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ABSTRACT

Nonparametric estimation of interaction functions for two-
type pairwise interaction point processes is addressed. Such
a problem is known to be challenging due to the intractable
normalizing constant present in the density function. It is
shown that the means of the marked interpoint distance func-
tions embedded in the two-type pairwise interaction point
process converge to the means of an inhomogeneous Pois-
son processes. This suggests a simple and effective non-
parametric estimation method. An example is presented to
illustrate the efficacy of our method. Our results can be gen-
eralized to multitype point processes in a straightforward
manner, although the notation is more involved.

1. INTRODUCTION

The class of pairwise interaction point processes has been
used in applications such as cosmology, ecology, forestry,
and seismology [4]. The density functions of these pro-
cesses are completely characterized by a univariate interac-
tion function. It is well known that estimation of the interac-
tion function is nontrivial due to the normalizing constant in
the density function. The problem of estimating this func-
tion for the case where only a single type of point is present
has been addressed in several papers, e.g., [3], [5]–[7], [11]–
[13].

In this paper, we focus on multitype pairwise interaction
point processes, where there is more than one type of point.
In particular, we consider estimating the interaction func-
tions nonparametrically. Estimation of interaction functions
for multitype pairwise interaction point processes has been
considered in [1], [9], [8]. However, to the best of our
knowledge, no work on nonparametric estimation of multi-
type pairwise interaction point processes has ever been pub-
lished.

The work of the second author was performed while he was with the
University of Wisconsin–Madison.

This paper is organized as follows. In Section 2, the
mathematical definition of two-type pairwise interaction point
processes is given. We present a limit theorem regarding the
means of the embedded interpoint distance functions in Sec-
tion 3. This theorem leads to the nonparametric estimation
method we propose in Section 4. A numerical example is
given in Section 5. We conclude this paper in Section 6.

2. MATHEMATICAL MODEL

Let be a fixed finite set; will be the mark space. With-
out loss of generality, we let in this paper, i.e.,
we focus on two-type point processes. It is straightforward
to extend our results to multitype cases, although the nota-
tion is more involved. For each , let be a
bounded set in the plane equipped with Euclidean norm

. A -valued random vector

is called a two-type conditional binomial process with rela-
tive intensity if it has a density function of the form

where , is the
normalizing constant so that ,
is called the relative mark intensity, and is the num-
ber of type-1 points in . The name comes from the fact
that, conditioned on , the mark-1 points form a bino-
mial process and so do the mark-0 points. Furthermore, the

are Bernoulli random variables with the probability of
a success times larger than that of a failure.

A two-type pairwise interaction point process with rela-
tive mark intensity has a density function with respect
to the distribution of the two-type conditional binomial pro-
cess with the same relative mark intensity, where

(1)



In (1), the are called interaction functions with
for all , and is the normalizing constant.

The idea is that if , then realizations in which
many point pairs with and
will have low probability. Since and since

, we can write . Hence,

Note that is computationally intractable except for trivial
.

In this paper, we restrict our attention to processes show-
ing inhibition, i.e., , for all . In
addition, we assume that the interaction functions all have
finite interaction ranges. That is, there exists such
that for and for . Hence,
realizations in which pairs of points that are close are dis-
couraged, while pairs of points that are far from each other
are neither encouraged nor discouraged.

3. LIMIT THEOREM

In this section, we establish a limit theorem regarding the
means of the marked interpoint distance functions
embedded in the two-type pairwise interaction point pro-
cess, where

for For each and as a function of , is
the number of point pairs with certain mark-pair combina-
tions in the realization with pairwise distance less than or
equal to . It is a generalization of the interpoint distance
function [10] in the one-type case.

Our limit theorem is based on the sparseness conditions
[14], which are purely geometrical requirements on how fast
the region grows relative to the number points . The
precise conditions are

(2)

(3)

where is the area function, is the ball centered at
of radius ,

and is the set of for which the ball ,

Theorem 1 Denote by the distribution of the -point
two-type pairwise interaction point process with relative
mark intensity and with piecewise-continuous interaction
functions . If the sparseness conditions (2), (3) are satis-
fied and if the are such that , then,
for

as

where

for a Borel subset of .

The proof is given in [2].

4. NONPARAMETRIC ESTIMATION

Consider an -point ( is a fixed constant) two-type pair-
wise interaction point process corresponding to unknown
inhibitive interaction functions , , with finite
interaction ranges, in an observation region . Since

if is large, then by Theorem 1, the can be approxi-
mated by

(4)

(5)

(6)

Suppose we observe independent realizations , ,
of the two-type pairwise interaction point pro-

cess. We can estimate the expectations in (4)–(6) by the
following sample means

In order to compute the derivatives, we use cubic splines to
fit the sample means first and then differentiate the approx-
imations since differentiation of splines is straightforward.



Note one would still have to know the values of and in
order to use the estimators (4)–(6).

In [14], it was shown that , as
, under the sparseness conditions, where is the distri-

bution of the single-type -point binomial process. Hence,
given that is large, we can generate realizations of the

-point binomial process by Monte–Carlo sim-
ulation and estimate by

(7)

Note that, since points in each realization of the bi-
nomial process are independent and identically uniformly
distributed, the simulation is fairly easy.

Estimation of is more difficult. However, we may cir-
cumvent it by the following procedure. First, define

The are scaled versions of the estimates with un-
known scaling factors, say . In other words, .
Once the are known, we can recover the . Since the

have finite interaction ranges, say , , for
, . So ideally, , for .

But since the estimates were used in comput-
ing the , the actual curves of should exhibit oscil-
lations around the , for , making it difficult not
only to obtain the but also the interaction ranges . In
practice, one should plot the curves of the and find the
respective beyond which the curves have leveled. By av-
eraging the values of the for , one can obtain
the estimates of the using these averages.

5. NUMERICAL EXAMPLE

In our numerical example, we consider the 200-point two-
type point process in the 10-by-10 square with the following
family of interaction functions [12]

with . Although these interaction
functions are completely parametrized by the , we did not
assume the parametrized forms in our estimation. The rela-
tive mark intensity was and assumed unknown. We
performed our estimation under two difference conditions.
Under the first condition, our observations consisted of only
20 realizations of this point process, while under the second
condition, we had 500 realizations as our observations.

To obtain in (7), we generated 2500 samples of the
200-point single-type binomial process. The sample means

were computed at 80 equally spaced points
in the interval . We plotted the estimates of the
in Figs. 1–3. In these figures, the true interaction functions
were plotted in solid lines, estimates obtained by using 20
realizations were in dotted lines, and estimates obtained by
using 500 realizations were in dashed lines.

6. CONCLUSIONS

In this paper, we first established the theorem regarding the
convergence of the means of the marked interpoint distance
process embedded in the two-type pairwise interaction point
process with piecewise-continuous interaction functions. This
result can be generalized to the multitype case in a straight-
forward way, although the notation would be more compli-
cated. Based on our limit theorem, we proposed a nonpara-
metric estimator for the interaction functions. The results in
our numerical example suggest that our methods work quite
well.

We must emphasize that two-type pairwise interaction
point processes are more complicated, as suggested by [8].
The complication arises from the more complex interaction
structure; there are not only interactions between points of
the same type, but also interactions between points of differ-
ent types. In addition, with the same total number of points,
information available per interaction is less in the two-type
setting than that in the one-type case because there are more
types of interactions. Therefore, results are less accurate in
the two-type case if the total number of points remains the
same. This may also suggest that the convergence to the
limit is slower in the two-type setting.
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Fig. 1. Estimates of .
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Fig. 2. Estimates of .
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Fig. 3. Estimates of .
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