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ABSTRACT

It is often required to apply a shift in frequency to the chan-
nelised data within a DFT filterbank. An example applica-
tion is the frequency domain implementation of the cyclic
Wiener filter. A common approach is to rotate the trans-
form through an appropriate number of bins, but thisisonly
accurateif the frequency shift is a multiple of the bin width.
A better approach isto combine the bin rotation with an ap-
proximatefine shift. Inthis paper the exact solutionisfound
for an arbitrary DFT filterbank and novel, computationally
efficient approximationsto this are derived and compared.

1. INTRODUCTION

The DFT filterbank [1], sometimes known as a transmulti-
plexer [2, 3] is a processing architecture commonly used to
channelise time domain datainto an approximate frequency
domain. Once in the frequency domain it is often required
to trandate the data in frequency. This may be for the ex-
plicit purpose of receiver tuning or it may be required for
some other operation such as cyclic Wiener filtering [4, 5]
or cyclic spectral estimation [6, 7].

A frequency shift of —e Hz may be applied to the dis-
crete signa x(n) by time domain mixing with the complex
oscillator 1 (n) = e~ 727"/ /s 'where f, isthe sampling fre-
quency. We seek an operator g {-} to achieve this same re-
sultinthediscretefrequency domainsothat g {F {z(n)}} =
F {e~i?men/ fo(n) }. Weimplement thetransformationinto
the frequency domain, F {-} using a K bin filterbank anal-
yser [1] and the inverse transformation back to the time do-
main is achieved with a synthesis filterbank. Computation-
ally efficient approximationsto the frequency shift are also
sought. For filtering applications, it is generally required to
have both small mean square error and high coherence be-
tween the exact and approximately shifted frequency com-
ponents.

The output of the analysis filterbank at time mAM/ f is
a vector of bins X(m) = [X(m, fo),- -, X(m, fx_1)],
where M isthefilterbank decimation rate. The kth bin con-
tains an estimate of the complex envel ope (sometimescalled

a‘complex demodulate’ [6]) of the narrow bandpassfiltered
component of z(n) centred at f; Hz and is expressed as

X(m, fr) = > h(n)z(mM —n)e~d2rmM=mfi/f.

T M

We consider the binsto be uniformly spaced between — f /2
and f,/2 and sothe binwidthisequal to f, = fs/K. Using
equation (1), F {¢(n)z(n)},, the kth bin of the transform
of z(n) shifted in the time domain by —e Hz can be shown
to be equal to X (m, fr + ¢), the frequency component of
x(n) centred a fj, + e. The vector of al such shifted bins
correspondingto £ = 0...K — 1 is denoted X (m). If
e = Afy, where A is an integer, the frequency shift is ef-
fected almost trivially using a circular rotation through the
A filterbank bins [5]. However, this method is only exact
when the required shift is a multiple of the bin width andin
practice aresidua fine shift will normally be required.

2. EXACT FINE FREQUENCY SHIFT

The analysis filter has an impulse response h(n) with finite
length N, = RK and the summation in equation (1) is
performed over T' = N}/ fs seconds. Using eguation (1),
taking an exponential term outside the summation and with
achange of variableswe can write

Nhfl
X(m, fi +€) = e 2TmMIe/Te N (N, — 1) X
r=0

z(mM — Ny 4+ r)p(mM — Ny + r)e 727/t (2)

When N, = K the summation in (2) may be computed
by direct application of a K point DFT. Define E(m) =
eidmmMfo/fs ... ei2mmMfx-1/f:] and denote the DFT
computed on the block h(Ny — r)z(mM — Ny + 1), r =
0..K —1by DFT {h(Np)x(mM — Np)}. Using the vec-
tor middle product defined as [a1, . . ., an] ® [b1,-..,b,] =
[a1b1, ..., a,b,] wecan write

X(m) = E*(m) @ DFT {h(Ny)z(mM — Np)}  (3)



X (m) =E*(m) ®
DFT {h(Np)z(mM — Np)b(mM — Nu)}. (4)

Using therelation DFT {ab} = 1/K DFT {a} * DFT {b}
with % denoting circular convolution and defining the DFT
computed on ¢ (mM — Ny + 1) by DFT {¢p(mM — Np)},
equation (4) can be simplified. As(n) isacomplex expo-
nential, its DFT may be computed at timem M asitsm = 0
DFT, ¥, mixed with a —e Hz oscillator at the decimated
sampling rate. Using this update and equation (3) achieves
the aim of effecting an exact frequency shift of x(n) by op-
erating upon X (m),

X, (m) = L ema2m M =N/ L ()

K
[(E(m) © X(m)) * ¥ol. (3)

The complexity isreduced if asimpleapproximationis made.

As(n) is acomplex exponential its DFT comprises only
afew significant frequency samples and the circular convo-
lution may be replaced with a truncated linear convolution
with little loss in precision. In the simplest truncation, ¥
may be replaced by single sample complex scalar Ke7¢ and
(5) reduces further to

X, (m) x e I2mmMe/ [ HIOX (), (6)

The frequency shift is approximated simply by mixing the
filterbank subband components with a —e Hz oscillator op-
erating at the decimated sampling rate.

The more general case where Ny, = RK, with R > 1
is particularly important and is preferred for most frequency
domain filters[2]. Where N, = RK, time diasing the Ny,
length block of h(Np — ) x(mM — N + r) into a K
sample block by stacking and adding may be used to ma-
nipulate the summation of (2) into a K point summation.
The Weighted Overlap Add (WOLA) [1] filterbank archi-
tecture implements the summation as a double sum so that
the filterbank output vector may be expressed as

R—1
DFT {h(N}, — IK)z(mM — N, + 1K)} (7)
=

o

and similarly, the vector of all shifted demodulatesis

R—1
1
X (m) = —e P2 mM=NI LB 1) 0 [ x 3
1=0
e~ I2m K/ LS DET { (N}, — LK)z (mM — Ny + 1K)}].
(8)

Comparison of equations (7) and (8) shows that in general,
itisnot possibleto express X () in the form of afunction

of X(m).! However, two alternative methods of obtaining
an exact shift are identified if the filterbank architecture is
modified.

First, equation (8) may be implemented directly using a
modified WOLA architecture. In the conventional WOLA
architecture, for the mth data block, R segments of win-
dowed data are stacked and added, with a K point DFT
performed on the sum to generate X(m). An equivaent
operation is to reverse the order of summation and perform
a K point DFT on each segment, followed by a stack and
add process. By multiplying each of the R DFTs by the
appropriate exponential prior to summation, equation (8) is
implemented.

A second dternative is to compute (2) using a K’ =
Np, = RK point DFT and use the same approach as with
N, = K to effect the fine frequency shift using equation
(5). Following convolution, the K frequency domain sam-
ples are then obtained by decimating in frequency to retain
only onein every R filterbank bins. The fine shifted filter-
bank bins may then be operated on as if they were directly
generated using a K bin filterbank. A conventional K bin
synthesis process can then be used.

The computational efficiency of these techniques can
be increased by approximating the circular convolutions by
truncated linear convolutions, aswiththe R = 1 processing.

3. SUBBAND MIXING

We have seen how for R = 1, a simple approximation to
the exact shift isto mix the filterbank bins with alow sam-
ple rate, subband oscillator. This simple implementation
may also be derived for arbitrary R, using a frequency-shift
interpretation of the analysis filterbank. By appropriately
grouping the exponentia terms, equation (2) can be writ-
ten as a filterbank transform using a modified analysis fil-
ter h'(n) = h(n)ei?>7<"/ I+ followed by a subband mixing
with a —e Hz oscillator. Approximate shift techniques can
be found using suitable approximationsfor A'(n). A crude
approximationis i(n) = h(n)ei?, which yields

‘i’(ma fk + 6) = e_j27r€mM/fs+j¢X(m7 fk) (9)

Thisis the k" bin of the filterbank transform, mixed in the
transform domain with a —e Hz oscillator. The frequency
response of X (f) and X (f) are shown in Figure 1 for the
case where H(f) has an ideal bandpass form with band-
width f,/ K. Thefrequency responseof X (f;+¢) only par-
tially overlapsthat of the desired X (f + €). Theterm ¢ =
we(Nyp —1)/ fs ensures phase match in the region of spectral
overlap. By instead using iu(n) = h(n) (el +ei2mn/K+ioc)

Lunless the exponential multiplier within the summation of (8) reduces
to a constant independent of / which will occur if e isamultiple of the bin
width fs /K.
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Fig. 1. Subband mixing and bin combining.

or equivalently, H(f) = H(f)e/® +ei%H(f — f,/K),the
amount of frequency overlap isincreased, as seen in Figure
1. Again, ¢. isintroduced to match the filter phase. By
considering the expression for the analysis filterbank output
using h(n) = h(n)(el?® + e/27/K+io) it can be shown
[8] that

X(m, fr +e€) =
X(m, fi +€) + T MEHET X (m fi ) +€). (10)

The analysis filter extension is thus effected by performing
afilterbank transform (using h(n)) on z(n) , fine frequency
shifting using subband oscillator mixing and combining ad-
jacent bins. A similar technique has been used for the spe-
cial case of cyclic spectrum estimation [7].

4. TECHNIQUE COMPARISON

We undertook simulationsto eval uate the accuracy of abaud
rate frequency shift applied to an ideal baseband 16 kbaud
BPSK signal. The SNR was computed as the mean ratio of
the subband power in the exactly shifted signal to the error
power in the approximate shift. The cross-coherence, p be-
tween the exact and approximate shifts was also computed.
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Fig. 2. Subband spectrafor bin rotation (grey line left hand
plot) and 3-point high resolution linear convolution (grey
line right hand plot).

Theresultsarelisted in Table Lusing K = 512, M = 128
and R = 3. Interpretation of the resultsis made more clear
by considering the sources of error. Figures 2 to 4 show the
spectra of the shifted signal within a particular filterbank
bin, for each of the approximate shifts (grey traces), over-
laid with the spectra for the exact shift (black traces). The
left hand plot of Figure 2 depicts a shift using bin rotation
only. Although the approximate and exact shifts occupy the
same bandwidth, the two correlate very poorly, as can be
seen by the lack of fine structure commonality. In contrast,
the right hand plot corresponds to the high resolution shift
using a 3-point linear convolution. The exact and approxi-
mate shifts again occupy the same bandwidth, but this time
there is a high degree of fine structure overlap, explaining
the extremely high correlation. Figure 3 shows why a high
coherence was also measured for the modified WOLA shift
using atruncated 3-point convolution. However, the amount
of noise outside the bandwidth of the bin suggests why the
SNR for this shift is not as good.

The left and right hand plots of Figure 4 show the spec-
tra for the shifts using subband mixing and bin combining
respectively. While some correlation is suggested by the
fine structure overlap of the left plot, it is clear why the
correlation is inferior to the high resolution and modified
WOLA shifts, sinceonly asmall fraction of the subband fre-
guency components correlate. The coherence is increased
by combing the adjacent bin, as seen in the right hand plot,
where the exact and approximate shifts correlate over the
entire bandwidth of the bin. However, the increased amount
of out-of-band noise explains the relatively poor SNR.

5. DISCUSSION AND CONCLUSION

The test results clearly show that when it is feasible to use
the high resolution convolution technique, it should be em-
ployed. It does however require the filterbank architecture
to allow the analyser to operate with higher resolution than
the synthesiser. The modified WOLA convol ution approxi-
mation is more computationally efficient than the high res-
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Fig. 3. Subband spectra for 3-point modified WOLA linear
convolution.
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Fig. 4. Subband spectra for subband mixing (grey line left
hand plot) and bin combining (grey line right hand plot).

olution approach, athough the performance is not as good
when few points are used in the convolution. This method
requires the filterbank to be implemented using the modi-
fied WOLA architecture. The subband mixing approach is
particularly simple and computationally efficient and gen-
eraly provides quite reasonable results. However, when a
relatively large fine shift is required, the coherence can be
considerably increased with minimal additional complexity,
by combining adjacent bins.

It should finally be noted that by suitable design of the
synthesis filter, the out-of-band noise is reduced in the syn-
thesis process. For frequency domain filtering applications
this means a low subband SNR does not necessarily imply
poor reconstruction performance. This issue is further ad-
dressed in[8].

Filters p SNR
(dB)
circular convolution 1.00 | > 100
high res. convolution (3 pts) 1.00 | 21.60
high res. convolution (1 pt) 0.99 | 17.59
WOLA convolution (3 pts) 093 | 10.31
WOLA convolution (1 pt) 0.77 | 454
bin combining 0.86 | 157
subband mixing 0.77 | 3.40
bin rotation only 0.08 | -2.98

Table 1. Test SNR and Coherence.
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