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ABSTRACT
It is often required to apply a shift in frequency to the chan-
nelised data within a DFT filterbank. An example applica-
tion is the frequency domain implementation of the cyclic
Wiener filter. A common approach is to rotate the trans-
form through an appropriate number of bins, but this is only
accurate if the frequency shift is a multiple of the bin width.
A better approach is to combine the bin rotation with an ap-
proximate fine shift. In this paper the exact solution is found
for an arbitrary DFT filterbank and novel, computationally
efficient approximations to this are derived and compared.

1. INTRODUCTION

The DFT filterbank [1], sometimes known as a transmulti-
plexer [2, 3] is a processing architecture commonly used to
channelise time domain data into an approximate frequency
domain. Once in the frequency domain it is often required
to translate the data in frequency. This may be for the ex-
plicit purpose of receiver tuning or it may be required for
some other operation such as cyclic Wiener filtering [4, 5]
or cyclic spectral estimation [6, 7].

A frequency shift of �� Hz may be applied to the dis-
crete signal x(n) by time domain mixing with the complex
oscillator  (n) = e

�j2��n=fs , where fs is the sampling fre-
quency. We seek an operator g f�g to achieve this same re-
sult in the discrete frequency domain so that g fF fx(n)gg =
F

�
e
�j2��n=fsx(n)

	
. We implement the transformation into

the frequency domain, F f�g using a K bin filterbank anal-
yser [1] and the inverse transformation back to the time do-
main is achieved with a synthesis filterbank. Computation-
ally efficient approximations to the frequency shift are also
sought. For filtering applications, it is generally required to
have both small mean square error and high coherence be-
tween the exact and approximately shifted frequency com-
ponents.

The output of the analysis filterbank at time mM=fs is
a vector of bins X(m) = [X(m; f0); � � � ; X(m; fK�1)],
whereM is the filterbank decimation rate. The kth bin con-
tains an estimate of the complex envelope (sometimes called

a ‘complex demodulate’ [6]) of the narrow bandpass filtered
component of x(n) centred at fk Hz and is expressed as

X(m; fk) =

1X

n=�1

h(n)x(mM � n)e�j2�(mM�n)f
k
=fs :

(1)

We consider the bins to be uniformly spaced between�fs=2
and fs=2 and so the bin width is equal to fb = fs=K. Using
equation (1), F f (n)x(n)gk, the kth bin of the transform
of x(n) shifted in the time domain by �� Hz can be shown
to be equal to X(m; fk + �), the frequency component of
x(n) centred at fk + �. The vector of all such shifted bins
corresponding to k = 0 : : :K � 1 is denoted X�(m). If
� = �fb, where � is an integer, the frequency shift is ef-
fected almost trivially using a circular rotation through the
� filterbank bins [5]. However, this method is only exact
when the required shift is a multiple of the bin width and in
practice a residual fine shift will normally be required.

2. EXACT FINE FREQUENCY SHIFT

The analysis filter has an impulse response h(n) with finite
length Nh = RK and the summation in equation (1) is
performed over T = Nh=fs seconds. Using equation (1),
taking an exponential term outside the summation and with
a change of variables we can write

X(m; fk + �) = e
�j2�mMfk=fs

Nh�1X

r=0

h(Nh � r) �

x(mM �Nh + r) (mM �Nh + r)e�j2�rfk=fs : (2)

When Nh = K the summation in (2) may be computed
by direct application of a K point DFT. Define E(m) =�
e
j2�mMf0=fs ; � � � ; e

j2�mMfK�1=fs
�

and denote the DFT
computed on the block h(Nh � r)x(mM �Nh + r), r =
0 :::K� 1 by DFT fh(Nh)x(mM �Nh)g. Using the vec-
tor middle product defined as [a1; : : : ; an]
 [b1; : : : ; bn] =
[a1b1; : : : ; anbn] we can write

X(m) = E�(m)
DFT fh(Nh)x(mM �Nh)g (3)



X�(m) = E�(m)


DFT fh(Nh)x(mM �Nh) (mM �Nh)g : (4)

Using the relation DFT fabg = 1=K DFT fag �DFT fbg
with � denoting circular convolution and defining the DFT
computed on  (mM �Nh+ r) by DFT f (mM �Nh)g,
equation (4) can be simplified. As  (n) is a complex expo-
nential, its DFT may be computed at timemM as itsm = 0
DFT, 	0, mixed with a �� Hz oscillator at the decimated
sampling rate. Using this update and equation (3) achieves
the aim of effecting an exact frequency shift of x(n) by op-
erating uponX(m),

X�(m) =
1

K
e
�j2�(mM�N

h
)�=fsE

�(m)


[(E(m)
X(m)) �	0] : (5)

The complexity is reduced if a simple approximation is made.
As  (n) is a complex exponential its DFT comprises only
a few significant frequency samples and the circular convo-
lution may be replaced with a truncated linear convolution
with little loss in precision. In the simplest truncation, 	0

may be replaced by single sample complex scalarKe j� and
(5) reduces further to

X�(m) � e
�j2�mM�=fs+j�X(m): (6)

The frequency shift is approximated simply by mixing the
filterbank subband components with a �� Hz oscillator op-
erating at the decimated sampling rate.

The more general case where Nh = RK, with R > 1
is particularly important and is preferred for most frequency
domain filters [2]. Where Nh = RK, time aliasing the Nh

length block of h(Nh � r) x(mM � Nh + r) into a K
sample block by stacking and adding may be used to ma-
nipulate the summation of (2) into a K point summation.
The Weighted Overlap Add (WOLA) [1] filterbank archi-
tecture implements the summation as a double sum so that
the filterbank output vector may be expressed as

X(m) = E�(m)


R�1X

l=0

DFT fh(Nh � lK)x(mM �Nh + lK)g (7)

and similarly, the vector of all shifted demodulates is

X�(m) =
1

K
e
�j2�(mM�Nh)�=fsE

�(m)
 [	0 �

R�1X

l=0

e
�j2��lK=fsDFT fh(Nh � lK)x(mM �Nh + lK)g]:

(8)

Comparison of equations (7) and (8) shows that in general,
it is not possible to expressX�(m) in the form of a function

of X(m).1 However, two alternative methods of obtaining
an exact shift are identified if the filterbank architecture is
modified.

First, equation (8) may be implemented directly using a
modified WOLA architecture. In the conventional WOLA
architecture, for the mth data block, R segments of win-
dowed data are stacked and added, with a K point DFT
performed on the sum to generate X(m). An equivalent
operation is to reverse the order of summation and perform
a K point DFT on each segment, followed by a stack and
add process. By multiplying each of the R DFTs by the
appropriate exponential prior to summation, equation (8) is
implemented.

A second alternative is to compute (2) using a K 0 =
Nh = RK point DFT and use the same approach as with
Nh = K to effect the fine frequency shift using equation
(5). Following convolution, the K frequency domain sam-
ples are then obtained by decimating in frequency to retain
only one in every R filterbank bins. The fine shifted filter-
bank bins may then be operated on as if they were directly
generated using a K bin filterbank. A conventional K bin
synthesis process can then be used.

The computational efficiency of these techniques can
be increased by approximating the circular convolutions by
truncated linear convolutions, as with theR = 1 processing.

3. SUBBAND MIXING

We have seen how for R = 1, a simple approximation to
the exact shift is to mix the filterbank bins with a low sam-
ple rate, subband oscillator. This simple implementation
may also be derived for arbitraryR, using a frequency-shift
interpretation of the analysis filterbank. By appropriately
grouping the exponential terms, equation (2) can be writ-
ten as a filterbank transform using a modified analysis fil-
ter h0(n) = h(n)ej2��n=fs , followed by a subband mixing
with a �� Hz oscillator. Approximate shift techniques can
be found using suitable approximations for h 0(n). A crude
approximation is ~h(n) = h(n)ej�, which yields

~X(m; fk + �) = e
�j2��mM=fs+j�X(m; fk) (9)

This is the kth bin of the filterbank transform, mixed in the
transform domain with a �� Hz oscillator. The frequency
response of X(f) and ~X(f) are shown in Figure 1 for the
case where H(f) has an ideal bandpass form with band-
width fs=K. The frequency response of ~X(fk+�) only par-
tially overlaps that of the desired X(fk + �). The term � =
��(Nh�1)=fs ensures phase match in the region of spectral
overlap. By instead using ĥ(n) = h(n)(ej�+ej2�n=K+j�c)

1unless the exponential multiplier within the summation of (8) reduces
to a constant independent of l which will occur if � is a multiple of the bin
width fs=K .
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Fig. 1. Subband mixing and bin combining.

or equivalently, Ĥ(f) = H(f)ej� +ej�cH(f�fs=K), the
amount of frequency overlap is increased, as seen in Figure
1. Again, �c is introduced to match the filter phase. By
considering the expression for the analysis filterbank output
using ĥ(n) = h(n)(ej� + e

j2�n=K+j�c), it can be shown
[8] that

X̂(m; fk + �) =

~X(m; fk + �) + e
j2�mM=K+jR� ~X(m; fk+1 + �): (10)

The analysis filter extension is thus effected by performing
a filterbank transform (using h(n)) on x(n) , fine frequency
shifting using subband oscillator mixing and combining ad-
jacent bins. A similar technique has been used for the spe-
cial case of cyclic spectrum estimation [7].

4. TECHNIQUE COMPARISON

We undertook simulations to evaluate the accuracy of a baud
rate frequency shift applied to an ideal baseband 16 kbaud
BPSK signal. The SNR was computed as the mean ratio of
the subband power in the exactly shifted signal to the error
power in the approximate shift. The cross-coherence, � be-
tween the exact and approximate shifts was also computed.
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Fig. 2. Subband spectra for bin rotation (grey line left hand
plot) and 3-point high resolution linear convolution (grey
line right hand plot).

The results are listed in Table 1 using K = 512, M = 128
and R = 3. Interpretation of the results is made more clear
by considering the sources of error. Figures 2 to 4 show the
spectra of the shifted signal within a particular filterbank
bin, for each of the approximate shifts (grey traces), over-
laid with the spectra for the exact shift (black traces). The
left hand plot of Figure 2 depicts a shift using bin rotation
only. Although the approximate and exact shifts occupy the
same bandwidth, the two correlate very poorly, as can be
seen by the lack of fine structure commonality. In contrast,
the right hand plot corresponds to the high resolution shift
using a 3-point linear convolution. The exact and approxi-
mate shifts again occupy the same bandwidth, but this time
there is a high degree of fine structure overlap, explaining
the extremely high correlation. Figure 3 shows why a high
coherence was also measured for the modified WOLA shift
using a truncated 3-point convolution. However, the amount
of noise outside the bandwidth of the bin suggests why the
SNR for this shift is not as good.

The left and right hand plots of Figure 4 show the spec-
tra for the shifts using subband mixing and bin combining
respectively. While some correlation is suggested by the
fine structure overlap of the left plot, it is clear why the
correlation is inferior to the high resolution and modified
WOLA shifts, since only a small fraction of the subband fre-
quency components correlate. The coherence is increased
by combing the adjacent bin, as seen in the right hand plot,
where the exact and approximate shifts correlate over the
entire bandwidth of the bin. However, the increased amount
of out-of-band noise explains the relatively poor SNR.

5. DISCUSSION AND CONCLUSION

The test results clearly show that when it is feasible to use
the high resolution convolution technique, it should be em-
ployed. It does however require the filterbank architecture
to allow the analyser to operate with higher resolution than
the synthesiser. The modified WOLA convolution approxi-
mation is more computationally efficient than the high res-
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Fig. 3. Subband spectra for 3-point modified WOLA linear
convolution.
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Fig. 4. Subband spectra for subband mixing (grey line left
hand plot) and bin combining (grey line right hand plot).

olution approach, although the performance is not as good
when few points are used in the convolution. This method
requires the filterbank to be implemented using the modi-
fied WOLA architecture. The subband mixing approach is
particularly simple and computationally efficient and gen-
erally provides quite reasonable results. However, when a
relatively large fine shift is required, the coherence can be
considerably increased with minimal additional complexity,
by combining adjacent bins.

It should finally be noted that by suitable design of the
synthesis filter, the out-of-band noise is reduced in the syn-
thesis process. For frequency domain filtering applications
this means a low subband SNR does not necessarily imply
poor reconstruction performance. This issue is further ad-
dressed in [8].

Filters � SNR
(dB)

circular convolution 1.00 > 100
high res. convolution (3 pts) 1.00 21.60
high res. convolution (1 pt) 0.99 17.59
WOLA convolution (3 pts) 0.93 10.31
WOLA convolution (1 pt) 0.77 4.54
bin combining 0.86 1.57
subband mixing 0.77 3.40
bin rotation only 0.08 -2.98

Table 1. Test SNR and Coherence.

6. REFERENCES

[1] R.E. Crochiere and L.R. Rabiner, Multirate Digital Sig-
nal Processing, Prentice-Hall, 1983.

[2] E.R. Ferrara, “Frequency-domain adaptive filtering,”
in Adaptive Filtering, Cowan and Grant, Eds. Prentice-
Hall, 1985.

[3] G.C. Copeland, “Transmultiplexers used as adaptive
frequency sampling filters,” in Proceedings of the IEEE
International Conference on Acoustics Speech and Sig-
nal Processing, 1982, pp. 319–322.

[4] W.A. Gardner, “Cyclic weiner filtering: Theory and
method,” IEEE Transactions on Communications, vol.
41, no. 1, pp. 151–163, January 1993.

[5] E.R. Ferrara, “Frequency-domain implementations of
periodically time-varying filters,” IEEE Transactions
on Acoustics Speech and Signal Processing, vol. ASSP-
33, no. 4, pp. 883–892, August 1985.

[6] W.A. Gardner, Statistical Spectral Analysis : A Non-
probabalistic Theory, Prentice-Hall, 1988.

[7] W.A. Brown and H.H. Loomis, “Digital implementa-
tions of spectral correlation analyzers,” IEEE Transac-
tions on Signal Processing, vol. 41, no. 2, pp. 703–720,
February 1993.

[8] G.J. Parker, Ph.D. thesis, University of South Australia,
to be submitted 2001.

7. ACKNOWLEDGEMENTS

The authors thanks Ken Lever, John Tsimbinos and Lang
White for their helpful discussions relating to this work.
The work was carried out with partial funding by the Co-
operative Research Centre for Satellite Systems.


