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ABSTRACT
We consider the problem of estimating the feedback coefficients
of a linear feedback shift register (LFSR) based on noisy observa-
tions. In the current approach, the coefficients are endowed with
a probabilistic model. Gradient ascent updates to coefficient prob-
abilities are computable using recursions developed by means of
the EM algorithm. Reduced-complexity approximations are also
developed by reducing the number of coefficients propagated at
each stage. Applications of this method may include soft decision
decoding and blind spread spectrum interception.

1. INTRODUCTION

In this paper we consider the problem of synthesizing the feedback
coefficients of a binary linear feedback shift register of fixed length
p, given noisy observations of the shift register output and assum-
ing that the distribution of the initial states of the shift register is
known. This work is a variation on the seminal work of Massey [1]
in two significant ways: the observations are noisy, which means
that an exact discrepancy cannot be computed, and the shift regis-
ter length is fixed, so that the number of coefficients cannot grow
to produce a shift register long enough to accommodate the ob-
served sequence. The approach taken in this paper is to regard
each feedback coefficient as a Bernoulli B(
) variable, then esti-
mate the parameters of the Bernoulli variables using a maximum
likelihood approach. The EM algorithm [2, 3, 4] is used, leading to
expressions for the derivative with respect to the desired parame-
ters which are employed in a steepest-ascent algorithm to increase
the EM likelihood function. Such an update is sometimes referred
to as a a generalized EM algorithm (GEM).

Despite the recursive updates, the complexity of the algorithm
is exponential in the number of coefficients. We therefore consider
a reduced complexity algorithm in which only the W most proba-
ble paths are extended, in a manner similar to reduced-complexity
Viterbi algorithms.

The approach taken here has clear connections to maximum
likelihood training of hidden Markov models (HMMs) [5, 6]. The
familiar forward probability from HMM training algorithms reap-
pear here, along with some other recursive updates. The work is
also related to [7, 8], which considers the problem of inferring the
“message” vector s given observations r of the form As� n = r,
where A is known and n is Bernoulli noise. This work has been
very successfully applied to soft-decision decoding of low-density
codes. While we make use of the key insight of the forward and
backward probabilities presented in [7], in our noisy LFSR estima-
tion problem, the matrix A is not known in advance (since we do
not directly observe the LFSR output). The problem is also related
to the sequence inference problems treated in [9, 10, 11].

Potential applications include soft-decision error correction cod-
ing (determining the coefficients of an LFSR constitutes a major
step in decoding Reed-Solomon codes), intercepting and acquiring
code-division multiple access communications, or data compres-
sion.

2. PROBLEM STATEMENT

Consider a linear feedback shift register with output yt given by
yt =

Pp
i=1 ciyt�i; which is passed through a discrete memo-

ryless channel (DMC) C to produce output dt, dt = C(yt; nt),
where nt is an independent noise sequence For example, the chan-
nel might be a binary symmetric channel (BSC), dt = yt � nt for
nt 2 f0; 1g, or it might be an AWGN channel, dt = yt+nt; nt 2
R. Space limitations preclude providing details for other than the
BSC, but extension to the AWGN using the methods here is s-
traightforward. The proposed system is diagrammed in figure 1.
Given an observed sequence fdt; t = 1; 2; : : : ; Tg, the problem

LFSR DMC
fytg fdtg

Figure 1: Noisy observations from an LFSR

is to estimate the feedback coefficients fci; i = 1; 2; : : : ; pg. To
this end, we model the feedback coefficients as Bernoulli random
variables with parameters 
i defined by 
i = P [ci = 1]. Un-
der the assumption of random coefficients, the LFSR become a
Markov model, and, since the outputs are probabilistically deter-
mined by means of the BSC, the overall system becomes a hidden
Markov model (HMM).

Let c = [c1; c2; : : : ; cp]
T denote the vector of feedback co-

efficients, and let 
 = [
1; 
2; : : : ; 
p]
T denote the correspond-

ing vector of probabilities. Let d = [d1; d2; : : : ; dT ]
T and y =

[y1; y2; : : : ; yT ]
T . The state st of the system at time t is deter-

mined by the previous p outputs, st = (yt�1; yt�2; : : : ; yt�p) =
(st;1; st;2; : : : ; st;p):We denote the sequence of states by s = [s1;
s2; : : : ; sT ]. We observe that the LFSR outputs y and the state se-
quence s are informationally equivalent.

Regardless of the coefficient vector c, the sequence of permis-
sible states of the LFSR must correspond to a DeBruijn sequence
[12, p. 16], [13], with the added stipulation that there is only one
successor to the all-zero state in the LFSR (it cannot leave the all-
zero state). We will denote the set of all allowable state sequences
of length T by DT .



We model each coefficient 
i according to the logistic


i =
1

1 + e��i
; (1)

which will lead to an unconstrained optimization problem.
We can formulate the coefficient estimation question as a max-

imum likelihood (ML) problem: Determine the probabilities 
 to
maximize P (dj
). As a means to the ML solution we will em-
ploy the EM algorithm. We identify x = (d;y) = (d; s) as the
complete data set, and d as the observed data set. Let 
[k] denote
the estimate of 
 at the kth iteration of the algorithm, with cor-
responding parameter �[k] determined via (1). For the E-step we
form the function

Q(
j
[k]) = E[log P (d; sj
)jd;
 [k]]

=
X

s2DT

P (sjd;
[k]) log P (d; sj
): (2)

In (2), 
 is regarded as the unknown vector, to be determined in
the M-step by maximizing Q(
j
[k]) with respect to 
.

Noting that P (d; sj
) = P (djs;
)P (sj
) and, by the s-
tate structure of the LFSR, P (sj
) = P (s1j
)P (s2js1;
) � � �
P (sT jsT�1;
), we obtain

log P (d; sj
) =
TX
t=1

P (dtjst;
) + log P (stjst�1;
); (3)

where we take P (s1js�1;
) = 0. We also observe that

P (sjd;
[k]) =
P (d; sj
 [k])

P (dj
[k])
; (4)

where the denominator is independent of 
 and may in the future
be neglected. Combining (3) and (4) into (2) (and ignoring the
denominator) we obtain

Q(
j
[k]) =
X

s2DT

P (d; sj
[k])�

"
TX
t=1

log P (dtjst;
) + log P (stjst�1; 
)

#

The M-step of the EM algorithm leads to 
[k+1] = argmax

Q(
j
[k]): Maximization is approached through a gradient-ascent

method, computing an update to �
[k]
m by �

[k+1]
m = �

[k]
m + �

@

@�m
Q(
j
[k]); where � is the step-size parameter. In what follows,
we will develop expressions for P (dtjst; 
) and P (stjst�1; 
) in
which the parameter 
m is explicitly apparent, allowing the neces-
sary derivative to be computed.

3. OUTPUT AND STATE PROBABILITIES

Output probabilities The output probabilities P (dtjst; 
) are s-
traightforward to express for familiar channel models. For ex-
ample, for the BSC with crossover probability D, P (dtjst; 
) =
(1 �D)P (yt = dtjst; 
) +DP (yt = 1 � dtjst; 
). In general,
computation of the output probability thus requires finding the LF-
SR output probabilities P (ytjs; 
). These probabilities are com-
puted using the forward and backward probabilities introduced in
[7]. Let y1;mt =

Pm
i=1 st;ici be the partial forward sum, and let

p
1
t;m = P (y1;mt = 1jst; 
) p

0
t;m = P (y1;mt = 0jst; 
)

be the forward probabilities. These probabilities satisfy the recur-
sion

p1t;m = (1� 
m)p
1
t;m�1 + 
mp

0
t;m�1

p0t;m = (1� 
m)p
0
t;m�1 + 
mp

1
t;m�1

�
if st;m = 1

p1t;m = p1t;m�1
p0t;m = p0t;m�1

�
if st;m = 0:

We similarly define ym;p
t =

Pp
i=m st;ici as the partial backward

sum and let

r1t;m = P (ym;p
t = 1) r0t;m = P (ym;p

t = 0)

be the reverse probabilities. These probabilities satisfy a recursion
similar to the forward probabilities, with initial condition

p
0
t;0 = 1 p

1
t;0 = 0 r

0
t;p+1 = 1 r

1
t;p+1 = 0

Let

�1
t;m(st) = (p0t;m�1r

0
t;m+1 + p

1
t;m�1r

1
t;m+1)

�0
t;m(st) = (p1t;m�1r

0
t;m+1 + p0t;m�1r

1
t;m+1)

and

�t;m(st) = �1
t;m(st)��0

t;m(st):

Then it can be shown that

P (ytjst; 
) = �1�yt
t;m (st)� 
m(�1)

yt�t;m(st)Æ(st;m; 1);

(5)

where Æ(i; j) is the usual Kronecker Æ. Then (for the BSC) we
obtain

P (dtjst;
) = (�1)dt [(2D � 1)
m�t;m(st)Æ(st;m; 1)

�D�t;m(st)] + �1�dt
t;m (st):

(6)

Then (still for the BSC) it follows (with ~
m = 
m(1� 
m)) that

@

@�m
P (dtjst; 
) = (�1)dt(2D � 1)~
m�t;m(st)Æ(st;m; 1):

(7)

State transition probabilities By the state structure of the LFS-
R, P (sj
) = P (s1j
)P (s2js1;
) � � �P (sT jsT�1;
) In the state
transition probability P (stjst�1;
), unless st�1 and st are two
adjacent states in a DeBruijn state sequence, this probability is 0.
If st�1 and st are two adjacent states in a DeBruijn sequence, then
P (stjyt�1 = y; st�1; 
) = Æ(st;1; y): Thus

P (stjst�1;
) = P (yt�1 = 1jst�1;
)Æ(st;1; 1) +
P (yt�1 = 0jst�1;
)Æ(st;1; 0):

Using (5) we then obtain

@

@�m
log P (sj
) =

TX
t=2

�(�1)st;1~
m�t�1;m(st�1)

P (stjst�1; 
)
(8)

From (6), (7) and (8) we can write (after eliminating the nonzero
factors 
m(1� 
m) and letting �0;m(s0) = 0)

@

@�m
Q(
j
 [k]) /

X
s2D

P (d; sj
 [k])
TX
t=1

C1(dt; st; 
;m)

+
X
s2D

P (d; sj
[k])
TX
t=1

C2(st�1; st; 
;m)

(9)



where (for the BSC)

C1(dt; st;
;m) =
(�1)dt (2D � 1)�t;m(st)Æ(st;m; 1)

�1

C2(st�1; st;
;m) =
�(�1)st;1�t�1;m(st�1)Æ(st�1;m; 1)

�2
:

and

�1 = (�1)dt [(2D � 1)
m�t;m(st)Æ(st;m; 1)�D�t;m(st)]

+ �1�dt
t;m (st)

�2 = �1
t�1;m(st�1)� Æ(st;1; 1)�t�1;m(st�1)�
(�1)st;1
m�t�1;m(st�1)Æ(st�1;m; 1)

4. FORWARD AND BACKWARD STATE PROBABILITIES

To compute the sum over all state sequences s 2 DT in (9), we
introduce the forward and backward state sequence probabilities,
similar to those used in training HMMs. Let us define the for-
ward probability �(dt1; jj


[k]) as the probability of generating the
sequence d1; d2; : : : ; dt and ending up in state1 j:

�(dt1; jj

[k]) = P (d1; d2; : : : ; dt; st = jj
 [k])

Then � has the recursive update

�(dt+1
1 ; jj
 [k]) =

X
i2��(j)

�(dt1; ij

[k])�

P (st+1 = jjst = i;
 [k])P (dt+1jst+1 = j; 
[k]); (10)

with initial value

�(d1
1; ij


[k]) =

(
P (d1js1 = i; 
[k])P (s1 = i) i = s1

0 i 6= s1:

The notation ��(j) indicates the set of precursor states to the state
j.

Let us also define the first forward cost as

�(dt1; j;
;mj

[k]) =

X
s
t�1
1

P (dt1; s
t�1
1 ; st = jj
[k])

�

tX
�=1

C1(d� ; s� ; 
;m)

which can be shown to have the recursive update

�(dt+1
1 ; j;
;mj
[k]) =

X
i2��(j)

P (st+1 = jjst = i; 
[k])

� P (dt+1jst+1 = j;

[k])�(dt1; i; 
;mj


[k]) +

�(dt+1
1 ; jj
[k])C1(dt+1; j;
;m);

with initial value �(d1
1; j;
;mj


[k]) = 0 if j 6= s1, or P (d1js1;

[k])C1(d1; s1; 
;m) if j = s1.

1Notation: when talking about the value of the state, we will use a bold
font, to suggest that the state value is actually a binary p-tuple (a vector).

Let us also define the second forward cost as

�(dt1; j;
; mj

[k]) =

X
s
t�1
1

P (dt1; s
t�1
1 ; st = jj
 [k])

�

tX
�=1

C2(s��1; s� ;
;m)

with recursive update

�(dt+1
1 ; j;
;mj
[k]) =

X
i2��(j)

P (st+1 = jjst = i;

[k])

� P (dt+1jst+1 = j; 

[k])�(dt1; i; 
;mj


[k]) +X
i2��(j)

P (st+1 = jjst = i; 

[k])

� P (dt+1jst+1 = j;

[k])�(dt1; ij


[k])C2(i; j;
;m):

The iteration is initialized with �(d1
1; j;
; mj


[k]) = 0 8j;m:
Then

@

@�m
Q(
j
 [k]) /

M�1X
j=0

�(dT1 ; j;
;mj

[k]) +

�(dT1 ; j;
; mj

[k]);

where M = 2p. Since we desire this derivative to be zero, we need
to find some way of solving for 
. Rather than solve for 
 jointly
(which would be optimal but more intractable), we will update

m;m = 1; 2; : : : ; p successively, leaving the other elements of

 fixed at the corresponding values of 
[k].

In actually performing the computations, normalized values
of �, �, and � must be computed, since the computations involve
products of probabilities.

5. REDUCING THE COMPUTATIONAL COMPLEXITY

Despite the efficient recurrence, the complexity is still exponential
in p, since the quantities �; � and � (or their normalized counter-
parts) must still be computed for all states and for all time.

In the world of Viterbi algorithm computations, a reduced-
complexity, reduced-performance algorithm can be obtained by
only retaining a fraction of paths to the state at time t, then ex-
tending these. Similarly, we can reduce the complexity, at the ex-
pense of some performance, by retaining only a subset of all of the
branches. Let W (width) denote the number of branches to retain
at each stage. Let St denote the set of states that are retained at
time t, and let �+(St) denote the successors to those states. Then
the algorithm is modified as follows: For each time t = 2; : : : ; T :

1. For each j 2 �+(St), update �; � and �. (There are 2�(St)
such states.) The quantities thus obtained will only approx-
imate the true quantities.

2. From these updated values, determine the W states which
have the largest state sequence probability �. These W s-
tates are selected to form St+1.

3. Compute updates to the derivatives by

@

@�m
Q(
j
 [k]) �

X
j2St+1

�(dT1 ; j;
;mj

[k]) +

�(dT1 ; j;
; mj

[k]);



and update the 
 vector based on these derivatives.

6. ILLUSTRATION OF RESULTS

Space allows for only the briefest of illustrations of performace.
Figure 2 illustrates the performance of a test for a BSC with p = 5
and n = 100, where the computation widths are 25%, 50%, and
100% of the number of states, 32. In part (a), there is no distortion,
D = 0, while in part (b) D = 0:1. The same general behavior is
observed, except that there appears to be slightly faster conver-
gence without the distortion. In this particular example, somewhat
higher likelihood is obtained with the 100% width computation,
but in other experiments, the reduced width computations have
provided higher likelihoods.

In both of these cases, and in many other experiments per-
formed, a problem endemic to maximum likelihood techniques is
observed: the algorithm frequently converges to a local maximum.
Thus this technique might be most useful in a scenario in which
the validity of the estimate might be validated, and the algorith-
m restarted if necessary using different data. One such applica-
tion might be blind acquisition of spread-spectrum signals, using
a RASE technique as described, for example, in [14]. An alter-
native use might be to use this method as a stage in an iterative
soft-decision decoding technique, in which other stages could be
used to obtain a useful prior.
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