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ABSTRACT

The feedback-type active noise control (ANC) system uses
only one microphone to provide necessary signals for ad-
justing the adaptive filter. Due to the complicated na-
ture of the whole adaptive filter structure there have been
no theoretical results about its convergence properties. In
this paper, first a stationary point of the adaptive filter
using the filtered-X LMS algorithm is obtained by the aver-
aging method combined with the frequency domain tech-
nique. Then the local convergence condition is derived.
This is a counterpart of the well-known 90° condition for
the feedforward-type ANC. Finally, the convergence condi-
tion is explicitly given for a simple example and its validity
is shown by some simulations.

1. INTRODUCTION

Recently there have been growing interests in the feedback-
type active noise control (ANC) system in Fig.1 where only
one microphone is used to provide necessary signals for ad-
justing the adaptive filter in ANC [1]. This is in contrast
with the conventional feedforward-type ANC system where
two microphones are used to pick up the reference signal
to the primary path and the error signal at the end of the
secondary path [2]. The convergence condition of the latter
type ANC is well-known. The so-called 90° condition says
that the phase difference between the transfer functions of
the secondary path and its estimate should lie in the interval
(—m/2,7/2) [2]. However, as far as the authors are aware,
there have been no theoretical results about the convergence
properties of the feedback-type ANC algorithms. In this pa-
per, we present some results about the stationary point of
the adaptive filter and the convergence condition using the
averaging method in [3] with the frequency domain tech-
nique developed in [4]. This technique converts adaptive
algorithms into those in the discrete frequency domain by
the discrete Fourier transform (DFT) and is successfully
applied to the analysis of rather complicated adaptive sys-
tems such as the delayless subband adaptive filter where
fixed filters, decimators and upsamples for rate conversion
are included.

The configuration we are treating is due to [5] and is
shown in Fig.2 where only the error signal picked up by the
microphone is available. To generate a “reference” signal to
the adaptive filter, the “feedback control” filter is inserted
to recover the original external noise w(n). But its transfer
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Fig. 1. Feedback-type active noise control system

function B(z) may be different from that of the (physical)
feedback path B(z) so that in general the artificially gen-
erated reference signal xz(n) is not exactly equal to w(n).
The weights in the adaptive filter are updated according
to the filtered-X LMS algorithm. The idea behind this is
that if w(n) is available, the original problem becomes the
optimal prediction of w(n) by the output of the cascade of
the adaptive filter and the physical feedback path B(z) with
the input w(n). Interchanging the filters in the cascade and
replacing B(z), w(n) by B(z), z(n), respectively, we have
the filtered-X LMS algorithm.

2. DERIVATION OF THE STATIONARY
POINT OF THE ADAPTIVE FILTER

Since we are essentially dealing with the prediction prob-
lem of a zero mean stationary process w(n), as stated in [6]
some cares are needed to insure the causality of the steady
state transfer function of the adaptive filter when the anal-
ysis is performed in the discrete frequency domain. We use
the technique in [4] to analyze the scheme in Fig.2. The
relations of the signals in Fig.2 are written as

e(n) = wn)— Y bix'(n—i) (1)
2'(n) = hi(n)x(n — 1) (2)

z(n) = e(m)+ Y bia'(n—1i) (3)
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Fig. 2. Block diagram of the adaptive filter for feedback-
type ANC

where NV is the number of the tap coefficients {h;(n)} of the
adaptive filter, N, — 1 is the order of the transfer functions
of B(z) and B(z) whose impulse responses are {b;} and
{b:}, respectively. We also assume that N;, < N. Then the
error signal e(n) is given by

e(m)=wmn) = Y by h(n—izn—i—k). (4)
=0 k=0

Since the tap weight h;(n) (: =0,1,---, N — 1) is updated
by the filtered-X LMS algorithm

hi(n +1) = hi(n) + pu(n —i)e(n) (5)

with a small positive gain u, the difference between hy(n)
and hp(n —1) is of O(p). So its effect through e(n) in (5) is
of O(p?) and can be discarded. Hence, the second term in
(4) can be regarded as the output of the cascade filter of the
adaptive filter with the fixed {h;(n)} and the feedback path
where the input is z(n). So e(n) is approximately expressed
as

Next, we define the following L-dimensional vectors as

h(n) = [ho(n), ---, hx-1(n), 071" (7)
z(n) = [z(), -, z(n—N+1), 07"

where “0” denotes the (L — N)-dimensional zero vector and
L > 2N. The reason why L — N zeros are padded in (7)
is that the N-point DFT of {h;(n)} (i = 0,---,N — 1)
results in the N-period sequence in the discrete frequency
domain and this in turn introduces the N-periodicity in
{hi(n)} through the inverse DFT. Thus h;(n) for negative
i becomes non-zero. To avoid this and insure the causality
zero padding is introduced [6]. Similarly we define the L-
dimensional vectors for other signals and the vectors b, b

with (L — Np) zeros padded for tap coefficients of B(z) and
B(z), respectively. Then (6) can be written as

e(n) = w(n) — (b ® h(n))'2(n) (8)

where “t” and “®” denote the complex conjugate trans-
pose and the convolution, respectively. Also, (b ® h(n)) is
made L-dimensional by deleting the extra zeros. Then the
adaptive rule can be written as

h(n +1) = h(n) + pu(n)e(n) (9)
Also, we define the L-point DFT matrix by

F = [exp (—j 27rle

)] I,m=0,1,---,L—1

and the L-point DFT of w, e, x, ', u, h, b, b are denoted
by the corresponding capital letters as W, E, X, X', U,
H, B, B, respectively. Also the following diagonal matrix
is defined for H(n) = ( Ho(n), Hi(n), ---, Hr_1(n) )7 as
A (ny = diag[ Ho(n), Hi(n), -+, Hy—1(n)]
and similarly for B, B as AB, Ayz. Noting that
F'F=LI

where I denotes the L x L identity matrix and using this
in (8) we have

e(n) ~ w(n)—%m*(n)F*F(b*h(n))

0é

w(n) — %X*(n)ABH(n) (10)
Applying F to (9) and using (10), we have
H(n+1) = H) + uU () [w(n) = £ X ) AnH(n)]

(11)

Since
Ny—1
u(n) = 2 biz(n —7),
i=0

the I-th element of U(n) can be written as

Np—1 L1+
W)=Y b BN (o — ke
=0 k=i

But the index 7 moves from 0 to N, —1 and Ny, < L so that
we can replace the range of the second summation with
0 < k < L —1 by neglecting the “end effects”. Thus we
have the approximate relation

U(n) ~ A% X (n), (12)

where “x¢” denotes the complex conjugate. Similarly the
corresponding approximate expressions for (1)—(3) are

E(n) ~ W(n) —-AzX'(n)
X'(n) Afr(ny X (n) (13)
X (n) E(n) + A3 X' (n).

R
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Hence by eliminating E(n) and X'(n) in (13) we have
X (n) ~ Q(n)W(n) (14)

with .

Q(n) = [ I+ Ay (A5 —Aj) ] (15)
Substituting (12) and (14) into (11) we have the discrete
frequency domain expression of (9) as

1 [A3QU)W (n)u(n)

L AGQMW ()W (n)Q (M AsH(™)] . (16)

H(n+1)~ H(n)+

Since L is large and w(n) is a zero-mean stationary process,
the element of W (n), that is, the DFT of w(n) is uncorre-
lated with each other. Hence,
E[W(n)W'(n)] =~ Ldiag[ So, S1, ---, Sn—1 ] = LAs
(17)
where S(e/*) is the spectral density of w(n) and S; = S(e} P2t
Also,

L-1L-1

(n):%ZZw(n—k)

=0 k=0

o = %W*(n)w (18)

where 7 is an L-dimensional vector whose elements are all
1. So from (17) and (18)

E[W(n)w(n)] ~Asw=S. (19)

We use the averaging method in [3] to analyze (16).
By taking the average with respect to W(n) and w(n) in
the right hand side of (16), replacing H (n) with the corre-
sponding deterministic quantity H (n) and using (17), (19),
the averaged system is given by

= H(n) + 1 [A3Q(0)S (20)
~ A3QAsQ (AR H ()]

H(n+1)

+

where Q(n) is given by (15) with H(n) replaced by H(n)
and [ ]+ indicates that the causal part is taken from the in-
verse transform of the quantity in a square bracket [6]. This
operation is necessary to keep H(n) to be causal. Since all
the matrices in (20) are diagonal, the I-th element of (20) is
written as the following scalar nonlinear difference equation

Hi(n+1) = Hi(n)+ (21)
" Bisi B} S1B H(n)
L+ H " (n)e; (1+ﬁl(n)el) (1—|—It_lz*(n)el*)

where B; = B(ej%rl)7 B = B(ejoﬂ)7 and ¢ = B, — B;.

Thus the stationary point of the original filtered-X LMS
algorithm in (5) is obtained by solving (21) with H;(n+1) =
Hi(n) = H;. When N — oo (L — c0), we can replace the
discrete frequencies with the continuous ones so that instead
of H; we use H(z) where z = /. Hence, it follows that the
stationary point is determined by

B(z1)S(2)B(2)H(z)

BETHS() - = T H(2)e(2)

=0 (22
N

where €(2) = B(z) — B(z) and 1 + H(z )e(z27!) is purely
non-causal except the constant term so that from the de-
nominator we can get rid of this. In general, it is very
difficult to solve this “generalized Wiener-Hopf” equation.
Let the spectral factorization of S(z) be S(z) = G(2)G(z™1)
where G(z) is of minimum phase. Then G(z™ ") can be fac-
tored out from the left hand side of (22).
Here we present two cases where we can
solutions. The first case is that B(z) = B(z
Then we immediately have the solution

B 1 B(zil)G(z)
Hopt(z) - Bmm(z)G(z) |: Bmin(zil) ]

where B(2z)B(z™}) = Bumin(2)Bmin(z ') and Bmia(z) is a
stable polynomial. A more interesting case is for e(z) #
0. Assume that B(z) = zidC(z), B(z) = zidé(z) where
d is a positive integer denoting the delay and C(z), C(z)
are stable polynomials. Further assume for the moment
that 1 + H(z)e(z) is of minimum phase. Then (22) can be
simplified as

have explicit
) (e(2) =

0).

G(2)C(z)H(z)
FG@L - T G =

so that if we set A(z) = [sz(z)]+/G(z), we have the
solution

=0

A(2)
O(2) = 274(C(2) = C(2)A(2)’
provided that this is a stable transfer function. For (23)
1+ H(z)e(z) is of minimum phase. We also note that A(z)

is the transfer function of the optimal d-step ahead linear
predictor of w(n + d).

Hopi(2) = (23)

3. THE CONVERGENCE CONDITION OF THE
ADAPTIVE ALGORITHM

The local stability of (21) around the stationary point is
examined by calculating the derivative of (21). We use a
special definition of the derivative with respect to a complex
variable in [7] where we note that the following property
OH; (n)/0H;(n) = 0 holds. Since H(n + 1) and H(n) in
(20) are causal, we can get rid of the operation [ |1 from
the right hand 51de of (20) by adding some purely noncausal
vector which may be dependent on H"(n). Hence in calcu-
lating the derivative we discard the operation [ ]+ in (21)
and obtain

OH(n+1)
9H, (n)

_ _ uéfS[B[ _
(1+ Hi(n)e)?(1 + Hy (n)ey)

Substituting the stationary point (23) of the second case we
have

OH;(n +1)
OH;(n)

(24)

_ l_uStC'? |Ci —

Hy(n)=Hops,1

A (Cr — Arer)
|Ci

(25)
For the (local) stability we require that the absolute value
of the right hand side of (25) is less than 1. Since 0 < p < 1
and S; > 0, we have the condition

Re [C/(C1 — Aie)] >0 (26)



where ¢; = 7 (CI—C'I). This is a counter-part of the so-
called 90° condition in the feedforward-type ANC . However
in the feedback-type ANC the condition (26) depends on the
property of w(n). Under (26) the transfer function of the
adaptive filter converges to Hopt(2z) in (23) at least locally
for large N and in this steady state from (1), (2), (3) and
(23) the error signal e(n) is symbolically expressed as
1 — B(z)Hopt(2)

e(n) = 14 (B(z) — B(Z))Hopt(z)w(n)

= (- AE)wm)

where z~! means the unit delay operator. This is the min-
imum variance d-step ahead prediction error of w(n). That
is, even if B(z) differs from B(z) within some range, the
scheme in Fig. 2 gives the optimal steady state performance.

4. A SIMPLE EXAMPLE

Here we consider a simple case where B(z) = vz}, B(z) =
4z~ and w(n) is a first order (lowpass) AR process with
the innovation variance 1, that is, G(z) = (1—az~')"* with
0 < a < 1. Then (23) becomes

a
H, = 2
)= == B 20
with 3 = 4/~ and the corresponding impulse response
hoptt =a' " (1= 8)' /v (1> 0). (28)

The condition that (27) is the stationary point of the adap-
tive algorithm is [(1 — B)a| < 1, that is, 1 — 1/a < 8 <
1+ 1/a. Under this condition we consider (26) in this case,
that is,
2ml
ﬂ{l—(l—ﬂ)acos%} >0 (1=0, -, L—1).
But the quantity in the bracket is positive so that we have
the overall local convergence condition as

1
0<ﬂ<1+5. (29)

Some simulations have been made to check the theo-
retical findings. In Fig.3 the learning curve showing the
empirical variance of the squared error e?(n) is presented
for the case where a = 0.9, v =1, 4 = 0.5 (8 = 0.5) with
N = 8, and px = 0.01. The variance is obtained by av-
eraging over 50 data sets and the steady state variance is
1.02879 which is very close to the minimum variance 1.0.
In Table 1, the steady state first 4 impulse responses of the
adaptive filter are presented together with the theoretical
ones in (28). The agreements are good. Finally we have ob-
served that for § = —0.05 and 2.2 the adaptive algorithm
diverges. This coincide well with (29).

5. CONCLUSION

We have presented the analysis of the adaptive filter al-
gorithm for feedback-type ANC concerning its stationary
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Fig. 3. Learning curve under the condition a = 0.9, vy =1
and 4 = 0.5.

ho h1 ho hs
empirical | 0.870165 | 0.414190 | 0.201025 | 0.093168
theoretical | 0.900000 | 0.405000 | 0.182250 | 0.082013

Table 1. Theoretical and estimated impulse responses.

point and the local convergence condition using the averag-
ing method combined with the frequency domain expression
of the adaptive algorithm. The obtained theoretical results
coincide well with the simulation results. A further study is
needed about the property of the generalized Wiener-Hopf
equation describing the stationary point.
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