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ABSTRACT

In this paper, blind algorithms based on a deterministic frame-
work are proposed for equalization of finite-memory Linear Time-
Invariant (LTI) channels carrying OFDM signals. Unlike algo-
rithms proposed to date, the channel memory is notrestricted to be
smaller than the cyclic prefix. It is shown that equalizers termed
"synchronizer-equalizers” can be estimated blindly that always re-
sult in block-synchronized output, thus making separate synchro-
nization unnecessary. These algorithms are based on a determinis-
tic frame-work, and require short data records. Performance of the
proposed algorithms is analyzed by computer simulations.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) systems
have attracted a lot of attention in recent years because of the
advantages they offer in dealing with channel impairments
commonly found in many practical communication links (mobile
communications and Digital Subscriber Loops). In these systems,
the transmitter introduces redundancy R (in the form of a cyclic
prefix). As a consequence, a one-tap equalizer is sufficient at
the receiver, as is well known [1]. This is possible because
(in the presence of redundancy) the receiver can convert a
frequency-selective channel into a flat-fading one. However, this
requires the Impulse Response (IR) spread to be no longer than
the length of the cyclic prefix R (and the channel to satisfy some
conditions [2]). When the IR spread is large, the redundancy
required is very large, and considerably decreases transmission
efficiency unless the IR spread is decreased by other techniques [3].

Most algorithms proposed for equalization of OFDM sig-
nals are restricted to the case when the IR spread is no longer than
R [4][1]. In [5], an algorithm is proposed for identification of
channels that relaxes this constraint. However, it is a statistical
technique, and requires long data records. In this paper, a least-
square algorithm is proposed for direct estimation of equalizer
coefficients that does not place such restrictions on the impulse
response length when oversampling/diversity is used. This allows
us to increase transmission efficiency (decrease R) while having
several advantages over least-squares algorithms proposed for
traditional systems (R = 0) [6][7][8].

2. PROBLEM FORMULATION

In an OFDM system, some M transmitted symbols b, in an M-
length block byar4m,m = 0,1,...,M — 1 are encoded using

DFT as follows:
M—1
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The resulting P symbols appyp,p = 0,1,..., P — 1 consist ofa

cyclic prefix (redundancy) of R symbols. Clearly, these are simply
R repeated symbols. This repetition results in periodicity, and
makes the transmitted signal periodic with a period of P symbols
[5]. A composite impulse response i(k) is assumed to contain the
effects of transmitter and receive filters, besides the channel. The
received signal is then given by:
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where n(k) is the additive noise, and L is the over-sampling rate
used by the receiver. It is assumed in what follows that the IR of
the channel is finite, and spans L}, symbol durations. The problems
addressed in this paper are: 1) Blind estimation of equalizers, and
2) Estimation of blind block-Synchronizing equalizers.

3. EQUALIZATION OF OFDM SIGNALS

The receiver under-samples the received sequence by L to generate
a vector sequence r(k) of size L X 1:

r(k) = [r(kL)r(kL+1).....r(kL+L—1)"

= Y ap_n,h(nlL) + n(k) ®)

where L}, is the symbol spread of the impulse response, n(k)
[n(kL),...,n(kL + L — 1)]T is the vector of noise samples,
h(nL) = [k(nL),. .., h(nL+ L—1)]T are the L x 1 size vector
impulse response samples. Note that diversity of any other type can
be used in lieu of (or with) over-sampling. If additional diversity
of D is used, then the received vector is of size LD X 1, and so is
h(nL). Diversity is often obtained in wireless communications by
use of an antenna array [9]. It is assumed in this paper that symbol
synchronization information is available. However block synchro-
nization information is not always assumed. Received vectors in
N symbols are grouped into a vector ry (k) given by:

rn(k) = [T(k—-N+1),..., T (k)T

= Hyang + nn(k) = yn(k)+nn(k) @

where ny (k) is the NLD X 1 size vector of noise samples,
aNk = [@r—Nt1-L,,--- ,ak]T is an N + L sized vector of



transmitted symbols, and H is a NLD X (N + Lj,) size block
Hankel matrix of impulse response samples.

The received vector in (4) without the noise is denoted by
yn (k). In what follows we use vectors separated by P samples:
yn(kP) = yn(kP+r) = Hnaygpir ®)
In the above equation, r denotes the block- synchronization point.
If » = 0, the most recent symbol used by the channel (last row
of ay kp) is arp which is the first symbol of the k™ block. In
this section, we assume that block-synchronization information is
available, so that r can be fixed as desired. We collect K such
vectors (from as many blocks) in a matrix of size NDL x K:

Yy, (kP) = |yn.(kP)...yn.((k+ K —1)P)] ©)
= HNANEPir
where AN jgpir = [aN,kp+T, RV aN7(k+K,1)p+T] is the

N + Ly x K size matrix of transmitted symbols. We assume
(AS1) that ‘H n is made tall by choosing N > Lj with LD > 2
and that it is of full column rank (a standard assumption). It
therefore has a pseudo-inverse denoted by ”H,R, whose rows can
be used as equalizers of various delays. Our problem here is to
estimate these equalizers.

Several algorithms have been proposed for equalization of
single-tone systems based on a similar frame-work. However,
the matrix Ay rpyr is not of full row-rank in multi-tone sys-
tems because it will have repeated rows (when cyclic prefix is used).

We first assume that a zero-prefix of R symbols is used.
This amounts to using a guard-band between blocks of data. This
implies that axpy; = 0 for j = 0... R — 1. From the definition
of AN kpyr, itfollows thatevery r +1+ s+ M +1P" row of the
matrix is a zero row where s is an integer between 0 and R — 1, and
lisanintegersuchthat 0 <r+1+s+ M +IP < N+ L, —1.
Depending on the block synchronization point r, the number of
consecutive zero rows in Ay xpy, can vary from 1 to R. We
make the following observation:

Observation: The number N, of R consecutive zero rows
in A N,k p+r is given by the number of { that simultaneously satisfy
the following equations:

0
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Arguments: As discussed already, every r + 1 + s+ M + lpth
row is a zero row, for s = 0,1,...,R — 1, and
0 <r+1+M+s+1lp < N+ L, —1. For R con-
secutive zero rows to occur, the first inequality has to be satisfied
for s = 0 and the second for s = R — 1, which results in (7).

We now state the following theorem:

Theorem 1 The equalizer g,Tn form = r+1+ M+ R —
1 + P for 1l satisfying (7) lies in the (left) null-space of
(YN, (kP),...YNr+r-1(kP)] that is,

e Yn, (kP),....YNn,1r1(KP)] = O ®)

Further when N = P, and Ly, < r < P — 1, the only equalizer
satisfying (8) that is notin the left null-space of Hn is gl ( implying
that equalizers g3, 10 gL | can be estimated). Clearly, channels
with memory Ly, < P —1 can be perfectly equalized (using ngp,l)
with N = P when block synchronization information is available
andr is setfo P — 1.

Arguments: Since YN »(kP) = HNAN kpr. the equalizers g7Tn
that point to the zero rows of A n i p+- lie in the left null-space
of Yn,(kP). Tt follows from its Toeplitz nature that if the
r+14+M+iP"rowtother +14+ M +1P+ R — 1*" row
of AN kp+r are zero rows, thenther +1+ M + P + R — 1tk
tother +1 4+ M + IP + 2R — 2** rows of AN rpyr_1 are
all zero. This implies that the zero-row(s) common to both these
matrices is (are) the »r + 1 + M + R — 1 + Pt row(s). It
follows that g2 with m as defined above will be in the null-space
of [YN-(kP)...Ynr+r—1(kP)]. Further, L, < P — 1,
Ny = 1for Ly < r < P — 1. This implies that (in these
cases) there is only one vector that is in the left null-space
of Y ~(kP) that is not in the left null-space of Hy. It can
be shown that the minimum K required is suchthat KR > N+ 1L,

We discuss the case of Lp > P — 1 later in this section.
The above theorem shows that perfect zero-forcing equalization is
possible for channels with memory upto P — 1 whenever block
synchronization information is available. Equalization algorithms
proposed to date limit the memory to be less than R. As noted in
[5], this implies that transmission efficiency can be improved by
using R much smaller than the channel memory. To estimate the
equalizer gl uniquely using the theorem, it will be necessary to
ensure that the solution obtained for g7Tn does not belong to the
left null-space of H . We may place this additional constraint in
many different ways, and some of these are described briefly below.

Semi-blind algorithms: In several practical communication
links, some of the bits transmitted may be known at the receiver.
This happens for example when user identification bits, training
bits, or block/frame synchronization bits are used. Consider the
case when a sequence of K n known bits a are transmitted. We
can then place the following constraint on theorem 1:

gnlyns(kP),. .., yNotrxy-1(kP)] = & ©)

Unlike traditional methods that exploit the training sequence to
estimate the equalizer coefficients, the above method only uses
the known bits to ensure that the solution obtained is non-trivial.
It can therefore be expected to work with very short data records.
The second advantage is that the constraint placed above is linear,
so the linear equations (9) and (8) simply need to be solved together.

Quadratic constraint: We first rewrite (8) in the form:

R—1 7
min [Z lgm Y, (kP)I3 (10)
™ Lj=0 i
and place the following quadratic constraint:
o -
max [Z lgh YN -5 (kP)I3 (11)
™ j=1 J

where @ = 1,...,M. Clearly, when Q = M, all samples
within the block are utilized in the estimation procedure. We can



alternatively write the above constraint equation as an equality. In
either case, this is a standard least-squares problem with quadratic
constraint and can be solved with SVD using methods discussed
in [10].

Case of cyclic prefix: When a cyclic prefix is used, certain
R symbols in a blocks are repeated. It can be easily shown that:
T T
gnYNris(kP) = gnYNrimys(kP)

where s = 0,1,..., R — 1. We call the above the ’redundancy
equation’. Given a matrix Y (kP) of received vectors of
an OFDM signal using a cyclic prefix, it can be seen that
Yy (kP) — Yn-+m(kP) is the model for another OFDM
signal transmitting data over the same channel, but with zero-prefix
and modified data. It can be shown (proof is not presented here)
that under some conditions [Yn,r+s(kP) — YN, r+14s(kP)]
can be used in lieu of Y 4 4(kP) in Theorem 1. We do not
study the case of non-zero prefix separately in this paper.

Estimation of other Equalizers: When N = P, Theo-
rem 1 allows us to estimate the equalizers of delays g7 where
7 = Lp,..., P — 1. Equalizers of delays between 0 and Ly, — 1
and those between P and P 4 Lj, — 1 can be estimated indirectly
using estimates of other equalizers. It might sometimes be
desirable to estimate equalizers of desired delay independent of
others directly from the received sequence. Also, equalization of
channels with L;, > P is of interest. We establish in what follows
that by using a set of so called Toeplitz equations along with (8),
the remaining equalizers can be estimated (when L, < P), and
channels with larger memories can be equalized.

Theorem 2 When AS1 is satisfied, and0 < r < Ly —1, equalizers
gl and gfl L that satisfy the following Toeplitz equations:

ghYn. (kP) = gl.oYwn,ic(kP) (12)

along with (8) are gl and gTT+O provided they are not in the left
null-space of Hn and C' is chosen so that N + Ly, — P — r <
C<NALp—r—1

Arguments: Only an outline of the arguments is presented
here. If g7Tn satisfies (8), then it lies in the left null space
of [Yn(kP),...,YNrrr—1(kP)]. If we ignore vectors
that lie in the null space of Hy, the solutions are g7Tn where
m=7r+1+ M+ R —1+4 P where [ satisfies (7). When
N = Pand Ly < P, it can be shown that the equalizers gTT and
gTT+ p satisfy (8) for 0 < r < Lj — 1. The Toeplitz equation
is clearly satisfied by pairs of equalizers gl and gTT+O. It C
is so chosen that C > L — r, then gﬂ p cannot clearly be
a solution to the Toeplitz equation. These equations therefore
ensure that the lower delay equalizer is always chosen. Since the
maximum delay is P + Ln — 1, C has to satisfy the inequality:
Ly —r < C < P+ Lp —r —1. Similar arguments can be
presented for the case when Ly > P (N > P).

We note the following:

1) Note that while gTT for L, < r < P — 1 were estimated
independent of others, equalizers of small delays (0 < r < Ly —1)
and those of large delays (P < r < P + L — 1) are estimated
together in pairs when C' = P is used.

2) When N > P, it is not always possible to directly estimate

equalizers of all delays. Clearly, P equalizers of smallest delays
and P of largest delays are estimated.

3) The Toeplitz equations by themselves have been used to
estimate the equalizers gOT and g£+ L, —1 uniquely in the case of
single-tone systems [8][7]. However, these methods are known
to be sensitive to estimates of the channel memory L. In the
above theorem, the Toeplitz equations are used merely to eliminate
ambiguity in the estimates obtained by (8). It can therefore be
expected to result in relatively robust algorithms.

4) Note that the value of C is allowed to vary over a wide range
of P values. If the channel memory is underestimated by [, the
lower limit for C' no longer holds for » = 0...[. Note that at
other synchronization points, the above theorem still holds. If
the memory Lj, is overestimated, then choosing the lower limit
for C' always ensures Ly has to be overestimated by P (which is
extremely unlikely) before the limits on C' is violated.

5) It is emphasized that the algorithm resulting from the above
theorem (unlike algorithms proposed to date for multi-tone
systems) does not place any restrictions on the IR spread relative
to the block-size P or the redundancy R. It is only required that
N is chosen such that N > Ly,.

4. BLOCK SYNCHRONIZATION OF OFDM SIGNALS

In the previous section, algorithms designed for estimation of equal-
izers assumed that block-synchronization information was avail-
able. Because of the manner in which it is defined, g’ when
applied on Y (kP) always results in the first symbol of the
most-recently transmitted block of symbols. For the case when
N = P, application of theorem 1 results in g’ when Y N (kP)
was used in the analysis. Note that explicit knowledge of r (block-
synchronization information) was not required, provided r was in
the range Lr < r < P — 1. Theorem 2 used the Toeplitz equa-
tions to estimate equalizers of delays » and r + P in pairs where
0 <7 < Lp — 1. Once again, explicit knowledge of r is not nec-
essary provided itis in the range 0 < » < L, — 1 and C' is chosen
to be P, as noted earlier. It is interesting to investigate therefore
whether the ideas behind the two algorithms can be combined so
that knowledge of r is avoided. Such an algorithm can therefore
automatically estimate equalizers that always point to the first sym-
bol of the most recent block of transmitted data. We establish in
the following theorem that such equalizers (termed synchronizer-
equalizers) can be designed simply by choosing C' in theorem 2
carefully.

Theorem 3 When N = P, and Ly, < P, the onlyvector g7Tn thatis
in the left null-space of [Y N~ (kP), ..., YN r+r—1(kP)] but not
in the null-space of Hn, and also satisfies the Toeplitz equations
(12) for C = Ly, is the equalizer gF irrespective of the block-
synchronization point r. This implies that synchronizer- equalizers
can be designed that do not require any knowledge of r.

Arguments: Theorem 2 estimates g and gTT+O. If
0 < r < P —1, then C cannot exceed Lj. But this is the
minimum value of C' for = 0. This implies that C' = Ly, is the
only choice possible.

Remark:  Unlike other equalization algorithms proposed
here, the algorithm for estimation of the synchronizer-equalizer is
critical ly dependent on correct estimate of Ly,. It is noted that this
feature is shared by many subspace algorithms like [8] and [7] that
estimate equalizers for channels carrying single-tone signals.



5. PERFORMANCE ANALYSIS

We study performance of the equalization algorithm as-
suming that space diversity built with a two-sensor array is

available. The two impulse responses were assumed to be
the same as those used in [4]: h; = [0.5956,—0.3843 —
70.5020,—-0.3145 — 50.1178,0.1838 + ;0.3148] and
h, = [-0.7619 — ;0.1887,0.4166 + ;0.0618,0.1797 +

70.3201,—0.1815 — 40.1970]. The SNR was fixed at 25dB.
We choose P, M, R, r, @, and K to be 86, 2, Ly, 1 and 8
respectively, and use a zero-prefix. Note that the length of the
zero-prefix is insufficient for equalization by standard equalization
techniques proposed for OFDM. The input was assumed to be of
16-QAM type. The algorithm of this paper was used to estimate
the equalizer coefficients. The resulting eye diagram is depicted
before and after equalization in figure 1. Note that a larger ¢ can
give better performance under noisy conditions (so can larger R).
The MSE of the equalizer output is plotted in the figure versus
number of blocks used in the estimation. When a, is the actual
data, and a. is the recovered data, the MSE is defined as:

_ 1R la—a])?
MSE =4 ZT:O a2 13)
where R is the number of realizations used (100 here). It can be
seen that a small number of blocks K suffice for estimation of the
equalizer coefficients.
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Fig. 1. Eye diagram before (top) and after equalization (middle).
MSE of equalizer output versus number of blocks used K (bottom).



