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ABSTRACT

As is well known, the problem of signal reconstruction may
be reduced to estimation of coefficients of some signal de-
composition. In the previous paper [1] we have shown, that
optimal coordinate basis for this method must be formed
from eigenfunctions of the Fisher’s information operator
(so-called PIC-basis).

However direct usage of the PIC-basis is not always con-
venient. Therefore in the given paper we propose the com-
bined technique, according to which any given basis (FFT,
DCT, wavelet, filterbanks, etc) is replaced by its projection
on the subspace generated by the PIC-basis. Such projec-
tive basis, keeping all advantages of the initial representa-
tion, allows to decrease a range of possible fluctuations of a
signal estimate.

The effectiveness of the proposed technique is illustrated
by numerical examples from area of nonlinear tomography
of a medium.

1. INTRODUCTION

In the modern signal processing various decompositions of

the form
N
a = Z Te Pk (1)
k=1

are widely used. Here q — a signal vector in some func-
tional space, {cpk}{v — system of linearly independent basis
vectors, v, - scalar coefficients of expansion.

In the given work a signal vector q is any useful infor-
mation, extraction of which is the task of signal processing
system (e.g. message, speech signal, some image, proper-
ties of some medium etc.). The essence of the methods,
considered in the given paper, does not depend on a phys-
ical nature of particular tasks. However, with the purpose
of clearness and simplicity of the consideration we assume,
that the vector q belongs to some M—D euclidean space!,
but the proposed methods without any difficulties can be
extended to more complicated signal spaces.

Let’s write expression (1) in compact vector-matrix no-
tations:

q =2y (2)
where ® — basis matrix M x N, which columns are vectors
@i, ¥ — N—D vector of expansion coeflicients.

L At that, naturally, dimension of a basis N < M.

As for to the choice of a basis ® the theory of signal
processing gives very wide opportunities: it is the basis of
FFT, DCT, wavelet, filterbanks and many others [2]. Each
of these bases has particular advantages and own applica-
tion. So, in mathematical statistics the basis of the Prin-
cipal Components (PC) is widely applied. This basis is
formed from eigenfunctions of a signal correlation operator
Rq = {(aq?), where {-) — symbol of the statistical aver-
aging in a signal space. PC-basis of the given dimension N
provides, as is well known [3], least mean square error of a
signal representation.

However, the known approaches to the building of signal
decomposition do not take into account specific character
of the reconstruction problems, in which a signal is unavail-
able for direct observation. In such problems a vector of
coeficients v in the expansions (2) always is the result of
a statistical estimation with using of noisy observations,
which are connected with a signal by an arbitrary depen-
dency

u=H{q,n} = H{®Pvy,n}, (3)

where n — noise vector, H{-} — some operator.

From this position in [4] the essentially new approach
to the choice of optimum basis have been proposed. In
accordance with this approach the Principal Components
are those, which can be measured with a minimum error.
At that the operator generating an optimum basis ®, is not
correlation operator of a signal as in classical method PC:
it is well-known in the statistical estimation theory Fisher’s
information operator [5].

For the first time the useful properties of eigenfunctions
of the Fisher’s operator were ascertained in the paper [6].
However, the theoretical substantiation of the method opti-
mality was not made. Such substantiation have been done
in the paper [4]. Also the concept of informative compo-
nents have been proposed. To distinguish the given inter-
pretation of PC concept from the traditional viewpoint in
[1] such components have been called as Principal Informa-
tive Components (PIC). This terminology also will be used
in the given paper.

The further development of the PIC-method ideas was
given in the work [1], where this method was extended both
to the reconstruction problems of determined and random
images. The given paper is continuation of the work [1].



2. PIC-METHOD

Let’s consider the essence of the PIC-method for simple,
but practically very important example, when the vector of
observations u is connected with reconstructed signal q by
the linear dependence:

u=Hq +n=H®+v + n, (4

where H is some matrix P x M.

Let’s assume, that noise is Gaussian with zero mean
and correlation matrix Ry. It is not difficult to show, that
the maximum likelihood estimate for coefficients of a signal
decomposition has the form:

A

Y =(2"1,8)"'® H R, u, (5)

where

I, =HR'H (6)

is matrix M x M. As was shown in [1], matrix form (6) is
the Fisher’s information matrix [5] for the problem of vector
q estimation.

Using expression (5) for the estimate of a signal at noise
background it is possible to write:

4= (o "L,®) '@ H R u. (7)

Let’s consider properties of the estimate (7). If the basis
dimension N < M, the given estimate has bias, vector of
which is equal to

by =q—(d)=(E - ®(&"1,)"'®"L,)q, (8)

where E is identity matrix.
Variance of the estimate (7) is defined by the expression

o= (ld-(a)]) = Te{8" (871, &)} (9)

It is not difficult to show, that stationary points of the
functional (9) are reached on the set of eigenfunctions of
the problem

I, = @A, (10)

where A is diagonal matrix of N eigenvalues Ai,...,An
for the operator I,. The solutions set of the problem (10),
which satisfy the formulated below selection criteria, is called
in [4] as the Principal Informative Components (PIC).
First selection criterion (shortly, the Criterion 1) in-
cludes in the PIC-basis those eigenvectors of the Fisher’s
matrix, which correspond to maximum eigenvalues®
A1, ..., An. It is not difficult to see, that such rule of the
PIC-basis forming provides minimum of the statistical error
(9) at the given basis dimension N

(05w = T{A™) = 3 5. ()

2Tt is supposed, that the eigenvalues are arranged in non-
increasing order

Another criterion for the PIC-selection (shortly the Cri-
terion 2) can be obtained, if within the framework of pos-
sible solutions of the problem (10) one puts forward the
requirement of the total estimation error minimum, i.e.

A
E=(1d-aP)=Ib F +o — min. (12

If basis ® is a solution of the equation (10), the total
error (12) may be represented as:

N

&o=lal -3 (- 3 (13)

k=1

where v, — true coeflicients of a signal decomposition.

From reviewing of the given expression it is possible to
conclude, that the total estimation error is diminished only
by such components, for which condition

% - = > 0. (14)
Ak

is satisfied. Total number of the PIC-components Ny, for
which the condition (14) is satisfied, defines the optimum
dimension of the basis ® by the Criterion 2.

Presented in the given section results refer to linear
model of observations (4). In [1] it was shown, that the
same methodology can be applied for the general model
(3). The distinction is one that in general case it is pos-
sible to speak about an optimality of the PIC-basis with
reference only to low bounds of estimation errors.

3. PIC-PROJECTION TECHNIQUE

A direct practical application of the PIC-basis is not always
convenient, because the dimension of signal space M may
be very large (hundreds and thousands). At reliable obser-
vations (SNR > 1) a total number of PIC can make up a
considerable part from M. Other weakness of the PIC-basis
- the lack of connection with a physical content of applied
tasks.

At the same time, the decompositions used now in signal
processing (FFT, DCT, wavelet, filterbanks and others) are
more compact and more ”physical”, but are constructed
without taking into account a statistical nature of signal
reconstruction problems on noisy data. In the given section
the technique is proposed which combines advantages of
traditional physical representation with advantages of the
PIC- method.

Let’s assume, that the signal q is represented as a de-
composition

q=19p3 (15)
where ¥ — matrix M x @, the columns of which are some
coordinate vectors ¥, (k=1,...,Q), 8 — @Q—D vector of
expansion coefficients.

Let’s suppose that basis ¥ ensures compact represen-
tation of a clean signal, i.e. it is possible to neglect the
systematic error of representation (15) already at rather
small Q.

Let’s represent the vector (15) on some other basis ®
with dimension N > Q. Vector of expansion coefficients



v, selected from the condition ||q — ® |2 — min, looks
as:
v = (®"®) e’ e,
Structure of the given expression allows to seek an esti-

A
mate q of a signal q in the form

A

4= V40, (16)

A
where 3 — an estimate of expansion coefficients for initial
decomposition (15),

v, = II, ¥, (17)
— some new basis® of dimension @,
M, = &("®)'d” (18)

— operator of orthogonal projection on a subspace generated
by a basis ®.

The expression (16) is correct for arbitrary bases ¥ and
®. Now let’s assume, that basis ® is the PIC-basis, 1.e. is
composed from solutions of the problem (10). Besides let’s
suppose, that PIC are selected by Criterion 1, i.e. in the
decreasing order of eigenvalues A1, ..., Anx. It is not difficult
to show, that in this case the estimate (16) ensures a smaller
statistical error of a signal reconstruction, than estimate of

the form
A

A
a=1vg, (19)
i.e. estimate obtained with direct usage of the initial basis
.

Really, statistical error of the signal estimate (19) is
defined by expression similar to (9) which is written for the

basis W¥:
(02)aey = Tr {B"E(T I, ¥)7'}. (20)

The boundaries of the error (20) for an arbitrary basis ¥
can be estimated using the Courant-Fischer’s theorem [7]:

° Mo
don S ey <0 D> @)
k=1 E=M-Q+1

Now let’s consider the boundaries of the statistical error
for the signal estimate (16). The given error is obviously
equal to

(02)aey = Tr{T Ty ¥ (T M, 1,1, ¥)"}.

In view of structure of the projective operator (18) and
equation (10) and taking into account orthonormal prop-
erties of the PIC-basis the given expression can be trans-
formed to the form

(02)uey = Tr{®@"©O"AG)'}, (22)

where ® = ®T ¥ and A, as above, diagonal matrix of
higher eigenvalues of the information operator I.

It is not difficult to see, that the expression (22) is
similar by structure to expression (20), but instead of the

3By virtue of the condition N > @ the coordinate vectors
of the basis (17) are linearly independent [7].

Fisher’s matrix with dimension M in this case we have the
diagonal matrix A with dimension N. Therefore, by anal-
ogy with (21) the error (22) can be estimated by the in-
equality

< 1 1
2
kg_l S (0g)ae) < E S (23)

k=N—Q+1

From comparison of the expressions (21) and (23) it is
easy to see, that under N < M the range of possible values
of the statistical error (23) is more narrow and the upper
bound of this range is lower, than for the error (21). There-
fore, a signal estimate of the form (16), obtained with usage
of the projective basis (17), are less subjected to statistical
errors, than estimate (19), which directly uses a physical
basis.

It is possible to say, that the projector (18) acts on basis
W as a filter suppressing those components, which actually
can not be restored in view of large statistical errors of
measurements. Thus in a primary physical representation
it is possible to take into account a statistical nature of the
estimation procedure. The proposed projective approach
has advantages also in comparison with the PIC-basis in
the "pure” form. At first, the dimension of the projective
basis ¥y is defined by dimension of the primary basis ¥
and 1s not too large, secondly, such representation is more
physical.

4. NUMERICAL RESULTS

In the given section we shall consider the numerical exam-
ple from the area of acoustic tomography of ocean medium
[8], [9]. One of the major problems of the ocean acoustic to-
mography is the task of restoring of so-called Sound Speed
Profile (SSP), i.e. the dependency of sound speed from
depth: ¢ = co(z) + ¢(z), where co(z) — statistical-average
SSP, ¢(z) — perturbation of the SSP, which is subjected to
the estimation. Thus in this problem the components of
the vector (q)m = ¢(zm), m = 1,..., M are the aim of
estimation.

The following scheme of measurements is usually ap-
plied for solution of such problems. In some point of the
ocean medium the source of acoustic signal is placed. The
reception of a signal is carried out at some distance from
the source by array of acoustic receivers. The spectrum of
acoustic field s(w,r) in the area of observation is connected
with parameters of medium by the Helmholtz equation [10].
It is necessary to restore a vector q from observations of the
field w(w,r) = s(w,r) + n(w,r).

For perturbed part of SSP the model of paper [9] was
accepted:

Q-1
a(z) = Y Br 9i(2), (24)

where ¥5(z) — so-called baroclinic modes of Rossby wave,
which describe the perturbation of SSP as a result of inter-
action of tidal processes in ocean with the Earth rotation
(first 3 modes are shown at fig.1),

Br = 200(_2—1)k (25)



Figure 1: First 3 baroclinic modes od the SSP
(dotted line - modes projection on the PIC-subspace).

— coefficients of modes excitation, ¢ — number of baroclinic
modes (@ = 10).

Thus, in considered example the existence of physical
basis for the reconstructed signal is initially supposed. There-
fore, there is a possibility for effectiveness comparison of this
physical basis and the PIC-basis.

The results of such comparison are displayed on fig.2.
Here are shown such errors of the SSP estimation (m/s):

total error \/|bg|? + ¢2/M (the curve 1), systematic error
|by|/M (the curve 2) and statistical error o,/M (the curve

3) in dependence on the dimension of the physical (fig.1a)
and projective (fig.1b) basis. It is easy to see, that in the
given example the projective basis exceeds by the estima-
tion precision the physical basis more than twice.

5. CONCLUSION

The choice of coordinate basis in the signal reconstruction
problems has the features which are caused by inaccessibil-
ity of signals for direct observations. Optimum properties
by criterion of minimum statistical error of measurements
are pertained to the PIC- basis.

However, immediate practical usage of the PIC-basis is
not always convenient. In this connection the combined
technique for forming a coordinate basis is proposed which
unites the advantages of physical approach (obviousness,
the little dimension of a basis) with advantages of the statis-
tical-information approach (minimization of statistical er-
rors). The given technique is grounded on projection of an
arbitrary coordinate basis on the PIC-subspace. As a re-
sult the range of possible fluctuations of a signal estimate
may be restricted and upper bound of a statistical error is
decreased.

The effectiveness of proposed methods is illustrated for
the problem of the SSP reconstruction in ocean medium.
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Figure 2: Dependence of the SSP estimation errors on the
dimension of the physical (a) and projective (b) basis:
1 - total error, 2 - systematic error, 3 - statistical error.
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