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ABSTRACT 

 
This paper proposes a new method, using neural networks, of 
adapting phone HMMs to noisy speech.  The neural networks 
are designed to map clean speech HMMs to noise-adapted 
HMMs, using noise HMMs and signal-to-noise ratios (SNRs) as 
inputs, and are  trained to minimize the mean square error be-
tween the output HMMs and the target noise-adapted HMMs.  
In evaluation, the proposed method was used to recognize noisy 
broadcast-news speech in speaker-dependent and -independent 
modes.  The trained networks were confirmed to be effective in 
recognizing new speakers under new noise and various SNR con-
ditions. 
 

1. INTRODUCTION 
 

Increasing the robustness of speech HMMs (hidden Markov 
models) to additive noise is one of the most important issues in 
state-of-the-art speech recognition.  HMMs with Gaussian mix-
tures are usually used to model speech represented by cepstral 
coefficients, meaning that speech is  modeled in the logarithmic 
spectral domain.  However, noise is often additive to speech in 
the waveform or in the linear spectral domain, so the incorpora-
tion of additive noise into HMMs is not straightforward.  Para l-
lel model combination (PMC, also called HMM composition) 
[1][2] is one of the most practically useful methods used to han-
dle additive noise.  PMC can derive noisy speech HMMs by 
combining clean speech HMMs, a noise HMM and a sig-
nal-to-noise ratio (SNR).  However, this method requires nu-
merical conversion of the distribution parameters between cep-
stral and linear spectral domains. 

This paper proposes a method using neural network mapping 
functions to learn  the effects  of additive noise on HMMs.  The 
neural network is trained using an input consisting of a clean 
speech HMM, noise HMM and the SNR.  The output of the 
neural network is a noisy speech HMM which, during training, is 
obtained by a combination of MLLR, MAP and VFS adaptation 
techniques.  The neural network learns the mapping between the 
input and output.  During testing, the mapping is used to obtain 
the noisy speech HMM from the inputs.  Once the network is 
trained under various conditions of speech, noise and SNR, the 
network is expected to produce noise-added speech HMMs under 
new speech, noise and SNR conditions within  the bounds of gen-
eralization capabilit ies  of neural networks.  In the present 
framework, only the mean vectors of Gaussian mixtures are 
adapted, and covariance values are preserved unchanged for sim-
plicity. 

This paper explains the principal methods employed, and 
then reports  on two experiments.  The first experiment numeri-
cally adds noises to utterances by a limited number of speakers.  
Actual utterances by a wide range of speakers under various noise 
conditions are used in the second experiment.  The paper con-

cludes  with a general discussion and issues related to future re-
search. 
 

2. PRINCIPLES OF NOISE-ADAPTED HMMS USING 
NEURAL NETWORKS  

 
2.1 Fundamental Principles 

 
Fig. 1: Structure of the neural network used for HMM noise ad-

aptation. 
 
Figure 1 shows the structure of the neural network that converts 
clean speech HMMs (Speech HMMs) into HMMs adapted to 
noise-added speech.  As previously mentioned, only the mean 
vectors are converted, keeping the covariance matrices un-
changed.  HMMs that model different noise types (Noise 
HMMs) are presumed to be represented by a single state with a 
single Gaussian distribution.  Since SNR values are also neces-
sary  to estimate the HMMs of noise-added speech, inputs of the 
neural networks are mean vectors of Gaussian mixtures included 
in a Speech HMM and a Noise HMM, and an SNR.  The SNR is 
implicitly computed in the network by providing mean energy 
values of both speech and additive noise as inputs to the network. 

The Speech HMMs are tied-state context -dependent phone 
HMMs with 2,106 states, and each state has four Gaussian mix-
tures.  Feature vectors have 34 parameters consisting of 
16-dimensional LPC (linear predictive coding) cepstra, delta LPC 
cepstra, log-energy and delta log-energy.  Only male utterances 
are used in the experiments described below.  The Speech 
HMMs were estimated fro m 13,270 training sentence utterances, 
spoken by 53 males in a quiet environment.  The utterances 
were sampled at 12kHz, quantized with 16 bits, and analyzed 
with a frame length of 32ms and a frame period of 8ms.  Cep-
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stral mean normalization/subtraction is  applied sentence by sen-
tence in order to handle the effects of voice individuality and the 
variation of microphones used in training and testing. 

Evaluation experiments were conducted on the recognition 
of broadcast-news utterances, using a system with a vocabulary 
size of 20,000 words.  Statistical language models were calcu-
lated using approximately 400,000 sentences of broadcast news 
text collected over five years, to which filled pauses were incor-
porated as the pronunciation of punctuation marks [3]. 
 
2.2 Neural Network Training 

 
The neural network is  trained to output mean vectors of the 
HMM adapted to noise-added speech (Noisy speech HMM), us-
ing as inputs the mean vectors of the Gaussian mixtures of 
(Clean) Speech HMM and Noise HMM, and the mean energy 
values of clean speech and noise.  Based on preliminary ex-
periments, one neural network is  constructed for each of the 
2,106 states in the Speech HMM. 

A feed-forward neural network with two hidden layers as 
shown in Figure 1 is  employed.  The (Clean) Speech HMM and 
Noise HMM each have 35 (34+1) input nodes , whereas the out-
put HMM has only 34 output nodes, since energy is not used in 
recognition.  Training is  performed using the error back-propa-
gation method.  Evaluation was conducted by mean square error 
(MSE), the most commonly used evaluation measure .  Each 
time an input-output pair is given to the network, the weighting 
factors of the network are incrementally updated, so that the local 
MSE between the mean vectors of the target HMMs and the ac-
tual netwo rk output is minimized. 

There are many ways to obtain the target or ideal output 
HMM, including HMMs made by PMC (HMM composition).  
In this paper, the target HMMs are made by the combination of 
MLLR, MAP and VFS methods [4].  Supervised adaptation is 
performed using the correct transcription of training utterances.  
An HMM adapted in this way can easily achieve likelihood 
maximization for short speech data, so that sentences of 
noise-added speech in a real environment of frequently varying 
noise can be individually used for training.  In the MLLR 
method, phonemes are clustered into seven classes corresponding 
to noise, consonants, and each of the five Japanese vowels , and a 
linear transformation is applied to each class.   
 

3. EXPERIMENTS USING ARTIFICIALLY CREATED 
NOISY SPEECH 

 
3.1 Experimental Method 

 
Fourteen broadcast-news sentence utterances by a male speaker 
(S1) recorded in a quiet studio were used, of which four sentences 
were used for adapting a speaker-independent HMM to the 
speaker’s voice.  The MAP-MLLR-VFS method that was used 
for making target noisy speech HMMs was also used for speaker 
adaptation.  The remaining 10 sentences were used for evalu a-
tion.  The following six noise types were added to training and 
testing utterances with seven SNRs: 0, 2, 5, 7, 10, 12, and 15dB. 
l Noise A: Elevator hall noise 
l Noise B: Crowd noise 
l Noise C: Computer room noise 
l Noise D: Street noise 
l Noise E: Noise in cars  
l Noise F: Exhibition hall noise 

In order to shorten computational time, only word bigrams 
were used as the language model for speech recognition experi-
ments in this section. 

The following neural networks were trained. 
l NN-1: Trained under nine conditions: combinations of three 

noise types (Noise A, C, E) and three SNR values (2, 7, 12dB) 
l NN-2: Trained under nine conditions: combinations of three 

noise types (Noise B, D, F) and three SNR values (2, 7, 12dB) 
 
3.2 Results 

 
 (1) Same noise and SNR conditions as training 
Noise-added test utterances were recognized by two HMMs ob-
tained as the output of neural networks (NN-HMMs) produced by 
NN-1 and NN-2, respectively, under the same additive-noise and 
SNR conditions as training. Word accuracy averaged over all 
noise and SNR conditions is  shown in Fig. 2.  For comparison, 
results of speaker-independent HMMs (SI-HMM), speaker- 
adapted HMMs (SA -HMM) before noise adaptation, and the 
target HMMs used in network training are also shown in the fig-
ure .  The NN-HMMs achieved even better results than the target 
HMM used to train the networks.  This indicates that the target 
HMMs may be over-tuned to the training sets and the NN-HMMs 
are more effective for new input utterances. 

Fig. 2: Word accuracy for same noise and SNR conditions as 
training. 

 
(2) Same noise but different SNR from training 
Recognition experiments were performed using NN-1 and NN-2 
under the same noise conditions as training, but with different 
SNRs .  That is, the same three noise types were respectively 
added to the clean test utterances, this time with SNRs of 0, 5, 10, 
and 15 dB (different from the training conditions 2, 7, 12 dB).  
The results in Fig. 3, averaged over all three noise types, show 
that NN-HMMs trained with SNRs  of 2, 7, and 12 dB achieve 
performance equal to or better than that of the target HMM in 
new SNR conditions, even at 0 and 15 dB which are outside the 
range of trained conditions. 
 
(3) Different noise types from training 
The following experiments were performed to test the applicabil-
ity of NN-HMMs to new noises. 
l NN-HMMs obtained as the output of NN-1 (trained on noises 

A, C, and E) were tested on utterances with noise B, D, or F 
with SNR of 0, 2, 5, 7, 10, 12 or 15 dB. 

l NN-HMMs obtained as the output of NN-2 (trained on noises 
B, D, and F) were tested on utterances with noise A, C, or E 
with SNR of 0, 2, 5, 7, 10, 12 or 15 dB.  

The results  in Fig. 4 show that NN-HMMs achieve better 
results than the target HMM.  This indicates that the networks 
are effective for new noise types. 
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Fig. 3: Word accuracy for same noise conditions as training but 
with different SNR. 

 

Fig. 4: Word accuracy for different noise types from training. 
 
3.3 Experiments Using New Speakers 

 
A supplementary experiment was performed, employing new 
speakers (S2, S3, and S4) in addition to the speaker used in the 
previous experiments (S1), to check the effectiveness of the neu-
ral networks in recognizing new speakers.  Table 1 shows the 
number of sentence utterances used in the experiment.  The 
speaker-independent HMM was first adapted to each new speaker 
using either three or four clean utterances , as shown in the table.  
The speaker-adapted HMMs were then adapted to additive-noise 
using the NN-1 trained with the utterances of S1.  Noise F, 
which was not included in the training of NN-1, was used for 
evaluation with SNRs of 0, 2, 5, 7, 10, 12, and 15 dB.  For 
comparison, target HMMs were directly produced by adapting the 
speaker-independent HMM to noisy utterances of each speaker 
made by adding noises to the utterances used for speaker adapta-
tion. 

 
Table 1: Number of sentence utterances used in experiment 
Speaker For speaker adapt. For evaluation Total 

S1 4 10 14 
S2 4 10 14 
S3 4 4 8 
S4 3 3 6 

 
Recognition results are shown in Fig. 5.  The performance 

of the NN-HMM for the new three speakers is still very close to 
that of the target HMM.  This indicates that the network is ef-

fective in recognizing new utterances by new speakers with new 
noise types.  

Fig. 5: Word accuracy for new speakers and new noise. 
 

 
4. EXPERIMENTS USING REAL NOISE-ADDED SPEECH 

BY A WIDE RANGE OF SPEAKERS  
 
The technique was tested using real broadcast-news speech that 
included reports from remote sites.  Fifty sentence utterances by 
a wide range of speakers, superimposed with noise and music, 
were extracted from the real broadcast-news speech and used for 
the experiments.  This represents a difficult task, since the noise 
are relatively unstationary and cannot realistically be modeled 
using only non-speech segments of each utterance.  From the 50 
utterances, two sets of 10 utterances (Case 1 and Case 2) were 
randomly chosen for neural network training, and the remaining 
40 utterances were used for testing in each case.  The distribu-
tion of SNR between the training and test sets of utterances is 
shown in Table 2.  A multiple search decoder was used in this 
experiment, and bigrams and trigrams were used as the language 
model in the first and second passes of the search, respectively. 

Since clean speech was not available for each speaker, 
HMM speaker adaptation could not be performed in this experi-
ment.  Consequently, a target HMM for neural network training 
was  produced by adapting the SI clean speech HMM (SI-HMM) 
to each noisy training utterance.  The MAP-MLLR-VFS method 
was used for adaptation in the same way as in the previous ex-
periments.   

The noise HMM, consisting of a single state with a single 
Gaussian distribution, is trained using non-speech segments of 
each utterance in the training set.  The neural networks are then 
trained so that SI-HMM, instead of SA -HMM, is mapped to the 
target noisy speech HMM.  Therefore, not only noise but also 
speaker effects are learned by the neural network.  This means 
that the training process for noise effects is contaminated by 
voice individuality.  Two neural networks were trained using 
each training set of 10 sentence utterances.  There were 40 in-
put-output pairs (10 sentences by 4 mixtures) for each training 
set. 

Results broken down into different SNR ranges are given in 
Fig. 6.  Here, for comparison, a target HMM was produced for 
each test utterance by supervised adaptation using the 
MAP-MLLR-VFS method.  The figure  shows that the 
NN-HMM is useful for improving recognition performance at 
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SNRs  below 20dB, while no improvement is observed above 
20dB.  This is probably because the noise level in the SNR 
range above 20dB is very low, and therefore the effect of noise on 
speech is low, so the target HMMs are mainly adapting to the 
voice individuality of the speaker.  As a result, the network 
trained by using different speakers ’ utterances  is not effective in 
such conditions.  The overall gap between performance of the 
NN-HMM and the target HMM is considered to be attributable to 
speaker adaptation. 

A supplementary experiment was performed to compare the 
results of NN-based noise adaptation with that of the PMC 
(HMM composition) method.  Experimental results showed that 
NN-based method performed significantly better than PMC.  
This may be because baseline performance prior to adaptation for 
the latter method was significantly worse than the former method.  
The reason for the poor baseline performance of PMC is  due to 
the fact that cepstral mean normalization/subtraction cannot be 
combined with PMC. 
 
Table 2: Distribution of SNR among training and test sets  of 

utterances. 
 Number 

of sentences 
Min-Max 

(dB) 
Average 

(dB) 
Standard
Dev. (dB)

Training 10 13.8-19.8 17.1 2.0 Case 1 
Test set 40 8.2-26.3 17.3 5.3 
Training 10 9.3-23.1 14.1 3.9 Case 2 
Test set 40 8.2-26.3 18.0 4.7 

Fig. 6: Word accuracy for different SNR levels . 
 
 

5. CONCLUSION 
 
This paper has reported the investigations of HMM adaptation 
using neural networks, with the intent of improving large-vo-
cabulary continuous-speech recognition accuracy for noise-added 
speech.  The networks were trained by applying the mean 
vectors of phone HMMs estimated from clean speech, the mean 
vectors of noise HMMs estimated from noise extracted from 
input utterances, and the mean energies of both clean speech and 
noise as input values , and applying the mean vectors of HMMs 
adapted to noise-added speech as output values.  Once trained, 
the network produces noise-adapted HMMs that use clean speech 
phone HMMs, a noise HMM, and the mean energies of speech as 
inputs into the network under varying noise conditions. 

The first experiment involved using the speech signals by a 
single speaker with noise for neural network training under vari-

ous evaluation conditions.  The results of the experiment 
showed that the output HMMs of the neural networks achieved 
almost the same word accuracy as the HMM made by supervised 
adaptation using noise-added speech.  These results indicate the 
fundamental effectiv eness of the method proposed.  Neural 
networks trained by a single speaker’s utterances were then ap-
plied to noise-added speech uttered by different speakers, and it 
was confirmed that the neural networks could be successfully 
applied to new speakers and new noise types. 

The second experiment was performed using real broadcast 
news speech distorted by various types of noise, including reports 
from remote sites.  The effectiveness of the proposed method for 
noise-added speech under real conditions was confirmed. 

It may be beneficial to attempt to apply the neural networks 
trained to the noise-added single speaker utterances in the first 
experiment, to adapting speaker-independent HMMs and use the 
output HMMs for recognizing noisy broadcast news speech.  
Future work will include neural network training for additive 
noise using a large database consisting of pairs of clean speech 
and noise-added speech by many speakers, after separating out 
the effects of voice individuality. 

So far, experiments have used the MAP-MLLR-VFS tech-
nique to produce target HMMs with short utterances.  This 
method is not necessarily the best for adapting HMMs to additive 
noise, and better techniques such as PMC (HMM composition) 
with the likelihood maximization framework [5] should be con-
s idered. 

Future investigations will include trials using Gaussian mix-
ture noise modeling instead of single Gaussian modeling, and the 
adaptation of covariance matrix components  of speech HMMs.  
It is also important from a practical perspective to establish an 
automatic and efficient method for separating speech and noise 
periods.  Although this paper investigated only the influence of 
additive noise, actual speech usually involves the combination of 
various distortions including multiplicative (convolutional) dis-
tortions.  It is therefore important to investigate new methods to 
simultaneously handle the various components of complex dis tor-
tions. 
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