
 A STOCHASTIC ANALYSIS OF THE AFFINE PROJECTION
 ALGORITHM FOR GAUSSIAN AUTOREGRESSIVE INPUTS

 N. J. Bershad1 , D. Linebarger2 and S. McLaughlin3

 November 2000

1 Department of Electrical and Computer Engineering , University of California, Irvine, CA 92697, (949)-824-6709, fax-
(949)-824-3203, bershad@ece.uci.edu.
2 Department of Electrical Engineering, University of Texas-Dallas, Richardson, Texas, 75083-0688, (972)-883-4950, fax-
(972)-883-2710, dl@utdallas.edu.
3 Department of Electrical Engineering, University of Edinburgh, Edinburgh, Scotland, U.K., (01 31)-650-5578, fax-
(0131)-650-6554, S.Mclaughlin@ee.ed.ac.uk.

 ABSTRACT
This paper studies the statistical behavior of the Affine
Projection (AP) algorithm for µ = 1 for Gaussian
Autoregressive inputs. This work extends the theoretical
results of Rupp [3] to the numerical evaluation of the MSE
learning curves for the adaptive AP weights. The MSE
learning behavior of the AP(P+1) algorithm with an AR(Q)
input (Q ≤ P) is shown to be the same as the NLMS
algorithm (µ = 1) with a white input with M-P unity
eigenvalues and P zero eigenvalues and increased
observation noise. Monte Carlo simulations are presented
which support the theoretical results.

 I. INTRODUCTION

 The AP algorithm was originally proposed by Ozeki and
Omeda in 1984 [1] and re-discovered by Slock [2] as the
USWC RLS algorithm. Subsequently, Rupp [3] presented
an interpretation of the AP algorithm which high-lighted
two ideas: 1) decorrelation (or pre-whitening properties) and
2) an increase in the background noise floor due to the
decorrelation operation. Most recently, Sankaran and Beex
[4] analyzed the convergence behavior of the AP algorithm
using a signal model due to Slock [5]. The first four papers
promote the idea that the increased speed of the algorithm is
due to its decorrelation properties. The under-determined
Least Squares portion of the algorithm estimates the AR
parameters of the input signal and essentially pre-whitens
the signal for input to an NLMS type structure. Although
the papers agree on the qualitative behavior of the
algorithm, only [4] provides a quantitative analysis of the
algorithm. The reason is the difficulty of actually
calculating many of the expectations in the AP stochastic
recursion. This difficulty is primarily due to the numerical
complexity of the under-determined LS solution, which is
embedded in the algorithm. Reference [4] is able to
circumvent these analytic difficulties by careful choice of
the signal model.
 This paper presents some specific transient numerical

results for the AP algorithm for AR Gaussian signal models
by extending Rupp [3] and using the NLMS results
presented in [6].

 II. THEORETICAL BACKGROUND

II.A Input Signal Model
Let z(k) be a white gaussian sequence with unit variance.
Let u(k) be an autoregressive process of order P,

 u k a u k i z ki
i

P

() () ()= − +
=
∑

1

 (1)

Assuming P is known a priori, samples of u(k) can be
written as an (M x 1) column vector u(k),
 uT(k) = [u(k), u(k-1),...u(k-M+1)] (2)
The AR(P) process can then be written as

 u u z U a z() =
=

k
i 1

P
ai k i k k k∑ − + = +() () () () (3)

where U(k) is a collection of P of the past vectors,
 U(k) = [u(k-1), u(k-2), ... u(k-P)] (4)
and z(k) is an M-vector of samples from the white gaussian
random sequence.
 zT(k) = [z(k), z(k-1), ... z(k-M+1)] (5)
The Least Squares estimate of the parameters of a is

 ˆ () () () () ()a U U U uk k k k k=
−[]

T

T1

 (6)

where U U
T () ()k k is assumed of rank P.

II.B Affine Projection Algorithm
The AP recursive algorithm [1] (for µ =1) is defined by the
following set of operations: (4), (6) and

φ() () () ˆ

() () () ()

k k k

k k T k k

= −

−[]





u U a

U U U U u

(k)

= I - (k) T 1 (7)

 e k d k T k k() () () ˆ ()= − u w (8)

 ˆ () ˆ ()
()

() ()
()w wk k

k

k k
e k+ = +1

φ

φΤ φ
 (9)

where ˆ ()w k is the weight vector of the adaptive filter. The

desired signal d(k) consists of a plant output WTu(k) plus an
additive observation noise v(k), i.e. d(k) = WTu(k) + v(k)
(see Figure 1). Rupp [3] shows that:
 1) if u(k) is an AR process of order P, ˆ ()a k is an estimate
of its AR coefficients and φ() =k (k)ẑ (i.e. φ()k is a vector
whose elements are estimates of a white gaussian random
sequence), and
 2) With ε() ˆ ()k k= −W w , the AP recursion (9) can be
written as

ε ε
φ φ

φΤ φ
ε

φ

φΤ φ
() ()

() ()

() ()
()

()

() ()
()k k

k T k

k k
k

k

k k
va k+ = − −1 (10)

with the filtered noise sequence

 va k v k k
i

P
v k i() () ˆ () ()= −

=
−∑ ai

1
 (11)

and ˆ ()ai k are the elements of ˆ ()a k . Rupp concludes that

(for µ =1) 1) the AP algorithm essentially works like the
NLMS algorithm but with the white input φ()k , and 2) with
a filtered version va(k) of the input noise v(k). For a white
noise v(k), the background noise power is increased by
approximately (1+aTa) if the estimates ˆ ()a k are close to a.
Rupp closes this section of the paper with the comment that
the recursion for the weight error vector variances (in a
transformed coordinate system) for the NLMS algorithm [4,
5] is of the form
 c Bc h() ()k k+ = +1 (12)
Eq. (12) can be solved for the AP algorithm to yield a
performance prediction for the weight error vector variances.
Rupp [3] did not evaluate B and h. The goal of this paper is
to compute B , h , and generate MSE learning curve
predictions.
 This paper presents these computations for eq. (12) for
Gaussian AR processes. The results predicted by (12) are
supported by Monte Carlo simulations ;

 III. ANALYSIS OF THE AP ALGORITHM (µ = 1)

III.A Statistical Properties of ˆ ()a k
Inserting (3) in (6) yields

ˆ() () () () () ()

() () () ()

a U U U U a z

a U U U z

k k k k k k

k k k k

=
−

+

= +
−

[] []

[]

T

T

T

T

1

1
 (13)

Now, it is clear from (3) and (4) that some components of
U(k) are algebraicly dependent upon some components of
z(k). However, it will be assumed here that this dependence
can be neglected statistically. This assumption is similar to
the independence assumption used to analyze many
stochastic algorithms [7]. Averaging (13), using the
independence assumption, yields
 E a aˆ ()k[] = (14)

Hence, the estimate is un-biased.
IIIB. Statistical Properties of va(k)
 Squaring and averaging (11) and assuming v(k) is a
stationary white sequence yields

E va E ai k
i

P
E v k

T ai k
i

P
E v k

T Tr E k k E v

2 1 2

1

2

1
1

2

1
1 2

[] []

î



 []
[]



 []

[]







î











= +
=
∑

= + +
=
∑

= + +
−

ˆ () ()

var ˆ () ()

() () (

a a

a a U UT kk)[]
 (15)
III.C Statistical Properties of φ()k
Inserting (3) into (6) and the result into (7) yields

φ() =k
T

TI k k k k k− 




−


î





U U U U z() () () () ()
1

 (16)

Thus φ(k) is a white vector z(k) pre-multiplied by a matrix
whose components are algebraicly dependent on
components of z(k).

 Rupp [3 - eq.(11a)] has shown that U 0T k k() ()φ = .
Hence φ()k is orthogonal to u(k-1), .. ,u(k-P). This, in
turn, implies that u(k-j), 1 ≤ j ≤ P, is an eigenvector of

U U U U() () () ()k k k k
T

T




−1

 with unity eigenvalue for all

1 ≤ j ≤ P. Therefore, expanding z(k) in a complete ortho
-normal series using the eigenvectors of the matrix inside
the brackets in (2) plus additional orthogonal vectors to
form a complete set,

 z k bi
i

P
k k i bi

i P

M
k i k() () () () ()=

=
∑ − +

= +
∑

1 1
u ψ (17)

where the ψi (k) are an orthonormal set with M-P members,

also orthonormal to the u(k-i). The u(k-i) do not have to be
mutually orthogonal because they have the same unity
eigenvalue. For i > P, the bi(k) are zero mean, uncorrelated

with unit variance. Assuming U UT k k() ()is of rank P, then
(17) is an equality in the mean-square sense. Using (17) in
(16),

 φ() =
= +

ϕk
i P 1

bi
M

k i k∑ () () (18)

Thus, φ()k has dimensionality M-P with covariance matrix

E i
i P

M
k k T IM Pφ()φ()Τ ψ ψk k i[] 





=
= +

∑ = −
1

() ()
0

0 0
 (19)

Thus, φ()k is white vector with M-P unity eigenvalues and
P zero eigenvalues.
III.D Computation of B and h
The weight error vector covariance learning behavior of the
AP(P+1) algorithm with an AR(P) input is the same as the
NLMS algorithm (µ = 1) with a white input with M-P unity

eigenvalues and P zero eigenvalues and observation noise
va(k) as given in (11). For this case, B = b IM-P ,
h = h 1 (1 is an M-P column vector of ones), and all
components of c(k) are identical (b and h are scalars).
Thus, (12) can be written as two scalar equations [4] for the
components of c(k)

c j k bkc j for j P

c j k bc j k h for P j M

() ()

() ()

= ≤ ≤

+ = + < ≤

0 1

1
 (2 0)

Using [6-eqs. (23) and (25)],

b
M P

= −
−

−






1
2µ µ()

, h
E va

M P M P
=

− − −

µ2 2

2

[]

()()
 (21)

By comparison, the corresponding expressions for the
NLMS algorithm with a white input and arbitrary µ are

bNLMS
M

= −
−





1
2µ µ()

, hNLMS =
−

µ2

2()M
 (22)

Hence, the AP algorithm decorrelates the colored input
process and has a faster convergence speed (i.e. b <
bNLMS) but a higher noise floor (h > hN L M S) as
compared to the NLMS algorithm with white inputs.

III.E Learning Curves for the AP Algorithm for µ =1
Reference [6] presents a general expression for eq. (12) for
the NLMS algorithm using the independence assumption for
successive data vectors for arbitrary stationary gaussian data
vectors. The expression involves certain integrals, which
depend upon the eigenvalues of the input data covariance
matrix. When the input data vector is white (i.e.
E[u(n)uT(n)] is proportional to the identity matrix), the
integrals are easily evaluated. Reference [5] presents a
general expression for eq. (12) for the NLMS algorithm
using the independence assumption for spherically invariant
processes. These expressions are easily evaluated for any
eigen-value distribution and are shown in exact agreement
with [6] for the white case. Assuming that (15) is time-
invariant and using (21) in (20) with the initial conditions for

the misadjustment, c j E va j() []0 2 2= W

c j k
M P

k
E va j

E va

M P M P M P

k q

q

k

M P

k
E va j

E va

M P M P

() []

[]

()

[]

[]

()

= −
−

+

− − −
−

−

− −

=

−
∑

= −
−

+

− −
− −

−







()














1
1 2 2

2

2
1

1
1

0

1

1
1 2 2

2

2
1 1

1

W

W

















k

 (2 3)

for P j M< ≤ .

 Finally, using [6-eq. (23)], the MSE can be written as

 MSE k E va c j k
j

M
() [] ()= +

=
∑2 2

1
 (24)

In steady-state,

lim ()k MSE k E va
M P

M P
→∞ = +

−

− −[] ()





2 1
2

 (25)

A similar result can be calculated for NLMS.

 IV. MONTE CARLO SIMULATION RESULTS

Figures 2-5 compare the misadjustment for the theory and
MC simulations (100 trials) for the AP algorithm and a
tapped delay line simulation for NLMS for various sets of
parameters as shown in the figure labels. The theoretical

curves use (23) and (25) for E va a2 1 2 1 81[] = + = . (i.e.

neglecting the fluctuations in (15)). Figure 2 shows
excellent agreement between the theory and MC
simulations for AP(2) for an AR(1) input for both the
transient and asymptotes. Figure 3 shows very good
agreement between the theory and MC simulations for
AP(4) for an AR(1) input for both the transient and
asymptotes. Figure 4 shows fair agreement between the
theory and MC simulations for AP(16) for an AR(1) input.
Figures 2-4 show qualitative agreement with the theory in
that increases in the order of the AP algorithm increases
convergence speed but also increases the steady-state
misadjustment. Figure 5 shows theory and MC simulations
for the AP(2) algorithm for a 256 tap adaptive filter. The
asymptotes are in good agreement but the transients are only
in fair agreement. Many other comparisons of the theory
and simulations have been made but cannot be shown here
for reasons of space. However, in general, the theory has
been shown quite accurate over a wide range of possible
parameter variations.

 V. CONCLUSIONS

This paper has presented an analytical model for predicting
the behavior of the Affine Projection algorithm for its fastest
convergence (step-size µ = 1). The model is based upon:
a) the AP error vector being a scalar for µ = 1 and
b) showing that the update term in the AP recursion is white.
Then, the variance recursions for the AP algorithm are
similar to those of the NLMS algorithm. Thus, previously
derived theory for the NLMS algorithm for white inputs can
be used. A wide variety of Monte Carlo simulations were
shown in good-to-excellent agreement with the behavior
predicted by the theory.

 REFERENCES

1. K. Ozeki and T. Umeda, " An Adaptive Filtering Algorithm
using Orthogonal Projection to an Affine Subspace and its
Properties," Electronics and Communications in Japan, Vol. 67-A,
no. 5, pp. 19-27, 1984.

2. D. T. Slock, "Under-determined Growing and Sliding
Covariance Fast Transversal Filter RLS Algorithms," Proc.
Eusipco, Brussels, pp. 1169-1172, 1992
3. M. Rupp, "A Family of Adaptive Filter Algorithms with
Decorrelating Properties," IEEE Trans. on Signal Processing, Vol.
46, No. 3, pp. 771-775, March 1998.
4. S. G. Sankaran and A. A. Beex, "Convergence Behavior of the
Affine Projection Algorithm," IEEE Trans. on Signal Processing,
Vol. 48, No. 4, pp. 1086-1097, April 2000.
5. D.T. Slock, "On the Convergence Behavior of the LMS and the
Normalized LMS Algorithms," IEEE Trans. on Signal Processing,
Vol 41, No. 9, pp. 2811-2825, Sept. 1993.
6. N. J. Bershad, "Analysis of the Normalized LMS Algorithm with
Gaussian Inputs," IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. ASSP-34, No. 4, pp. 793-806, August 1986.
7. S. Haykin, Adaptive Filter Theory, 3rd. ed., Englewood Cliffs,
NJ: Prentice-Hall, 1996.

W

y(k)

+

+

+

-

d(k)

e(k)

WT u(k)

h (k)

hT (k)u(k)

u(k)

 Figure 1 - Adaptive System Identification

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

20

iterations

M
is

a
d

ju
st

m
e

n
t

NLMS (TDL)

AP(2)-MC Sim. AP(2)-theory

 Figure 2 - Misadjustment for AP(2) and NLMS for AR(1)
input (a = [.9], M= 20, µ = 1, SNR = 100 dB, AP(2)
asymptotes: theory = 2.0229 x 10^(-10), simulations
=3.5733 x 10^(-10).

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

20

iterations

M
is

ad
ju

st
m

en
t

NLMS (TDL)

AP(4)-MC Sim. AP(4)-theory

Figure 3 - Misadjustment for AP(4) and NLMS for AR(1)
input (a = [.9 0 0 0], M= 20, µ = 1, SNR = 100 dB,
AP(4) asymptotes: theory = 2.0513 x 10^(-10), simulations
= 4.0998 x 10^(-10).

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

20

iterations

M
is

ad
ju

st
m

en
t

NLMS (TDL)

AP(16)-MC Sim.

AP(16)-theory

Figure 4- Misadjustment for AP(16) and NLMS for AR(1)
input (a = [.9 ones(1,15)]), M= 20, µ = 1, SNR = 100
dB, AP(16) asymptotes: theory = 3.0167 x 10^(-10),
simulations = 1.1143 x 10^(-9).

0 1000 2000 3000 4000 5000 6000 7000 8000
-100

-80

-60

-40

-20

0

20

iterations

M
is

ad
ju

st
m

en
t

theory

theoryMC Simulations

Figure 5 - Misadjustment for AP(2) for AR(1) input (a =.9),
M= 256, µ = 1, SNR = 100 dB, asymptotes: theory =
1.8247 x 10^(-10), simulations = 3.6086 x 10^(-10).
, M= 256, µ = 1, SNR = 100 dB, asymptotes: theory =
1.8247 x 10^(-10), simulations = 3.6768 x 10^(-10).

