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ABSTRACT

This paper proposes a new method, using neural networks, of

adapting phone HMMs to noisy speech. The neural networks
are designed to map clean speech HMMs to noise-adapted
HMMs, using noise HMMs and signal-to-noise ratios (SNRs) &
inputs, and are trained to minimize the mean square error be-
tween the output HMMs and the target noise-adapted HMMs.
In evaluation, the proposed method was used to recognize noisy
broadcast-news speech in speaker-dependent and -independent
modes. The trained networks were confirmed to be effective in
recognizing new speakers under new noise andvarious SNR con-
ditions.

1. INTRODUCTION

Increasing the robustness of speech HMMs (hidden Markov
models) to additive noise is one of the most important issues in
state-of-the-art speech recognition. HMMs with Gaussian mix-
tures are usually used to model speech represented by cepstral
coefficients, meaning that speech is modeled in the logarithmic
spectral domain. However, noise is often additive to speech in
the waveform or in the linear spectral domain, so the incorpora-
tion of additive noise into HMMs is not straightforward. Paral-
lel model combination (PMC, also called HMM composition)
[1][2] is one of the most practically useful methods used to han-
die additive noise. PMC can derive noisy speech HMMs by
combining clean speech HMMs, a noise HMM and a sg-
nal-to-noise ratio (SNR). However, this method requires nu-
merical conversion of the distribution parameters between cep-
stral and linear spectral domains.

Thispaper proposes amethod usingneural network mepping
functions to learn the effects of additive noise on HMMs. The
neural network is trained using an input consisting of a clean
speech HMM, noise HMM and the SNR. The output of the
neural network isanoisy speech HMM which, during training, is
obtained by a combination of MLLR, MAP and VFS adaptation
techniques. The neural network learns the mapping between the
input and output. During testing, the mapping is used to obtain
the noisy speech HMM from the inputs. Once the network is
trained under various conditions of speech, noise and SNR, the
network is expected to produce noise-added speech HMM sunder
new speech, noise and SNR conditions within the bounds of gen-
eralization capabilities of neural networks. In the present
framework, only the mean vectors of Gaussian mixtures are
adapted, and covariance values are preserved unchanged for sim-
plicity.

This paper explains the principal methods employed, and
then reports on two experiments. The first experiment numeri-
cally adds noises to utterancesby a limited number of speakers.
Actual utterances by awide range of speakersunder various noise
conditions are used in the second experiment. The paper con-

cludes with a general discussion and issues related to future re-
search.

2. PRINCIPLES OF NOISEEADAPTED HMM S USING
NEURAL NETWORKS

2.1 Fundamental Principles
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Fig. 1: Structure of the neural network used for HMM noise ad-
aptation.

Figure 1 shows the structure of the neural network that converts
clean speech HMMs (Speech HMMs) into HMMs adapted to
noise-added speech. As previously mentioned, only the mean
vectors are converted, keeping the covariance matrices un-
changed. HMMs that model different noise types (Noise
HMMs) are presumed to be represented by a single state with a
single Gaussian distribution. Since SNR values are also heces-
sary to estimate the HMMs of noise-added speech, inputs of the
neural networks are mean vectors of Gaussian mixtures included
in a SpeechHMM and aNoiseHMM, andan SNR. The SNRis
implicitly computed in the network by providing mean energy
values of both speech and additive noise asinputsto the network.
The Speech HMMs are tied-state context -dependent phone
HMMs with 2,106 states, and each state has four Gaussian mix-
tures. Feature vectors have 34 parameters consisting of
16-dimensional LPC (linear predictive coding) cepstra, deltaLPC
cepstra, log-energy and delta log-energy. Only male utterances
are used in the experiments described below. The Speech
HMMs were estimated from 13,270 training sentence utterances,
spoken by 53 males in a quiet environment. The utterances
were sampled at 12kHz, quantized with 16 bits, and analyzed
with a frame length of 32ms and a frame period of 8ms. Cep-



stral mean normalization/subtraction is applied sentence by se-
tence in order to handle the effects of voice individuality and the
variation of microphones used in training and testing.
Evaluation experiments were conducted on the recognition
of broadcast-news utterances, using a system with a vocabulary
size of 20,000 words. Statistical language models were calcu-
lated using approximately 400,000 sentences of broadcast news
text collected over five years, to which filled pauses were incor-
porated as the pronunciation of punctuation marks[3].

2.2 Neural Network Training

The reural network is trained to output mean vectors of the
HMM adapted to noise-added speech (Noisy speech HMM), us-
ing as inputs the mean vectors of the Gaussian mixtures of
(Clean) $eech HMM and Noise HMM, and the mean energy
values of clean speech and noise. Based on preliminary ex-
periments, one neural network is constructed for each of the
2,106 statesin the Speech HMM.

A feed-forward neural network with two hidden layers as
shown in Figure 1is employed. The (Clean) Speech HMM and
Noise HMM each have 35 (34+1) input nodes, whereas the out-
put HMM has only 34 output nodes, since energy is not used in
recognition. Training is performed using the error back-propa-
gation method. Evaluation was conducted by mean square error
(MSE), the most commonly used evaluation meesure. Each
time an input-output pair is given to the network, the weighting
factors of the network are incrementally updated, so that the local
MSE between the mean vectors of the target HMMs and the ac-
tual network output is minimized.

There are many ways to obtain the target or ideal output
HMM, including HMMs made by PMC (HMM composition).
In this paper, the target HMM s are made by the combination of
MLLR, MAP and VFS methods [4]. Supervised adaptation is
performed using the correct transcription of training utterances.
An HMM adapted in this way can easily achieve likelihood
maximization for short speech data, so that sentences of
noise-added speech in a real environment of frequently varying
noise can be individually used for training. In the MLLR
method, phonemes are clustered into seven classes corresponding
to noise, consonants, and each of the five Japanese vowels, and a
linear transformation is applied to each class.

3. EXPERIMENTS USING ARTIFICIALLY CREATED
NOISY SPEECH

3.1 Experimental Method

Fourteen broadcast-news sentence utterances by a male speaker
(S1) recorded in aquiet studio were used, of which four sentences
were used for adapting a speaker-independent HMM to the
speaker’s voice. The MAP-MLLR-VFS method that was used
for making target noisy speech HMMs was also used for speaker
adaptation. The remaining 10 sentences were used for evalua-
tion. The following six noise types were added to training and
testing utterances with seven SNRs: 0, 2,5, 7, 10, 12, and 15dB.
Noise A: Elevator hall noise
Noise B: Crowd noise
Noise C: Computer room noise
Noise D: Street noise
Noise E: Noisein cars
Noise F: Exhibition hall noise

In order to shorten computational time, only word bigrams
were used as the language model for speech recognition experi-
ments in this section.

The following neural networks were trained.
® NN-1: Trained under nine conditions. combinations of three
noisetypes(Noise A, C, E) and three SNR values (2, 7, 12dB)
® NN-2: Trained under nine conditions: combinations of three
noisetypes(NoiseB, D, F) and three SNR values (2, 7, 12dB)

3.2 Results

(1) Same noise and SNR conditions astraining

Noise-added test utterances were recognized by two HMMs ob-
tained asthe output of neural networks (NN-HMMs) produced by
NN-1 and NN-2, respectively, under the same additive-noise and
SNR conditions as training. Word accuracy averaged over al
noise and SNR conditions is shown in Fig. 2. For comparison,
results of speaker-independent HMMs (SI-HMM), speaker-
adapted HMMs (SA -HMM) before noise adaptation, and the
target HMMs used in network training are also shown in the fig-
ure. The NN-HMMs achieved even better results than the target
HMM used to train the networks. This indicates that the target
HMMs may be over-tuned to the training sets and the NN-HMMs
are more effective for new input utterances.
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Fig. 2: Word accuracy for same noise and SNR conditionsas
training.

(2) Same noise but different SNR from training

Recognition experiments were performed using NN-1 and NN-2
under the same noise conditions as training, but with different
SNRs. That is, the same three noise types were respectively
added totheclean test utterances, thistime with SNRs of 0, 5, 10,
and 15 dB (different from the training conditions 2, 7, 12 dB).
The results in Fig. 3 averaged over al three noise types, show
that NN-HMMs trained with SNRs of 2, 7, and 12 dB achieve
performance equal to or better than that of the target HMM in
new SNR conditions, even at 0 and 15 dB which are outside the
range of trained conditions.

(3) Different noise typesfrom training

The following experiments were performed to test the applicabil-

ity of NN-HM M s to new noises.

® NN-HMMs obtained as the output of NN-1 (trained on noises
A, C, and E) were tested on utterances with noise B, D, or F
with SNR of 0, 2, 5, 7, 10, 12 or 15 dB.

® NN-HMMs obtained as the output of NN-2 (trained on noises
B, D, and F) were tested on utterances with noise A, C, or E
with SNR of 0, 2, 5, 7, 10, 12 or 15 dB.

The results in Fig. 4 show that NN-HMMs achieve better
results than the target HMM. This indicates that the networks
are effective for new noisetypes.
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Fig. 3: Word accuracy for same noise conditions as training but
with different SNR.
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Fig. 4: Word accuracy for different noise types from training.

3.3 Experiments Using New Speakers

A supplementary experiment was performed, employing new
speakers (S2, S3, and $4) in addition to the speaker used in the
previous experiments (S1), to check the effectiveness of the neu-
ral networks in recognizing new speakers. Table 1 shows the
number of sentence utterances used in the experiment. The

speaker-independent HMM was first adapted to eachnew speaker
using either three or four clean utterances, as shown in the table.
The speaker-adapted HMMs were then adapted to additive-noise
using the NN-1 trained with the utterances of S1. Noise F,

which was not included in the training of NN-1, was used for

evaluation with SNRs of 0, 2, 5, 7, 10, 12, and 15 dB. For

comparison, target HMMs weredirectly produced by adapting the
speaker-independent HMM to noisy utterances of each speaker

made by adding noises to the utterances used for speaker adapta-
tion.

Table 1. Number of sentence utterances used in experiment

Speaker |For speaker adapt| For evaluation Total
Sl 4 10 14
S2 4 10 14
S3 4 4 8
A 3 3 6

Recognition results are shown in Fig. 5.  The performance
of the NN-HMM for the new three speakersis still very close to
that of the target HMM. This indicates that the network is ef-

fective in recognizing new utterances by new speakers with new
noisetypes.
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Fig. 5: Word accuracy for new speakers and new noise.

4. EXPERIMENTS USING REAL NOISEADDED SPEECH
BY A WIDE RANGE OF SPEAKERS

The technique was tested using real broadcast-news speech that
included reports from remote sites. Fifty sentence utterances by
a wide range of speakers, superimposed with noise and music,
were extracted from the real broadcast-news speech and used for
the experiments. This represents a difficult task, since the noise
are relatively unstationary and cannot realistically be modeled
using only non-speech segments of each utterance. From the 50
utterances, two sets of 10 utterances (Case 1 and Case 2) were
randomly chosen for neural network training, and the remaining
40 utterances were used for testing in each case. The distribu-
tion of SNR between the training and test sets of utterances is
shown in Table 2. A multiple search decoder was used in this
experiment, and bigrams and trigrams were used asthe language
model in the first and second passes of the search, respectively.

Since clean speech was not available for each speaker,
HMM speaker adaptation could not be performed in this experi-
ment. Conseguently, a target HMM for neural network training
was produced by adapting the Sl clean speech HMM (SI-HMM)
to each noisy training utterance. The MAP-MLLR-VFS method
was used for adaptation in the same way as in the previous ex-
periments.

The noise HMM, consisting of a single state with a single
Gaussian distribution, is trained using non-speech segments of
each utterance in the training set. The neural networks are then
trained so that SI-HMM, instead of SA -HMM, is mapped to the
target noisy speech HMM. Therefore, not only noise but also
speaker effects are learned by the neural network. This means
that the training process for noise effects is contaminated by
voice individuality. Two reural networks were trained using
each training set of 10 sentence utterances. There were 40 in-
put-output pairs (10 sentences by 4 mixtures) for each training
set.

Results broken down into different SNR rangesare given in
Fig. 6. Here, for comparison, atarget HMM was produced for
each test utterance by supervised adaptation using the
MAP-MLLR-VFS method. @ The figure shows that the
NN-HMM is useful for improving recognition performance at



SNRs below 20dB, while no improvement is observed above
20dB. This is probably because the noise level in the SNR
range above 20dB isvery low, and therefore the effect of noise on
speech is low, so the target HMMs are mainly adapting to the
voice individuality of the speaker. As a result, the network
trained by using different speakers’ utterances is not effective in
such conditions. The overall gap between performance of the
NN-HMM and the target HMM is considered to be attributable to
speaker adaptation.

A supplementary experiment was performed to compare the
results of NN-based noise adaptation with that of the PMC
(HMM composition) method. Experimental results showed that
NN-based method performed significantly better than PMC
This may bebecause baseline performanceprior to adaptation for
the latter method was significantly worse than the former method.
The reason for the poor baseline performance of PMC is due to
the fact that cepstral mean normalization/subtraction cannot be
combined with PMC.

Table 2: Distribution of SNR among training and test sets of

utterances.
Number | Min-Max |Average Standard
of sentences (dB) (dB) |Dev. (dB)

138198 | 17.1 2.0
8.2-26.3 173 53

Case 1|Training 10
Test set 40

9.3-23.1 14.1 3.9
8.2-26.3 18.0 4.7

Case 2|Training| 10
Test set 40
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Fig. 6: Word accuracy for different SNR levels.

5.CONCLUSION

This paper has reported the investigations of HMM adaptation
using neural networks, with the intent of improving large-vo-
cabulary continuous-speech recognition accuracy for noise-added
speech. The networks were trained by applying the mean
vectors of phone HMMs estimated from clean speech, the mean
vectors of noise HMMs estimated from noise extracted from

input utterances, and the mean energies of both clean speech and
noise as input values, and applying the mean vectors of HMMs
adapted to noise-added speech as output values. Once trained,

the network produces noiseadapted HMMsthat use clean speech
phone HMMs, anoise HMM, and the mean energies of speech as
inputs into the network under varying noise conditions.

The first experiment involved using the speech signals by a
single speaker with noise for neural network training under vari-

ous evaludgion conditions. The results of the experiment
showed that the output HMMs of the neural networks achieved
amost the same word accuracy asthe HMM made by supervised
adaptation using noise-added speech. These results indicate the
fundamental effectiveness of the method proposed. Neural
networks trained by a single speaker’s utterances were then -
plied to noise-added speech uttered by different speakers, and it
was confirmed that the neural networks could be successfully
applied to new speakers and new noisetypes.

The second experiment was performed using real broadcast
news speech distorted by varioustypes of noise, including reports
from remotesites. The effectiveness of the proposed method for
noise-added speech under real conditions was confirmed.

It may be beneficial to attempt to apply the neural networks
trained to the noise-added single speaker utterances in the first
experiment, to adapting speaker-independent HMMs and use the
output HMMs for recognizing noisy broadcast news speech.
Future work will include neural network training for additive
noise using a large database consisting of pairs of clean speech
and noise-added speech by many speakers, after separating out
the effects of voice individuality.

So far, experiments have used the MAP-M LLR-VFS tech-
nique to produce target HMMs with short utterances. This
method is not necessarily the best for adapting HMMsto additive
noise, and better techniques such as PMC (HMM composition)
with the likelihood maximization framework [5] should be con-
sidered.

Future investigations will include trials using Gaussian mix-
ture noise modeling instead of single Gaussian modeling, and the
adaptation of covariance matrix components of speech HMMs
It is also important from a practical perspective to establish an
automatic and efficient method for separating speech and noise
periods. Although this paper investigated only the influence of
additive noise, actual speech usually involves the combination of
various distortions including multiplicative (convolutional) dis-
tortions. It is therefore important to investigate new methods to
simultaneously handle thevarious components of complex distor-
tions.
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