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ABSTRACT

In this paper a novel signal subspace method for speech enhance-
ment is proposed. The algorithm is derived from the filterbank
interpretation of the truncated (quotient) singular value decompo-
sition (T(Q)SVD) algorithm. We derive a recursive version of this
algorithm which results in a recursively updated eigenfilterbank.
The proposed method benefits from a low system delay and a low
amount of musical noise in the enhanced speech signal.

1. INTRODUCTION

The main objective of speech enhancement algorithms is to im-
prove the performance of speech communication systems. One
important application is hands-free mobile telephony (e.g. in con-
nection with speech coding and echo cancelling) where speech
communication is affected by the presence of noise. The compro-
mise between speech distortion and the level (and characteristic)
of the residual noise is the key problem in speech enhancement.

The underlying principle of speech enhancement algorithms
based on the signal subspace paradigm [1], [2], [3] is to decom-
pose the vector space of the noisy speech signal into a signal sub-
space and a noise subspace. Enhancement is then performed by
removing the noise subspace and estimating the clean speech sig-
nal from the remaining signal subspace. An important feature of
this class of algorithms is that the annoying residual noise compo-
nents can be controlled while maintaining a low speech distortion.
The vector space decomposition can be performed by applying the
eigenvalue decomposition (EVD) to the correlation matrix of the
noisy speech signal. However, as the second order statistics are es-
timated from a number of signal vectors a better approach — from
a numerical point of view — is to organize the signal vectors in a
Hankel or Toeplitz data matrix and then apply the SVD [3]. The
main drawback of the above mentioned algorithms is the compu-
tational complexity and the delay which is due to the fact that they
are block-type algorithms.

Recently, recursive signal subspace based algorithms for speech
enhancement has been proposed [4], [5]. Here the computational
expensive EVD or SVD is replaced by alternative decompositions
or cheaper approximations.

In this paper we introduce a novel recursive eigenfilterbank
approach for speech enhancement. The approach is based on the
algorithms in [3] and the filterbank interpretation of these algo-
rithms [6]. By using the filterbank description of the subspace
methods we can handle colored noise using simple techniques and
at the same time we are able to study the speech distortion and the
noise reduction problems separately.

The rest of the paper is organized as follows. In Sec. 2 we give
a brief summary of the filterbank interpretation of the T(Q)SVD al-

gorithm. Based on this we derive the recursive implementation in
Sec. 3 and address some practical issues. In Sec. 4 we study the
proposed method through various simulations and a brief conclu-
sion is given in Sec. 5.

2. EIGENFILTERBANK

Our starting point is the real signal vector y = [y(N); :::; y(1)]T

consisting of the clean speech signal vector s and the additive noise
vector n, i.e. y = s+ n. Initially the noise is assumed white, but
we will later discuss how to handle colored noise. The first step in
the TSVD algorithm is to form a L�K Hankel data matrix from
the noisy speech vector y, where L + K � 1 = N and L > K.
We denote this matrix by H(y).

The next step is to compute the SVD of H(y):

H(y) =

KX
i=1

�iuiv
T
i ; (1)

where the left and right singular vectorsui and vi are orthonormal,
and the singular values �i are non-negative and appear in non-
decreasing order, �1 � � � � � �n � 0.

The third step is to approximate H(y) by a rank-r matrix
Hr(y) with r � K. There are several possibilities here, and in
a unified notation we can writeHr(y) as

Hr(y) =

rX
i=1

wi�iuiv
T
i ; r � K (2)

The least squares (LS) approximation, which is closest to H(y)
in the 2-norm and Frobenius norm, is obtained with wi = 1,
i = 1; : : : ; r. The minimum variance (MV) approximation [7],
which is the best estimate of the pure-signal matrix that can be
obtained by making linear combinations of the noisy data in the
matrix H(y), is obtained with wi = 1� �2noise=�

2

i , i = 1; : : : ; r,
where �2noise is the white noise variance. The spectral domain con-
straint (SDC) estimate proposed in [2] is designed to obtain a high
level of noise masking and uses wi = exp(���2noise=�

2

i ), where
� is an experimentally chosen constant which trades residual noise
against distortion.

The final step is to compute an estimate bs of the clean speech
vector. This is done by arithmetic averaging along the antidiago-
nals of Hr(y) and we denote this operation by bs = A(Hr(y)).

From [6] we have that the TSVD algorithm can be expressed
in terms of filtering operations:

bs = D

rX
i=1

wiHp(H(y)vi) (Jvi): (3)
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Fig. 1. The filter-bank interpretation of the TSVD algorithm.

Here J reverses vi and Hp(H(y)vi) is the Hankel matrix formed
from the zero-padded vector H(y)vi. This equation defines the
precise relation between the input vector y and the output vector bs.

We see that the output signal essentially consists of a weighted
sum of r intermediate signals si given by si = Hp(H(y)vi) (Jvi),
i = 1; : : : ; r, of which H(y)vi is a signal obtained by passing y
through a FIR filter with filter coefficients vi. Equivalently, since
Hp(H(y)vi) is an augmented Hankel matrix, si is a signal ob-
tained by passing the zero-padded H(y)vi through a FIR filter
with filter coefficients Jvi, i.e., the coefficients of the first filter in
reverse order. It is well known that this results in a zero-phase fil-
tered version of y. The weights simply represent r amplifiers with
gain wi and the diagonal matrixD represents an N -point window
originating from the averaging operationA(Hr(y)).

From the above discussion it is evident that the FIR filters vi
and Jvi constitute an analysis bank and a synthesis bank, respec-
tively. We emphasize that when r � rank(H(y)) and all wi = 1
this is a perfect reconstruction (PR) filterbank, and this property
can be maintained through up- and downsampling. Moreover,
since vi are the eigenvectors of the covariance matrix of the sig-
nal y, (3) describes an eigenfilterbank which is sketched in Figure
1. For completeness we have included all K filters corresponding
to the K SVD components of H(y), and a switch in each filter
branch. The TSVD output signal bs is then obtained by closing the
first r switches corresponding to the largest r singular values used
in (2).

As mentioned previously the TSVD algorithm requires that the
additive noise is white. In case of colored noise we must apply a
pre- and dewhitening procedure in the TSVD algorithm or alterna-
tively use the TQSVD algorithm. As described in [6] the TQSVD
algorithm has an filterbank interpretation equivalent to that of the
TSVD algorithm. Here the analysis filters are given by the gener-
alized eigenvectors and the synthesis filters are the (reversed) set
of biorthogonal vectors to the analysis set.

3. TIMEVARYING IMPLEMENTATION

Having introduced the filterbank interpretation of the T(Q)SVD al-
gorithm, we turn to the issue of a recursive implementation. This is
motivated by the fact that the speech signal is not stationary within
the usual block length, and hence the eigenvectors are timevarying
within this block. Also we could argue that the abrupt changes in
the eigenfilters in the block-based methods have no physical in-
terpretation. A solution which continuously track the eigenvectors
is therefore desired. This leads to timevarying filters in the filter-
bank and we address this issue now. As we shall see this is actu-
ally a generalization of the block based approach. We introduce a
slightly different notation in this subsection, but the changes will
be obvious.

Define the two vectors bs(k) = [bs(k); : : : bs(k�K + 1)]T and
y(k) = [y(k); : : : ; y(k � K + 1)]T where K < N . Assuming
stationarity we can write the rank r filterbank approach (without
averaging) as bs(k) = BWB

T
y(k); (4)

where the columns of the K � r matrices B;B constitutes a bi
orthogonal set. We term B = [b1; : : : ;bK ] the analysis set, and
B = [b1; : : : ;bK ] the synthesis set. FinallyW is a diagonal r�r
weighting matrix where the i’th diagonal element wi is chosen
according to which estimate is used (see the previous section).

Define the i’th expansion coefficient at time k as:

ci(k) = b
T

i y(k): (5)

Using this when reintroducing averaging we get the following for-
mula for the most recent element in bs(k):

bs(k) = 1

K

rX
i=1

KX
j=1

ci(k + j � 1)wibi;j ; (6)

where bi;j is the j’th element in bi. This is fully equivalent to the
filterbank approach, since one can just substitute bi and bi with
the desired vectors. That is, if we use a block based method, where
we discard the K � 1 first and K � 1 last samples, then (6) can
be used to calculate the individual samples. We emphasize that for
r � rank(H(y)) and all wi = 1 this approach still ensures PR. In
(6) all K synthesis possibilities for bs(k) is averaged, but actually
PR can be obtained when applying any number of synthesis possi-
bilities. This means that by choosing max(j) � K we can set the
delay from 0 to K � 1 samples. This is an important parameter
which is not present in a block based solution. Furthermore we
note that the averaging operation used in [6] is equivalent to the
summation over j followed by 1=K, but here we realize that the
averaging arises as the number of synthesis possibilities used. It
can be shown that in general we get a better signal estimate using
more synthesis possibilities (larger delay). In Sec. 4. the perfor-
mance is evaluated as a function of the delay.

It is now straightforward to extend (6) to the non-stationary
case. Using timevarying analysis and synthesis filters, i.e. bi(k)
and bi(k), we get

bs(k) = 1

K

rX
i=1

KX
j=1

ci(k+j�1)wi(k+j�1)bi;j(k+j�1); (7)

where we have changed ci(k) to

ci(k) = b
T

i (k)y(k): (8)

Note that the weights wi(k) now are timevarying due to the non-
stationary nature of the speech.

3.1. Tracking of eigenvectors

As mentioned we wish to use the (timevarying) eigenfilters of the
signal as analysis/synthesis filters. This can be accomplished using
a subspace tracker.

In most applications the additive noise is colored. Therefore
one needs to consider whether to pre- and dewhiten the signal
(standard eigenfilterbank) or to use the generalized eigenvectors,



i.e. the TQSVD. In the case of the generalized eigenvectors the in-
vestigated subspace trackers rely on the prewhitened autocorrela-
tion matrixR~y~y(k) = E[~y(k)~yH(k)] and the estimated eigenvec-
tors is then transformed into the generalized eigenvectors by use of
the inverse Cholesky factor of R~y~y(k). Both algorithms then re-
quire calculation of the biorthogonal set of synthesis vectors. This
large increase in complexity is of course undesirable. We therefore
propose to use a subspace tracker with pre- and dewhitening. This
also relies on the fact that as long as r is chosen large enough, then
there is no advantage in the generalized approach.

We studied 3 subspace trackers: Two based on fast orthog-
onal iteration (FOI) [8] (complexity O(Kr2) and O(Kr)) and
one based on RLS, the socalled projection approximation subspace
tracker (PASTd) algorithm (O(Kr)) [9].

The FOI ensures orthogonal estimates of the analysis vectors,
whereas PASTd only approximates orthogonality. When used in
the context of a filterbank this latter property is undesirable since
we again need to calculate the biorthogonal (synthesis) set to en-
sure PR. Thus we use one of the FOI algorithms in conjunction
with pre- and dewhitening.

3.2. Pre- and dewhitening

Let Ŝ(z) and Y (z) denote the Z-transforms of ŝ(t) and y(t), re-
spectively. Furthermore let A(z) denote a prewhitening filter (the
dewhitening filter is then A�1(z)). Now let Hpre(z) be the sig-
nal subspace based noise reduction (NR) filter estimated from the
prewhitened signal A(z)Y (z). Then we can express Ŝ(z) as:

Ŝ(z) = A�1(z)Hpre(z)A(z)Y (z) = Hpre(z)Y (z): (9)

This equation holds for a linear time invariant (LTI) system. Even
though we are considering a timevarying system we still consider
this equation valid (due to slow variation of Hpre(z)). This means
we can entirely avoid to insert pre- and dewhitening filters in the
signal path. We only need to prewhiten the signal to the subspace
tracker.

At first (9) may seem nothing more than a pleasing alternative
(we do not affect the signal prior to the NR filter), but actually (9)
enables us to move other signal altering methods out of the sig-
nal path, thereby, hopefully, reducing the overall signal distortion.
This is e.g. the case when combining the NR filter with an echo
shaping filter (see e.g. [10]) as postprocessing to an echo canceler.
This is an ongoing research topic.

4. SIMULATIONS AND RESULTS

In this section we will illustrate some of the properties of the pro-
posed noise reduction algorithm. To improve clarity, through all
simulations we track r = 16 eigenvectors of length K = 30 us-
ing theO(Kr2) FOI algorithm. The test signal is a 2 seconds long
Danish sentence (male speaker) and the additive noise is stationary
with car noise characteristics. Pre- and dewhitening is performed
by 12. order FIR and IIR filters, respectively.

4.1. Output segmental SNR

In Table 1 the segmental SNR obtained using the MV and the SDC
estimates are shown for different input SNRs. As proposed in
[2] we use � = 5 in the SDC estimate. When calculating the
segmental SNRs, the SNR value within each window is truncated
downwards at -10 dB and upwards at 35 dB. We see that the best

signal estimates are obtained by using SDC and that this yield an
improvement of 3-5 dB in the segmental SNR. Informal listening

Input
SNR

Input
segSNR

segSNR
(MV)

segSNR
(SDC)

0 dB -3.4 dB -0.6 dB 1.8 dB
5 dB -0.1 dB 2.9 dB 4.0 dB

10 dB 3.4 dB 5.5 dB 6.4 dB

Table 1. SegSNR obtained using MV and SDC estimates.

tests indicate — as in opposition to block based signal subspace
methods — that the proposed method only generates very little
musical noise. In fact, musical noise is not audible with an input
SNR of 10 dB or higher, and it is very weak at 5 dB. At 5 dB the
artifacts can be masked efficiently by adding comfort noise 20 dB
below the input noise level. The output speech is slightly reverber-
ant, due to the exponential window used in the subspace tracking.
This window is also essential to the character of the residual noise.

As mentioned previously the output SNR improves with the
number of synthesis possibilities used. In Figure 2 the output seg-
mental SNR, for the MV and SDC estimates, is plotted as a func-
tion of the number of synthesis possibilities used with K = 30.
The input overall SNR is 10 dB (segmental 3.4 dB) and each seg-
mental SNR is a mean over 10 runs. The figure indicates that if
the system delay is a critical parameter an appropriate number of
synthesis possibilities used might be around 10 for this setup.
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Fig. 2. Output segmental SNR as a function of the number of
synthesis possibilities used.

4.2. Signal distortion vs. noise reduction

Once the eigenvectors have been estimated the eigenfilterbank de-
scribes a linear system. This property will be exploited in the fol-
lowing to investigate the signal distortion and the noise reduction
separately. We denote the distorted signal by

~S(z) = Hpre(z)S(z) (10)

and the residual noise by

~N(z) = Hpre(z)N(z): (11)

Figure 3 illustrates the trade-off between signal distortion and noise
reduction as function of the estimated signal rank r. More specifi-



cally, the signal distortion is measured by the segmental signal-to-
reconstruction error ratio:

segSNR (s(k);~s(k)) = 10 � log
10

�
ks(k)k2

ks(k)� ~s(k)k2

�
(12)

The above measure is limited upwards at 35 dB in each block of
samples and averaged over the entire signal length. The noise re-
duction is calculated in a similar way, though the measure for each
block is restricted to a value of max. 25 dB. As expected the fig-
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Fig. 3. Signal distortion vs. noise reduction as a function of rank
truncation for the MV and SDC estimates.

ure shows that both signal distortion and noise reduction decrease
when the signal rank estimate is increased. The figure also shows
that the SDC estimate performs better than the MV, and when us-
ing the former almost identical results are obtained when apply-
ing the proposed r = 16 eigenvectors and the entire signal space
(r = 30). This indicates a robustness in the SDC estimate against
overdetermining the rank of the desired signal.

4.3. Noise masking

As indicated by the results above, there is still a significant amount
of residual noise in the enhanced signal. The better this noise is
masked by the speech signal the less audible and annoying it will
appear to the listener. To illustrate the noise masking capabilities
of the proposed algorithm Figure 4 shows the PSD’s (power spec-
tral densities) of the input signal, the input noise and the residual
noise, respectively. In this case we have applied the SDC esti-
mate and the input signal is a stationary AR process simulating a
speech vowel. The figure shows a significant noise attenuation out-
side the speech formants whereas there is virtually no suppression
within the formants. The resulting noise masking explains why the
residual noise is hardly audible even though Figure 3 indicates a
relatively moderate noise reduction.

5. CONCLUSION

In this paper we have proposed a recursively updated eigenfilter-
bank for speech enhancement. The method is a generalization of
the block based T(Q)SVD algorithms and can be used in the pres-
ence of white as well as colored noise. The proposed method pro-
duces very little musical noise which is in contrast to the block
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Fig. 4. PSD’s of the input signal, the noise and the residual noise.

based algorithms. Moreover, the recursive implementation bene-
fits from a low signal delay, which can actually be nullified at the
expense of performance. Finally, we have exploited the linearity
of the filterbank interpretation of the T(Q)SVD algorithm to obtain
new insights in signal subspace methods in general.
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