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ABSTRACT

We proposenew structurdor blind equalizatiorwith spatio-
temporabiversityattherecever (SIMO system).Thisstruc-
ture is derived from the Wienerfilter. It is composedy a
prefilter deducedrom the dataspectraldensity (no blind
criterionis neededanda FIR filter, independenfrom the
noiselevel, to be obtainedblindly. The new prefilteris ro-
bust to a total lack of effective diversity andbenefitsfrom
ary availablediversity Simulationsshawv thatthisnew blind
equalizemperformssimilarly to the Wienerfilter evenwith a
very smallamountof data.

1. INTRODUCTION

It is crucial for mary applicationsof digital communica-
tion (suchaseavesdropping}o bypasshetraining period.
Blind techniquedi.e. without training) have alsoreceved
an increasinginterestin both last decades.In this paper
we considera filter at therecever front endto improve the
blind equalizationperformance. The referencealgorithm
in this contet is the ConstantModulusAlgorithm (CMA)
[1]. Unfortunately this algorithmrequiresa large number
of samplesto give a good estimationfor its fourth order
statisticselements.However in high-ratewirelessapplica-
tions,thechannemayvary rapidly. Onechallengeof blind
equalizatioris alsoto achiee goodperformancevenwith
asmallnumberof sampleglessthan500). To speedup the
convergence a possiblechoiceconsistdn whiteningthere-
ceived databeforeCMA asin [2]. Its corvergenceanalysis
is studiedin [3].

To improvetheblind equalizatiorperformancewe con-
siderequalizatiorstructuresisingtraining. Optimalperfor
manceto reducethe intersymbolinterferencegISl) intro-
ducedby thefrequeng selectve channeis achieved by the
MaximumLikelihood SequencE&stimatiorrecever (MLSE).
Unfortunately the MLSE hasa computationacompleity
that grows exponentiallywith the channeltime dispersion.
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In mostchannelof practicalinterest suchalargecomputa-
tional compleity is prohibitively expensve to implement.
A suboptimumchannelequalizationapproachto compen-
satefor the ISI employsthe Wiener filter minimizing the
MeanSquareError (MSE). For a Finite ImpulseResponse
(FIR) channeleven with spatio-temporatiiversity, the op-
timal MMSE filter is recursve [4]. In this paper we also
designa prefilter directly derived from the structureof the
Wienerfilter in the context of spatio-temporatliversity at
the recever (oversamplingor multisensor). The recursve
filter being optimizedfrom secondorder statisticsonly, it
requiresfew samplego be estimated.Moreover, we shav
it is ableto fully benefitfrom spatio-temporatiiversity.
Section2 containsa descriptionof the systemmodel.
Section3 showvs how to adaptthe structureof the Wiener
recever in a blind context with diversity. Simulationsand
analysisaredescribedespectrely in sectionst and>5.

2. PROBLEM FORMULATION

2.1. Channelmodelization

We areinterestedn the multichannelcommunicatiorsys-
tem obtainedrom spatio-temporatliversityattherecever.
A datastreams[n] is transmittedattheratel /T overafre-
gueng selectve channetorruptedoy additive noise.At the
m!" sensor, the receved continuousime basebandaignal
canbewrittenas: y™) (t) = 3, s[ile™) (t — iTy) + w(?)
wheree(™) (1) is the overall channelresponsépropagation
channelto the m'* antenna+ transmitfilters). Oversam-
pling the signalat the recever at N timesthe symbolrate
1/T, leadsto a multivariatediscrete-timemodelatthesym-
bol ratethatcanbe expresseds:

y[n] = elilsln — i] + w[n] 1)
where
y[n] = (y(o)(nTs)y(O)(nTs +Te).. .y(o)(nTs + (N -1T)
.. .y(M_l)(nTs) .. .y(M_l)(nTs + (N — 1)Tc)) ande[n]
of dggree L. is definedaccordingly (1) canbeviewedasa



cornvolutive Single Input/Multiple Outputs(SIMO) system
with L = N M outputs.

Lety(z) betherepresentationf y[n] usingthez-transform.

Similarly, we definee(z) andw(z). With thesedefinitions,
we maywrite:

y(2) = e(2)s(z) + w(z) (@)

2.2. Linear equalizer

We arelooking for anequalizerasallinearfilter g(z). The
equalizeddataare:

2() = 5(z) = ' (=) (2).

In the context of spatio-temporatliversity, a FIR Zero-
Forcingequalizeexistsif thecornvolution matrixof thechan-
nel 7 (e) is left-invertible, i.e. full rank which impliesin
particulamocommorzeroto thecomponentsf e(z). How-
ever, in the presencef additive noise,the Minimum MSE
(MMSE) is achieved by anlIR filter asexplainedbelow.

3. APREFILTERED BLIND STRUCTURE

3.1. Structure motivation: MMSE equalizer

Assumings[n] is white, unit varianceanduncorrelatedvith
thewhite noisew[n], thefilter optimizingtheMSE criterion
J(g) = E[|z[n] — s[n — v]|?] is describedy:

Bune(2) = 277 (07 I +e(z71)el (2)) (7)) (9)

wheres? denoteghenoisevariance4].
Usingthe matrixinversionlemma, it canberewritten as,

_ 2" e(z”tel(2) -1
Buuse(2) = o2 {IL o+ ef(z)e(z71) } o)
= z77 ! e(z_l) (4)

o? + ef(z)e(z71)

gwwse(z) canbe decomposeth a scalarrecursve filter
1
and

_ _ 1
9(2) = ryetpienTy = IR 0 () (2 1)
gwa (z) matchedo thechanne(seefig.1).

yin] + J e(z"1)

o? + e*(z)e(z’l)

Fig. 1. Wienerrecever for a SIMO system.

Theintereswof this structurds its robustnesso alack of
diversity Indeed asin themono-\ariatecasethevariations

WhenU and V' are L-long vectors,(7 + UVH)~! = T — (1 +
viuy-touvt.

of thefunction

d(o,w) = |le(e)[? + 0% = T3 @ (e7)]? + o2 de-
terminethedifficulty to equalizethe channel.This function
is all themoreflat thate(z) hasno commonzerosto all its
componentaindthat closeto commonzerosare far avay
from the unit circle. This is exactly the conceptof effec-
tivediversity, seg5]. Consequentlyncreasinghediversity
factor . canonly bebeneficial gvenif zerosof thedifferent
componentsirecloseof eachother(thegainis small). Note
thatin the caseof a total lack of diversity, all components

areequal,g.(z) = + L reducedo the caseof

having no diversityatall. Anyhow, it achiezesstill MMSE
equalization.

Concerningthe trans\ersal part, gua(z) cannotsuffer
from a lack of diversity (the optimalfilter for gya(z) is the
filter matchedo the channel).In addition,thefilter gy (z)
is independentf thenoiselevel.

3.2. Proposedstructure

Thegoalof thissectionis to calculateblindly g(z) usingthe
structureof (4). First, we show thatg.:(z) canbe deduced
from the spectradensityof y'. Indeedwe use:

syty(2) = Lo? + el (z)e(:71) 5)

from whichwe subtract(Z — 1)o?,whereo? is thesmallest
eigervalueof the covariancematrix relatedto y. Applying

spectralfactorization(FéyerRiesztheorem)we obtainthe
minimumphasefactordefinedasa scalay causabndstable
transferfunctiona(z) satisfying:

(0 +eT(z‘1)e(z))_1 = a(z)a(z7!) = gae(z). We sug-
gestalsoto do aforth andbackrecursvefiltering with a(z).

Remark 1 Inthemono-variatease a(z) is exactlyawhiten-
ing filter, sincethespectal densityis exactlyequalto s, (z) =
o? +e*(z)e(z71), seel6].

Theremainingprocessing; ~“e(z~1), canonly beper
formedblindly (sincethe channele(z) is unknavn), using
CMA for example:

Sua = aI'ngginE[“gr\TAA * Y[n]|2 - 1)2]

Notethat sincee is FIR, thefilter to be optimizedblindly
is FIR of the sameordet independentlyof the noiselevel
andof thediversityfactor With this structure the number
of filter tapsto be optimizedblindly is greatlyreduced.

3.3. Implementation

Sincetheestimatiorof «(z) is very sensitveto theerrorsof
estimationof the spectraldensitys, +, (z) andto the noise
variances?, we proposeo approximatethis recursve filter



by atrans\ersalfilter of orderZ,. Ideally, thelengthof this
filter shouldbe infinite. We will discussthe choiceof the
value L, in the sequelandsupposenly in this sectionthat
L, > L.. Thistransersalfilter a(z) canalsobe viewed
asthe linear predictorof order L, of the receved signal
yi. Since haslessvariationsthan

02+EILI_01 e(s*(z)e(l)(z—l)
ST 7es=1y» thepredictoris betterestimatedvith a FIR
filter of fixed length L,. This can be viewed as another
benefitirom spatio-temporadliversity.

Using a finite block of data, the proposedprocessing
structure prefilteredCMA, canbe describedy:

1. estimatiorof a(z), solvingthe Yule-Walkerequations:

(Ryty — (L —1)6*N)a=p (6)
WherefzyTy is theestimatedtovariancematrix of y 1,

b = [fyry[Uiy1y[2]. . Fyry[La — 1]]" and
a=[a[0]a[l]...a[Ld]]".

2. filtering by a(z). Then,consideringhe filtered data
blockin reverseordet filtering by a*(z),

3. blind optimizationof the remainingtrans\ersal FIR
filter usingblock CMA. We usea deterministicgra-
dient descentCMA, describedin the complex case
by: _

grg/ll/j_l) = gVS/IZA) - ,ungA ‘]CM(gV\(/IZA))J
whereVg,,, JCM(gA(AZA)) = 2(I®g’\t|A)QAy(g;IA®I)gMA -
4Rnyg;A, ® denotesheKroneckemproduct. Thees-
timatedcovariancematrix is givenby
Ry = 5= Yonco vi,[nlyl, [n] andthe estimated
guadricowariancematrix by
N | Ne—1 1 1
Qy = %= 2% (e, Inlyl ol © v, [y}, [n])
with N. beingthenumberof samplesisedfor estima-
tionandy, = [y[n]yln —1]...y[n — Ly + 1]]".

4. SIMULATIONS

Simulationresultsconfirm the goodbehaiour and perfor
manceof the proposedmethod. The diversity factor L is
equalto 2 in theseexperiments. s[n] is a BPSKi.i.d. se-
guence.Thelengthof both component®f the channel’.

is equalto 4. Eachplot shavstheresultsof 10 MonteCarlo
runs,wherethe datalengthfor BER estimationin eachone
was N, = 10000. Thesolid lines representecursve ap-
proacheswhereaghedashedinesrepresentrans\ersalap-
proachesThelengthof therecursve scalarprefilter g, ()

is equalto thechannelength L., asfor the secondstepfil-

ter (optimizedby theCM criterion(curve with ) andby the
MSE criterion (curve with 0)). For sakeof comparisonyve
usea trans\ersalfilter of length2.: both methodqrecur
sive andtrans\ersal)have still approximatvely an equiva-
lentcomputatiorcost.

4.1. Test Casel: influence of the number of samples
usedfor estimation

In thefirst casethebatchalgorithmof sectior3.3wastested
for both subchannels(!) ande(?) definedby their zeros
(0.8 —0.40.5]and[ 0.85 — 0.7 0.2 ]). Thealgorithmwas
run with differentnumbersof symbols(from 200 to 700)

usedfor the estimationof the covarianceandthe quadrico-
variancematrices. The noiselevel was setto SNR=9dB.

As depictedin fig.2, the performanceobtainedby the pre-

fiteredCMA andtherecursve MMSE aresimilar (MMSE

~ (.24 andMSE of prefilteredCMA = 0.26). Evenfor a

smallnumbersof symbolsusedfor estimation,N. = 250,

the differencebetweentheir errorsdoesnot exceed0.04.

Performancebtainedoy thetrans\ersalCMA filter is much
moreaffectedby the numberof sampledor the estimation
(MSEgrowsfrom 0.32t00.36 if N, decreasefom 500 to

250). As expected estimationof the secondbrderstatistics
is satisfactoryevenif N, is lessthan500.
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Fig. 2. Mean SquareError versusnumberof samplesat
SNR=9dB.

4.2. TestCase2: comparisonbetweenthe recursivestruc-
tur e and the transversal structure.

In this experimentthe zerosof the subchannelarerespec-
tively[0.95 —0.4]and[0.96 — 0.5 ] to makethechannel
very difficult (closeto commonzerosnearthe unit circle).

Thenumberof samplesisedfor estimationis equalto 250.

Fig.3shaws thelimitation of the structureusinga trans\er-

salfilter to equalizesucha channel. Also, with nearlythe
samecompleity (lessfor the proposedmethod),the pre-
filtered CMA outperformsthe transersal CMA (improve-
mentof 4d B for N, = 250) andis very closeto theWiener
performance.



10

—©- MMSE (recursive)
—+— CMA (transversal)
—— prefiltered CMA
1072 I I I I

9 10 13 14 15

1 12
SNR [dB] - Nb samples = 250

Fig. 3. Bit Error RateversusSignalto Noise Ratio [dB].
(numberof samplesusedfor estimationis equalto 250).

5. COMPARISON WITH PREWHITENED CMA

In this section,we comparethe proposedorefilteredCMA
with the prevhitenedCMA (asin [2] in its linear phase).
We know thatprewhitenedCMA hasimprovedcorvergence
sincethe blind optimizationmustequalizea unitary trans-
formation[3]. This is not true for the prefilteredCMA.
However, becausef its Wieneklike structuretheproposed
methodoutperformsthe prewhitenedCMA in fig.4. The
simulationsettingis thatof testcase2.
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Fig. 4. MeanSquareError vs. Signalto NoiseRatio [dB].
(numberof samplesusedfor estimationis equalto 300).

This behaior canbe explainedby the fact that CMA
with spatio-temporatliversity is known to corverge to an
equalizeresponseollinearto thatof Wiener(see{4]). Our
blind algorithmis constrainedo mimic the Wiener solu-

tion with lessequalizertapsto be optimizedblindly than
the prewhitenedCMA. We canshaw that,assumingperfect
prefilteringis achieved,the CM minimais achiered by

g(2) = agumse()

with
2 P

S 2(4-(1-9B)

whereA andB aredefinedfrom g(e/*) = ——aglf|(|zzzj)ﬂ§||g as,
: Do gLk Ef|s|]
= Jw d B = th = .
4= fotei A TPy

(Theproofcanbeprovidedby e-mail). In thenoiselesgase,
a is indeedequalto one.

6. CONCLUSION

We have proposeda new blind equalizatioralgorithmtak-
ing full benefifrom spatio-temporaliversityattherecever.
Ourapproacths derivedfrom therecursve partof theWiener
solutionwhich canbe deducedrom the dataspectralden-
sity. As aresult,theremainingtrans\ersefilter to be opti-
mizedblindly hasthe samelengthasthe channel.Simula-
tionsshav thatour prefilteredCMA outperformsotheral-
gorithmswhenonly asmallamounif datais available. The
achieved performancerevery closeto that of the Wiener
solution.
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