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ABSTRACT

Nonparametric estimation of interaction functions for two-
type pairwise interaction point processesis addressed. Such
aproblem is known to be challenging due to the intractable
normalizing constant present in the density function. It is
shown that the means of the marked interpoint distancefunc-
tions embedded in the two-type pairwise interaction point
process converge to the means of an inhomogeneous Pois-
son processes. This suggests a simple and effective non-
parametric estimation method. An example is presented to
illustrate the efficacy of our method. Our results can be gen-
eralized to multitype point processes in a straightforward
manner, although the notation is more involved.

1. INTRODUCTION

The class of pairwise interaction point processes has been
used in applications such as cosmology, ecology, forestry,
and seismology [4]. The density functions of these pro-
cesses are compl etely characterized by a univariateinterac-
tion function. Itiswell known that estimation of the interac-
tion function is nontrivia dueto the normalizing constant in
the density function. The problem of estimating this func-
tion for the case where only a single type of point is present
has been addressed in several papers, e.g., [3], [5]{7], [11]-
[13].

In this paper, we focus on multitype pairwise interaction
point processes, where there is more than one type of point.
In particular, we consider estimating the interaction func-
tions nonparametrically. Estimation of interaction functions
for multitype pairwise interaction point processes has been
considered in [1], [9], [8]. However, to the best of our
knowledge, no work on nonparametric estimation of multi-
type pairwise interaction point processes has ever been pub-
lished.

*The work of the second author was performed while he was with the
University of Wisconsin—-Madison.

W&i-Bin Chang*

Philips Research East Asia—Taipei
24F, 66, Sec. 1 Chung Hsiao W. Rd.
Taipel 100, Taiwan
weibin.chang@philips.com

This paper is organized as follows. In Section 2, the
mathematical definition of two-type pairwiseinteraction point
processesisgiven. We present alimit theorem regarding the
means of the embedded interpoint distance functionsin Sec-
tion 3. This theorem leads to the nonparametric estimation
method we propose in Section 4. A numerical example is
givenin Section 5. We conclude this paper in Section 6.

2. MATHEMATICAL MODEL

Let IM be afixed finite set; IM will be the mark space. With-
out loss of generality, weletIM = {0, 1} in this paper, i.e.,
we focus on two-type point processes. It is straightforward
to extend our results to multitype cases, athough the nota-
tionismoreinvolved. For eachn = 2,3,4,...,letID,, bea
bounded set in the plane IR? equipped with Euclidean norm
| -]]- A (ID,, x IM)"-valued random vector

En = (Xna Mn) = ((Xl,na Ml,n): ey (Xn,na Mn,n))

is called a two-type conditional binomial process with rela-
tiveintensity b if it has a density function of the form

fa) = —bmm,

n

Whereé- = (w,m) = (("I‘.l;ml)7 ) (xnamn))1 Z~n isthe
normalizing constant so that [, i f(€)d€ = 1,5 > 0
is called the relative mark intensity, and ny (m) is the num-
ber of type-1 pointsin £&. The name comes from the fact
that, conditioned on nq (M), the mark-1 points form abino-
mial process and so do the mark-0 points. Furthermore, the
M; ,, are Bernoulli random variables with the probability of
asuccess b times larger than that of afailure.

A two-type pairwise interaction point process with rela-
tive mark intensity b has a density function f,, with respect
to the distribution of the two-type conditional binomial pro-
cess with the same relative mark intensity, where

@) = 5 TI emom =2l @

" 1<i<j<n



In(1), the g, ., arecalled interaction functionswith ¢, ., =
Pw, foralv,w € M, and Z,, isthe normalizing constant.
Theideais that if ¢, ., (r) < 1, then redlizations in which
many point pairswith ||z; —z;|| ~ r and (m;, m;) = (v, w)
will have low probability. Since ¢, ., = @u,» and since
M = {0,1}, we can Write ¢y, = Pyt Hence,

n

H Pmi+m; (”xz —.’L'j“).

1<i<j<n

Notethat Z,, iscomputationally intractable except for trivial
Potw-

In this paper, werestrict our attention to processes show-
ing inhibition, i.e., 0 < @yt < 1, for adl v,w € M. In
addition, we assume that the interaction functions all have
finite interaction ranges. That is, there exists R > 0 such
that @,w(r) = 1 forr > R and for v,w € M. Hence,
realizations in which pairs of points that are close are dis-
couraged, while pairs of points that are far from each other
are neither encouraged nor discouraged.

3. LIMIT THEOREM

In this section, we establish a limit theorem regarding the
means of the marked interpoint distance functions Sf(-)
embedded in the two-type pairwise interaction point pro-
cess, where

SE(r) = Z 1gpy(ms +my) 1o ([l — z5l)),
1<i<j<n

for k = 0,1, 2. For each k£ and as a function of r, Sf(r) is
the number of point pairs with certain mark-pair combina
tionsin the realization £ with pairwise distance less than or
equal to r. It is ageneralization of the interpoint distance
function [10] in the one-type case.

Our limit theorem is based on the sparseness conditions
[14], which are purely geometrical requirementson how fast
the region ID,, grows relative to the number points n. The
precise conditions are

n(n —1) 7| In(r)|
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. "(n—l)/ |Br(n) ND,|
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where | - | isthe areafunction, B,(n) isthe ball centered at
n of radiusr,

B.(n) :== {0 e R*:|In—n'[| < r},

and I,,(r) isthe set of n for which the ball B,.(n) C ID,,,

n € R?,

I,(r) == {n €D, : B.(n) CD,}, n=23,....

Theorem 1 Denote by P, the distribution of the n-point
two-type pairwiseinteraction point process =,, with relative
mark intensity b and with piecewise-continuous interaction
functions ;. If the sparseness conditions (2), (3) are satis-

fied and if the D,, are such that 1/|ID,,| = O(n=2), then,
for k=0,1,2,
Ef,n[Sén (»] — [\k((O,r]), asn — oo,

where

A 1
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for A a Borel subset of (0, R].
The proof isgivenin[2].

4, NONPARAMETRIC ESTIMATION
Consider an N-point (IV is afixed constant) two-type pair-
wise interaction point process corresponding to unknown

inhibitive interaction functions ¢y, &k = 0,1, 2, with finite
interaction ranges, in an observation region ID. Since

i/ 22X or(r') dr' = 2Xrg(r),
dr Jo

if N islarge, then by Theorem 1, the ¢, can be approxi-
mated by

2 (dE5 [S2 (r
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Suppose we observe independent realizations ¢V, ¢,

., &) of the two-type pairwise interaction point pro-

cess. We can estimate the expectations in (4)—6) by the
following sample means

J
Ef;N [Sf Z g(J)
In order to compute the derivatives, we use cubic splinesto

fit the sample means first and then differentiate the approx-
imations since differentiation of splinesis straightforward.
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Note one would still have to know the valuesof A and b in
order to use the estimators (4)—6).

In[14], it was shown that Ep, [Sx, (r)] = Ar?,asn —
00, under the sparseness conditions, where P,, isthe distri-
bution of the single-type n-point binomial process. Hence,
giventhat IV islarge, we can generate K realizations of the
N-point binomial process { X ?}X | by Monte-Carlo sim-
ulation and estimate A by

. 1 X
A= K—ﬂZSX,(\’})(T)’ )
i=1

Note that, since points in each realization X 1(\}) of the bi-
nomial process are independent and identically uniformly
distributed, the simulation isfairly easy.

Estimation of b is more difficult. However, we may cir-
cumvent it by the following procedure. First, define

. 1 (dEg, [SE, (r)]
Pr(r) = ﬁ( ? ar » k=0,1,2.

The @y, are scaled versions of the estimates ¢, with un-
known scaling factors, say ~y,. In other words, @y, = vi k-
Once the ~y;, are known, we can recover the ¢. Since the
o1 have finite interaction ranges, say Ry, ¢x(r) = 1, for
r > Ry, k=0,1,2. Soidedly, ¢x(r) = vx, forr > Ry.
But since the estimates E,SN [S% . (r)] were used in comput-
ing the @y, the actual curves of @y (r) should exhibit oscil-
lations around the ~y, for »r > Ry, making it difficult not
only to obtain the 4, but also the interaction ranges Ry,. In
practice, one should plot the curves of the ¢, and find the
respective R, beyond which the curveshave leveled. By av-
eraging the values of the @y (r) for r > R, one can obtain
the estimates of the -y, using these averages.

5. NUMERICAL EXAMPLE

In our numerical example, we consider the 200-point two-
type point processin the 10-by-10 square with the following
family of interaction functions[12]
pr(r) = 1—6_’6’“TQ, k=0,1,2,

with (8o, 81, 32) = (20, 32,12). Although theseinteraction
functionsare completely parametrized by the 3y, we did not
assume the parametrized formsin our estimation. Therela-
tive mark intensity was b = 1.2 and assumed unknown. We
performed our estimation under two difference conditions.
Under thefirst condition, our observations consisted of only
20 realizations of this point process, while under the second
condition, we had 500 realizations as our observations.

To obtain X in (7), we generated 2500 samples of the
200-point single-type binomial process. The sample means

Es, [SE  (r)] were computed at 80 equally spaced points
in the interval [0, 0.8]. We plotted the estimates of the ¢y,
in Figs. 1-3. In these figures, the true interaction functions
were plotted in solid lines, estimates obtained by using 20
realizations were in dotted lines, and estimates obtained by
using 500 realizations were in dashed lines.

6. CONCLUSIONS

In this paper, wefirst established the theorem regarding the
convergence of the means of the marked interpoint distance
process embedded in the two-type pairwise interaction point
processwith piecewise-continuousinteraction functions. This
result can be generalized to the multitype case in a straight-
forward way, although the notation would be more compli-
cated. Based on our limit theorem, we proposed a honpara-
metric estimator for the interaction functions. Theresultsin
our numerical example suggest that our methods work quite
well.

We must emphasize that two-type pairwise interaction
point processes are more complicated, as suggested by [8].
The complication arises from the more complex interaction
structure; there are not only interactions between points of
the sametype, but also interactions between points of differ-
ent types. In addition, with the same total number of points,
information available per interaction is less in the two-type
setting than that in the one-type case because there are more
types of interactions. Therefore, results are less accurate in
the two-type case if the total number of points remains the
same. This may also suggest that the convergence to the
limit is slower in the two-type setting.
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