��� a�� �)�:� �,�.� a�� �)� ��� ��� � andg MA �:e'� matchedto thechannel(seefig.1).�A� �U� ��� ����U���K�.�2������ �� *���K�����J� �.� �

Fig. 1. Wienerreceiver for a SIMO system.

Theinterestof thisstructureis its robustnessto alackof
diversity. Indeed,asin themono-variatecase,thevariations

1When ¡ and ¢ are £ -long vectors, ¤u¥0¦§¡b¢ �T¨T©Lª¬« ¥®­¯¤:°±¦¢ � ¡ ¨ ©<ª ¡b¢ �
.

of thefunction² ��z´³Tµ0�-!·¶ ? ��+f¸K¹��.¶Uxº36z�xo!$# | W4Y»,¼ I t +8� » �.�:+M¸�¹´�
t xb36z�x de-
terminethedifficulty to equalizethechannel.This function
is all themoreflat that ? �:e'� hasno commonzerosto all its
componentsandthat closeto commonzerosarefar away
from the unit circle. This is exactly the conceptof effec-
tivediversity, see[5]. Consequently, increasingthediversity
factor ` canonly bebeneficial,evenif zerosof thedifferent
componentsarecloseof eachother(thegainis small).Note
that in thecaseof a total lack of diversity, all components
areequal,q AR �:e'�b! Y| Y½ �� � a � �,�.� a �,�
���M� reducesto thecaseof

having no diversityat all. Anyhow, it achievesstill MMSE
equalization.

Concerningthe transversalpart, g MA ��e'� cannotsuffer
from a lack of diversity(theoptimalfilter for g MA �:e'� is the
filter matchedto thechannel).In addition,thefilter g MA �:e'�
is independentof thenoiselevel.

3.2. Proposedstructure

Thegoalof thissectionis to calculateblindly gb�:e'� usingthe
structureof (4). First, we show that q AR ��e�� canbededuced
from thespectraldensityof ; l . Indeed,weuse:��¾ � ¾4�:e'�b!>`bz x 3 ? l8��e'� ? ��e WZY � (5)

from whichwesubtract( `X/]�U�fz�x ,wherez�x is thesmallest
eigenvalueof thecovariancematrix relatedto ; . Applying
spectralfactorization(Féyer-Riesztheorem),we obtainthe
minimumphasefactordefinedasa scalar, causalandstable
transferfunction ¿ �:e'� satisfying:ETz�xb3 ? l ��eHW4Y.� ? ��e�� _ WZY ! ¿ �:e'� ¿ �:e�W4YU�À!Áq AR ��e�� . We sug-
gestalsoto doaforth andbackrecursivefilteringwith ¿ ��e�� .
Remark 1 In themono-variatecase,¿ ��e�� isexactlya whiten-
ingfilter, sincethespectral densityisexactlyequalto ��ÂA��e'�k!z�xb3C+UÃ��:e'�f+'�:e�W4Y.� , see[6].

Theremainingprocessing,e�WLy ? ��eHW4Y.� , canonly beper-
formedblindly (sincethechannel? �:e'� is unknown), using
CMA for example:g MA !>Ä�ÅfÆbÇnÈ�ÉÊ r¯ËK�Kt g4lMA Ì ; �)��� t x /6�U� x�Í
Note that since ? is FIR, the filter to be optimizedblindly
is FIR of the sameorder, independentlyof the noiselevel
andof thediversity factor. With this structure,thenumber
of filter tapsto beoptimizedblindly is greatlyreduced.

3.3. Implementation

Sincetheestimationof ¿ ��e�� is verysensitiveto theerrorsof
estimationof the spectraldensity � ¾ � ¾ �:e'� andto thenoise
variancez�x , weproposeto approximatethis recursive filter



by a transversalfilter of order `bÎ . Ideally, thelengthof this
filter shouldbe infinite. We will discussthe choiceof the
value ` Î in thesequelandsupposeonly in thissectionthat` ÎDÏ ` a . This transversalfilter ¿ ��e'� canalsobeviewed
as the linear predictorof order ` Î of the received signal; l . Since Y�'�K� �9� ����)��� a � �)�:� �,�.� a � �)� �,�
���M� haslessvariationsthanY� � � a � �,�.� a ��� ��� � , thepredictoris betterestimatedwith a FIR
filter of fixed length `bÎ . This can be viewed as another
benefitfrom spatio-temporaldiversity.

Using a finite block of data, the proposedprocessing
structure,prefilteredCMA, canbedescribedby:

1. estimationof ¿ �:e'� , solvingtheYule-Walkerequations:� iÐ ¾ � ¾ /S�:`§/S�
�'iz x { �TÑn! iÒ (6)

where iÐ ¾ � ¾ is theestimatedcovariancematrixof ; l ,iÒ ! Ë iÓ ¾ � ¾ ���K�UiÓ ¾ � ¾ � ÔÕ�HQ
Q
QUiÓ ¾ � ¾ �)` Î /6��� Í^Ö andÑn!×� ¿ �)Ø
� ¿ ���K�AQUQ�Q ¿ �)` Î ��� Ö .

2. filtering by ¿ �:e'� . Then,consideringthe filtereddata
block in reverseorder, filtering by ¿ Ã'�:e'� ,

3. blind optimizationof the remainingtransversalFIR
filter usingblock CMA. We usea deterministicgra-
dient descentCMA, describedin the complex case
by: g � %u� YM�

MA !&g � % �
MA /cÙ4Ú@Û MA

p
CM �2g � % �

MA ��³
whereÚ Û MA

p
CM �ug � % �

MA �O!ÜÔ�� {LÝ g lMA � iÞ ¾ �2g4ÃMA
Ý9{ �Tg MA /ß ià ¾�¾ � g4ÃMA , Ý denotestheKroneckerproduct.Thees-

timatedcovariancematrix is givenbyiÐ ¾ ! YáOâ # á[â W4Yã ¼ I ; |�ä �)��� ; l| ä �)��� and the estimated
quadricovariancematrixbyiÞ ¾ ! Yá â # á â W4Yã ¼ Iæå ; | ä � ��� ; l|�ä � ��� Ý ; | ä �)��� ; l|�ä �)���uç
with Roa beingthenumberof samplesusedfor estima-
tion and ; |´ä !Á� �A�)�����A�)�è/]�K�AQUQ
QT�A�)�9/1` Ê 36����� Ö .

4. SIMULA TIONS

Simulationresultsconfirm the goodbehaviour andperfor-
manceof the proposedmethod. The diversity factor ` is
equalto 2 in theseexperiments. ���)��� is a BPSK i.i.d. se-
quence.The lengthof both componentsof thechannel̀ a
is equalto 4. Eachplot showstheresultsof 10MonteCarlo
runs,wherethedatalengthfor BERestimationin eachone
was R 
 !é�UØ�Ø'Ø�Ø . The solid lines representrecursive ap-
proaches,whereasthedashedlinesrepresenttransversalap-
proaches.Thelengthof therecursive scalarprefilter q AR ��e��
is equalto thechannellength `ka , asfor thesecondstepfil-
ter(optimizedby theCM criterion(curvewith Ì ) andby the
MSE criterion(curve with ê )). For sakeof comparison,we
usea transversalfilter of length Ô�`ba : bothmethods(recur-
sive andtransversal)have still approximatively an equiva-
lent computationcost.

4.1. Test Case1: influence of the number of samples
usedfor estimation

In thefirstcase,thebatchalgorithmof section3.3wastested
for both subchannels+8�uYM� and +8�JxK� definedby their zeros
( �.ØAQ)ëX/XØAQ ß Ø�Q)ìk� and �UØAQ)ë�ìè/íØAQ)îºØAQ)Ôk� ). Thealgorithmwas
run with differentnumbersof symbols(from 200 to 700)
usedfor theestimationof thecovarianceandthequadrico-
variancematrices. The noiselevel was set to SNR=ï dB.
As depictedin fig.2, theperformanceobtainedby the pre-
filteredCMA andtherecursive MMSE aresimilar (MMSEð Ø�Q)Ô ß andMSE of prefilteredCMA ð ØAQ)Ô'ñ ). Even for a
smallnumbersof symbolsusedfor estimation,Roa7!òÔ�ì'Ø ,
the differencebetweentheir errorsdoesnot exceed ØAQ)Ø ß .
Performanceobtainedby thetransversalCMA filter is much
moreaffectedby thenumberof samplesfor theestimation
(MSEgrowsfrom ØAQ)ó'Ô to Ø�Q)ó'ñ if Roa decreasesfrom ì'Ø'Ø toÔ�ì'Ø ). As expected,estimationof thesecondorderstatistics
is satisfactoryevenif Roa is lessthan ì'Ø'Ø .
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Fig. 2. MeanSquareError versusnumberof samples,at
SNR= 9dB.

4.2. TestCase2: comparisonbetweentherecursivestruc-
ture and the transversalstructure.

In this experiment,thezerosof thesubchannelsarerespec-
tively ��Ø�Q ï�ì§/vØ�Q ß � and ��Ø�Q ï�ñc/cØAQ)ìk� to makethechannel
very difficult (closeto commonzerosneartheunit circle).
Thenumberof samplesusedfor estimationis equalto Ô�ì'Ø .
Fig.3shows thelimitation of thestructureusinga transver-
sal filter to equalizesucha channel.Also, with nearlythe
samecomplexity (lessfor the proposedmethod),the pre-
filtered CMA outperformsthe transversalCMA (improve-
mentof

ß ²�ô
for Roa-!>Ô'ì�Ø ) andis very closeto theWiener

performance.
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Fig. 3. Bit Error RateversusSignal to NoiseRatio [dB].
(numberof samplesusedfor estimationis equalto 250).

5. COMPARISON WITH PREWHITENED CMA

In this section,we comparethe proposedprefilteredCMA
with the prewhitenedCMA (as in [2] in its linear phase).
Weknow thatprewhitenedCMA hasimprovedconvergence
sincethe blind optimizationmustequalizea unitary trans-
formation [3]. This is not true for the prefilteredCMA.
However, becauseof its Wiener-like structure,theproposed
methodoutperformsthe prewhitenedCMA in fig.4. The
simulationsettingis thatof testcase2.
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Fig. 4. MeanSquareError vs. Signalto NoiseRatio [dB].
(numberof samplesusedfor estimationis equalto 300).

This behavior can be explainedby the fact that CMA
with spatio-temporaldiversity is known to converge to an
equalizerresponsecollinearto thatof Wiener(see[4]). Our
blind algorithm is constrainedto mimic the Wiener solu-

tion with lessequalizertapsto be optimizedblindly than
theprewhitenedCMA. Wecanshow that,assumingperfect
prefilteringis achieved,theCM minimais achievedbygb�:e'� ð>õ g MMSE �:e'�
with õ x ! öÔÀE:÷]/6�M�º/ùøx � ô _
whereA andB aredefinedfrom ú��:+M¸�¹´�b! û � � aTü�ý � û ��'� � û � � a ü�ý � û � as,÷Ü!>þ\ú��:+ ¸�¹ � ² µ"³ ô ! #&ÿ"t ú�� ���ft �÷ with ö ! rb�ut ��t ���r0�ut ��t x � x Q
(Theproofcanbeprovidedby e-mail).In thenoiselesscase,õ is indeedequalto one.

6. CONCLUSION

We have proposeda new blind equalizationalgorithmtak-
ing full benefitfromspatio-temporaldiversityatthereceiver.
Ourapproachis derivedfromtherecursivepartof theWiener
solutionwhich canbededucedfrom thedataspectralden-
sity. As a result,theremainingtransversefilter to be opti-
mizedblindly hasthesamelengthasthechannel.Simula-
tionsshow thatour prefilteredCMA outperformsotheral-
gorithmswhenonlyasmallamountof datais available.The
achieved performancearevery closeto that of the Wiener
solution.
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linéairespar filtragerécursif, Ph.D.thesis,Universit́e
deRennes,2000.


