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ABSTRACT

The feedback-type active noise control (ANC) system uses
only one microphone to provide necessary signals for ad-
justing the adaptive �lter. Due to the complicated na-
ture of the whole adaptive �lter structure there have been
no theoretical results about its convergence properties. In
this paper, �rst a stationary point of the adaptive �lter
using the �ltered-X LMS algorithm is obtained by the aver-
aging method combined with the frequency domain tech-
nique. Then the local convergence condition is derived.
This is a counterpart of the well-known 90� condition for
the feedforward-type ANC. Finally, the convergence condi-
tion is explicitly given for a simple example and its validity
is shown by some simulations.

1. INTRODUCTION

Recently there have been growing interests in the feedback-
type active noise control (ANC) system in Fig.1 where only
one microphone is used to provide necessary signals for ad-
justing the adaptive �lter in ANC [1]. This is in contrast
with the conventional feedforward-type ANC system where
two microphones are used to pick up the reference signal
to the primary path and the error signal at the end of the
secondary path [2]. The convergence condition of the latter
type ANC is well-known. The so-called 90� condition says
that the phase di�erence between the transfer functions of
the secondary path and its estimate should lie in the interval
(��=2; �=2) [2]. However, as far as the authors are aware,
there have been no theoretical results about the convergence
properties of the feedback-type ANC algorithms. In this pa-
per, we present some results about the stationary point of
the adaptive �lter and the convergence condition using the
averaging method in [3] with the frequency domain tech-
nique developed in [4]. This technique converts adaptive
algorithms into those in the discrete frequency domain by
the discrete Fourier transform (DFT) and is successfully
applied to the analysis of rather complicated adaptive sys-
tems such as the delayless subband adaptive �lter where
�xed �lters, decimators and upsamples for rate conversion
are included.

The con�guration we are treating is due to [5] and is
shown in Fig.2 where only the error signal picked up by the
microphone is available. To generate a \reference" signal to
the adaptive �lter, the \feedback control" �lter is inserted
to recover the original external noise w(n). But its transfer
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Fig. 1. Feedback-type active noise control system

function B̂(z) may be di�erent from that of the (physical)
feedback path B(z) so that in general the arti�cially gen-
erated reference signal x(n) is not exactly equal to w(n).
The weights in the adaptive �lter are updated according
to the �ltered-X LMS algorithm. The idea behind this is
that if w(n) is available, the original problem becomes the
optimal prediction of w(n) by the output of the cascade of
the adaptive �lter and the physical feedback path B(z) with
the input w(n). Interchanging the �lters in the cascade and

replacing B(z), w(n) by B̂(z), x(n), respectively, we have
the �ltered-X LMS algorithm.

2. DERIVATION OF THE STATIONARY

POINT OF THE ADAPTIVE FILTER

Since we are essentially dealing with the prediction prob-
lem of a zero mean stationary process w(n), as stated in [6]
some cares are needed to insure the causality of the steady
state transfer function of the adaptive �lter when the anal-
ysis is performed in the discrete frequency domain. We use
the technique in [4] to analyze the scheme in Fig.2. The
relations of the signals in Fig.2 are written as

e(n) = w(n)�

Nb�1X
i=0

bix
0(n� i) (1)

x0(n) =

N�1X
i=0

hi(n)x(n� i) (2)

x(n) = e(n) +

Nb�1X
i=0

b̂ix
0(n� i) (3)
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Fig. 2. Block diagram of the adaptive �lter for feedback-
type ANC

where N is the number of the tap coe�cients fhi(n)g of the
adaptive �lter, Nb � 1 is the order of the transfer functions
of B(z) and B̂(z) whose impulse responses are fbig and

fb̂ig, respectively. We also assume that Nb � N . Then the
error signal e(n) is given by

e(n) = w(n)�

Nb�1X
i=0

bi

N�1X
k=0

hk(n� i)x(n� i� k): (4)

Since the tap weight hi(n) (i = 0; 1; � � � ; N � 1) is updated
by the �ltered-X LMS algorithm

hi(n+ 1) = hi(n) + �u(n� i)e(n) (5)

with a small positive gain �, the di�erence between hk(n)
and hk(n� i) is of O(�). So its e�ect through e(n) in (5) is
of O(�2) and can be discarded. Hence, the second term in
(4) can be regarded as the output of the cascade �lter of the
adaptive �lter with the �xed fhi(n)g and the feedback path
where the input is x(n). So e(n) is approximately expressed
as

e(n) ' w(n)�

N�1X
l=0

 
Nb�1X
i=0

bihl�i(n)

!
x(n� l): (6)

Next, we de�ne the following L-dimensional vectors as

h(n) = [ h0(n); � � � ; hN�1(n); 0
T ]T (7)

x(n) = [ x(n); � � � ; x(n�N + 1); 0T ]T

where \0" denotes the (L�N)-dimensional zero vector and
L � 2N . The reason why L � N zeros are padded in (7)
is that the N -point DFT of fhi(n)g (i = 0; � � � ; N � 1)
results in the N -period sequence in the discrete frequency
domain and this in turn introduces the N -periodicity in
fhi(n)g through the inverse DFT. Thus hi(n) for negative
i becomes non-zero. To avoid this and insure the causality
zero padding is introduced [6]. Similarly we de�ne the L-

dimensional vectors for other signals and the vectors b, b̂

with (L�Nb) zeros padded for tap coe�cients of B(z) and

B̂(z), respectively. Then (6) can be written as

e(n) ' w(n) � (b
 h(n))yx(n) (8)

where \y" and \
" denote the complex conjugate trans-
pose and the convolution, respectively. Also, (b 
 h(n)) is
made L-dimensional by deleting the extra zeros. Then the
adaptive rule can be written as

h(n+ 1) = h(n) + �u(n)e(n) (9)

Also, we de�ne the L-point DFT matrix by

F =
h
exp
�
�j

2�lm

L

�i
l;m = 0; 1; � � � ; L� 1

and the L-point DFT of w, e, x, x0, u, h, b, b̂ are denoted
by the corresponding capital letters as W , E, X, X0, U ,
H, B, B̂, respectively. Also the following diagonal matrix
is de�ned for H(n) = ( H0(n); H1(n); � � � ; HL�1(n) )

T as

�H(n) = diag[ H0(n); H1(n); � � � ; HL�1(n)]

and similarly for B, B̂ as �B , �B̂ . Noting that

F
y
F = LI

where I denotes the L � L identity matrix and using this
in (8) we have

e(n) ' w(n)�
1

L
x
y(n)F y

F (b � h(n))

' w(n)�
1

L
X

y(n)�BH(n) (10)

Applying F to (9) and using (10), we have

H(n + 1) =H(n) + �U (n)
h
w(n) �

1

L
X

y(n)�BH(n)
i
:

(11)
Since

u(n) =

Nb�1X
i=0

b̂ix(n� i);

the l-th element of U(n) can be written as

(U (n))l =

Nb�1X
i=0

b̂ie
j 2�li

L

L�1+iX
k=i

x(n� k)e�j 2�lk
L :

But the index i moves from 0 to Nb�1 and Nb � L so that
we can replace the range of the second summation with
0 � k � L � 1 by neglecting the \end e�ects". Thus we
have the approximate relation

U (n) ' �
�

B̂
X(n); (12)

where \�" denotes the complex conjugate. Similarly the
corresponding approximate expressions for (1){(3) are

E(n) ' W (n)���
BX

0(n)

X
0(n) ' �

�
H(n)X(n) (13)

X(n) ' E(n) +��

B̂
X

0(n):



Hence by eliminating E(n) and X0(n) in (13) we have

X(n) ' Q(n)W (n) (14)

with
Q(n) =

�
I +��

H(n)

�
�
�
B ��

�

B̂

� ��1
: (15)

Substituting (12) and (14) into (11) we have the discrete
frequency domain expression of (9) as

H(n+ 1) 'H(n) + �
�
�
�

B̂
Q(n)W (n)w(n)

�
1

L
�
�

B̂
Q(n)W (n)W y(n)Qy(n)�BH(n)

i
: (16)

Since L is large and w(n) is a zero-mean stationary process,
the element of W (n), that is, the DFT of w(n) is uncorre-
lated with each other. Hence,

E
�
W (n)W y(n)

�
' Ldiag [ S0; S1; � � � ; SN�1 ] � L�S

(17)

where S(ej!) is the spectral density of w(n) and Sl = S(ej
2�l
L ).

Also,

w(n) =
1

L

L�1X
l=0

L�1X
k=0

w(n� k)ej
2�l
L

k =
1

L
W

y(n)� (18)

where � is an L-dimensional vector whose elements are all
1. So from (17) and (18)

E [W (n)w(n)] ' �S� = S: (19)

We use the averaging method in [3] to analyze (16).
By taking the average with respect to W (n) and w(n) in
the right hand side of (16), replacing H(n) with the corre-
sponding deterministic quantity �H(n) and using (17), (19),
the averaged system is given by

�H(n+ 1) = �H(n) + �
�
�
�

B̂
�Q(n)S (20)

���

B̂
�Q(n)�S

�Q
y
(n)�B

�H(n)
i
+

where �Q(n) is given by (15) with H(n) replaced by �H(n)
and [ ]+ indicates that the causal part is taken from the in-
verse transform of the quantity in a square bracket [6]. This
operation is necessary to keep �H(n) to be causal. Since all
the matrices in (20) are diagonal, the l-th element of (20) is
written as the following scalar nonlinear di�erence equation

�Hl(n+ 1) = �Hl(n)+ (21)

�

"
B̂�
l Sl

1 + �Hl
�
(n)��l

�
B̂�
l SlBl

�Hl(n)�
1 + �Hl(n)�l

� �
1 + �Hl

�
(n)��l

�
#
+

where Bl = B(ej
2�l
L ), B̂l = B̂(ej

2�l
L ), and �l = Bl � B̂l.

Thus the stationary point of the original �ltered-X LMS
algorithm in (5) is obtained by solving (21) with �Hl(n+1) =
�Hl(n) = Hl. When N ! 1 (L ! 1), we can replace the
discrete frequencies with the continuous ones so that instead
of Hl we use H(z) where z = ej!. Hence, it follows that the
stationary point is determined by�

B̂(z�1)S(z)�
B̂(z�1)S(z)B(z)H(z)

1 +H(z)�(z)

�
+

= 0 (22)

where �(z) = B(z) � B̂(z) and 1 +H(z�1)�(z�1) is purely
non-causal except the constant term so that from the de-
nominator we can get rid of this. In general, it is very
di�cult to solve this \generalized Wiener-Hopf" equation.
Let the spectral factorization of S(z) be S(z) = G(z)G(z�1)
where G(z) is of minimum phase. Then G(z�1) can be fac-
tored out from the left hand side of (22).

Here we present two cases where we can have explicit
solutions. The �rst case is that B(z) = B̂(z) (�(z) = 0).
Then we immediately have the solution

Hopt(z) =
1

Bmin(z)G(z)

�
B(z�1)G(z)

Bmin(z�1)

�
+

where B(z)B(z�1) = Bmin(z)Bmin(z
�1) and Bmin(z) is a

stable polynomial. A more interesting case is for �(z) 6=

0. Assume that B(z) = z�dC(z), B̂(z) = z�dĈ(z) where

d is a positive integer denoting the delay and C(z), Ĉ(z)
are stable polynomials. Further assume for the moment
that 1 +H(z)�(z) is of minimum phase. Then (22) can be
simpli�ed as �

zdG(z)
�
+
�
G(z)C(z)H(z)

1 +H(z)�(z)
= 0

so that if we set A(z) =
�
zdG(z)

�
+
=G(z), we have the

solution

Hopt(z) =
A(z)

C(z)� z�d(C(z)� Ĉ(z))A(z)
; (23)

provided that this is a stable transfer function. For (23)
1 +H(z)�(z) is of minimum phase. We also note that A(z)
is the transfer function of the optimal d-step ahead linear
predictor of w(n+ d).

3. THE CONVERGENCE CONDITION OF THE

ADAPTIVE ALGORITHM

The local stability of (21) around the stationary point is
examined by calculating the derivative of (21). We use a
special de�nition of the derivative with respect to a complex
variable in [7] where we note that the following property
@ �H�

l (n)=@ �Hl(n) = 0 holds. Since �H(n + 1) and �H(n) in
(20) are causal, we can get rid of the operation [ ]+ from
the right hand side of (20) by adding some purely noncausal
vector which may be dependent on �H

�
(n). Hence in calcu-

lating the derivative we discard the operation [ ]+ in (21)
and obtain

@ �Hl(n+ 1)

@ �Hl(n)
= 1�

�B̂�
l SlBl

(1 + �Hl(n)�l)2(1 + �H�
l (n)�

�
l )
: (24)

Substituting the stationary point (23) of the second case we
have

@ �Hl(n+ 1)

@ �Hl(n)

����
�Hl(n)=Hopt;l

= 1�
�SlĈ

�
l jCl �Al�lj

2 (Cl �Al�l)

jClj
2

:

(25)
For the (local) stability we require that the absolute value
of the right hand side of (25) is less than 1. Since 0 < �� 1
and Sl > 0, we have the condition

Re
�
Ĉ�
l (Cl �Al�l)

�
> 0 (26)



where �l = e�j 2�ld
L (Cl�Ĉl). This is a counter-part of the so-

called 90� condition in the feedforward-type ANC . However
in the feedback-type ANC the condition (26) depends on the
property of w(n). Under (26) the transfer function of the
adaptive �lter converges to Hopt(z) in (23) at least locally
for large N and in this steady state from (1), (2), (3) and
(23) the error signal e(n) is symbolically expressed as

e(n) =
1� B̂(z)Hopt(z)

1 + (B(z)� B̂(z))Hopt(z)
w(n)

= (1� z�dA(z))w(n)

where z�1 means the unit delay operator. This is the min-
imum variance d-step ahead prediction error of w(n). That

is, even if B̂(z) di�ers from B(z) within some range, the
scheme in Fig. 2 gives the optimal steady state performance.

4. A SIMPLE EXAMPLE

Here we consider a simple case where B(z) = 
z�1, B̂(z) =

̂z�1 and w(n) is a �rst order (lowpass) AR process with
the innovation variance 1, that is, G(z) = (1�az�1)�1 with
0 < a < 1. Then (23) becomes

Hopt(z) =
a


 f1� z�1(1� �)ag
(27)

with � = 
̂=
 and the corresponding impulse response

hopt;l = al+1(1� �)l=
 (l � 0): (28)

The condition that (27) is the stationary point of the adap-
tive algorithm is j(1 � �)aj < 1, that is, 1 � 1=a < � <
1+1=a. Under this condition we consider (26) in this case,
that is,

�
n
1� (1� �)a cos

2�l

L

o
> 0 (l = 0; � � � ; L� 1):

But the quantity in the bracket is positive so that we have
the overall local convergence condition as

0 < � < 1 +
1

a
: (29)

Some simulations have been made to check the theo-
retical �ndings. In Fig.3 the learning curve showing the
empirical variance of the squared error e2(n) is presented
for the case where a = 0:9, 
 = 1, 
̂ = 0:5 (� = 0:5) with
N = 8, and � = 0:01. The variance is obtained by av-
eraging over 50 data sets and the steady state variance is
1:02879 which is very close to the minimum variance 1:0.
In Table 1, the steady state �rst 4 impulse responses of the
adaptive �lter are presented together with the theoretical
ones in (28). The agreements are good. Finally we have ob-
served that for � = �0:05 and 2:2 the adaptive algorithm
diverges. This coincide well with (29).

5. CONCLUSION

We have presented the analysis of the adaptive �lter al-
gorithm for feedback-type ANC concerning its stationary
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Fig. 3. Learning curve under the condition a = 0:9, 
 = 1
and 
̂ = 0:5.

h0 h1 h2 h3
empirical 0.870165 0.414190 0.201025 0.093168
theoretical 0.900000 0.405000 0.182250 0.082013

Table 1. Theoretical and estimated impulse responses.

point and the local convergence condition using the averag-
ing method combined with the frequency domain expression
of the adaptive algorithm. The obtained theoretical results
coincide well with the simulation results. A further study is
needed about the property of the generalized Wiener-Hopf
equation describing the stationary point.
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