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ABSTRACT

This work considers the practical situation where adaptive
systems are subject to a saturation nonlinearity at the output of
the adaptive filter. Such is the case in active control of noise and
vibration. A new adaptive algorithm is proposed which
implements the true stochastic gradient approach to the
nonlinear problem. Deterministic nonlinear recursions are
derived which model the mean weight and mean square error
behaviors. The steady-state behavior is also studied. The
practical aspects of nonlinearity estimation and hardware
implementation are addressed. It is shown that the new
algorithm outperforms the LM S algorithm even for considerable
errors in estimating the nonlinearity parameters.

1. INTRODUCTION

Most adaptive system analyses and designs assume that nonlinear
effects can be neglected. Linearity simplifies the mathematical
problem and often permits detailed system analyses and accurate
designs in practica circumstances. However, when nonlinear
effects are significant in determining system behavior, more
elaborate models and algorithms must be used. Such is the case
when the electrica signal at the adaptive filter output is
converted to a signa of different nature. Then, amplifiers and
transducers are required, which can be driven into a nonlinear
region of operation. Examples of such situation are active noise
control (ANC) and active vibration control (AVC) systems.

Active control of noise and vibration using adaptive filters
has attracted increasing interest from researchers and application
engineers. Active control consists of attenuating pressure (sound)
or vibrational waves in a space region through an artificial
acoustic field or vibration of the same intensity and in anti-phase.
The Least Mean Square (LMS) adaptive algorithm is widely
employed in such systems [1] for its simplicity [2].

ANC and AV C systems present nonlinearities introduced by
power amplifiers and transducers such as loudspeakers and
piezoelectric actuators [3,4]. Thus, their nonlinear nature must be
considered unless they are overdesigned to avoid large signal
amplitudes. Many works have addressed the influence of
nonlinearities on the behavior of adaptive systems [5-8]. Ref. [6]
studied the behavior of an adaptive system with a nonlinearity at

the adaptive filter output. The mean-square error (MSE) surface
properties derived were used to evaluate the performance of the
LMS algorithm under these circumstances (common in ANC
systems). It was shown that the LM S agorithm produces a biased
estimate of the optimum controller. The steady-state weight
vector is a scaled version of the optimum weight vector. The
scaling factor depends on the system’s degree of nonlinearity.
This multiplicative bias occurs because nonlinearity at the
adaptive filter output is not used for estimating the gradient of
the performance surface. The LM S weight update equation is the
same derived for the linear case.

This work proposes a new stochastic gradient algorithm that
incorporates the nonlinearity in estimating the gradient of the
cost function. Implementation issues and the estimation of the
nonlinearity parameters are addressed. Deterministic recursive
equations for the mean weight and mean square error (MSE)
behavior are developed for gaussian inputs and slow adaptation.
Steady-state behavior is derived from these results. Monte Carlo
simulations show excellent agreement with the analytical model.
It is shown that the new algorithm outperforms the LMS
algorithm for redlistic error levels in the estimate of the
nonlinearity parameter.

2. ALGORITHM

Consider the system in Fig. L. W° =y w ... vv‘;,,lg is the
unknown impulse response; d(n) isthe primary signal; z(n) isa
stationary, white, gaussian and zero-mean measurement noise
with variance o¢? and uncorrelated with any other signal.

W(n)=w(n) w(n) ..
vector.  x(n) is stationary,
X(n)=f(n) x(n-1) .. x(n-N+1)H is the observed data

vector and g(n) is the error signal. The nonlinearity g(+) is

wy,(n)g is the adaptive weight

zero-mean and Gaussian.

modeled by the error function [7]:
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Figure 1. Block diagram of the system analyzed.

The behavior of g(y) can be varied between that of a linear

device and that of a hard limiter by changing ¢ and by using a
suitable multiplicative constant (considered unit here for
simplicity). The error signal is given by:

e(n) =W"TX(n)+z(n)—g(WT (n)X(n)) 2
The weight adaptive equation is obtained through:
W(n +1)=W(n)—%DWE{£2(n)} )

where the gradient of the performance surface 0,E{e?(n)} is
estimated by the stochastic gradient 9 (n)/ow , resulting in:

(W)’
W(n+1)=w(n)+ue(n)X(nje 2* @

where & isan estimate of the parameter o .

2.1 Practical Implementation | ssues

Eg. (4) is the update equation for the proposed adaptive
algorithm. Since it incorporates a better estimate of the gradient
of the MSE surface, it is expected to perform better than the
LMS agorithm in the system of Fig. 1. However, its practical
applicability depends on two aspects. (i) How can the parameter
o be estimated and good must be its estimate 6 ? (ii) How can
(4) beimplemented on an actual DSP system ?

Regarding the estimation of o, note that
'yim@(y)étagwa ®)

Thus, assuming the nonlinearity can be approximated by
g(y) , measuring the maximum output signal a(n) inFig.lina
controlled experiment can provide a reasonable estimate & . The

effect of the error in this estimate will be addressed in the
following sections.

Regarding a practical implementation, the exponential term
in the weight update equation (4) can be implemented using a
Taylor series expansion for € (x=0) [9]. For an mterm
expansion, the additional computational effort relative to the
standard LMS is 2m-1 multiplications, m-1 additions and one
division (to obtain e from €* for better accuracy). Excellent
accuracy can be obtained using m=6. Thus, N> m for most
typical applications, and the required computational complexity
is a small price to be paid for the improved cancellation
performance.

3. MEAN WEIGHT BEHAVIOR

Considering the accuracy of the series implementation, the
analysis of the algorithm behavior is based on (4). Note,
however, that the effect of the estimate & is considered. Taking

the expected value of (4) conditioned on W (n) and noting that
z(n) and x(n) areuncorrelated yields:

S (W o)x(m)’ O
E{w(n+1)\w(n)}=u5%p 207 X(n)XT(n)W(n)§N°
O O

6

E 7(WT(n)x(n))2 E ©
~HEGAWT ()X (n)ge *" X(n)w(n)d+w(n)

H H
Sating: y=w'()X(n), ad f(y)=e* the first

expectation can be evaluated using [7,Eq. A.13]:

E{ f (y)X (n)X" (n)} = E{yx (m} E{yx" (M} E{y?} " E{ f (v) y?}

7
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By integration we obtain:
(1 () =B el ®
and:
2 532
{10y} -el) Lo ®

DE{AZZ} +1E{ 620 {A;} +1§2
Ho" H .

Neglecting the correlation between W(n) and X(n), the
linear expectationsin (10) yields:
(v} =W ()R, W (o)
EE{ (M} =R W(n) ; E{X(n)X" (n)} =R,
Using (11) in (10) we obtain the solution for the first

expectation in (5). The second expectation in (5) is obtained by
expanding X (n) in an orthonormal series about y , in the same

way as (7):

(11)

E{h(y)X (M} = E{n(y) y} E{yx (m} {y} " (12
where h(y)=g(y) e_%i . Integrating by parts we can obtain:
E{y}
E{h(y)y} = ;
TR T
5o me i

Using (11) and (13) in (12) results in the solution to the
second expectation of (6). Substituting (10), (11) and (13) in (6)



and assuming p sufficiently small so that the weights change
sowly, the fluctuations of W(n) about E{w(n)} have a

negligible effect on the average behavior of the weights over time
[8]. Thus, the final result for (6) can be approximated by:

UR, W°

E{w (n+1)} = E{w(n)} + ke

— E{wT (n}R,E{w(n)} +1H
R, E{W ()} E{WT (n)} R, W°

62 H2 E{w™ (N} R E{w (n)} +15/2 (14)
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3.1 Mean Weight Steady-State Behavior

Assuming algorithm’'s convergence as n - o, and defining
W, =lim E{w (n)}, (14) yields, after some manipulations:

2

or .o Tm1 1

d

S+ o T+

NS i N ZHWW (15)
aT 0on1 1

df
EF+1%+?@'+1H

where: T=W]R_W, . Since R, is positive semi-definite, (15)
shows that w, is collinear to w°, i.e: W, =pW°® with
pOR". Substituting ptw® forw, in (15) and solving for p

leads to:

2,01 n* 0, 1_
O -4 -1p?-= =0
PR R R (16)

where:
1 ~2

2 — = \\jOT o _i ol o
= SWIRW and 7= S WTRW 17)

n® in (17) is defined as the degree of nonlinearity. Thus, /2
is the estimate of n? given 62. A physical interpretation of n?
can be obtained by noting that W'R, W°=0? is the power of
thesignal d(n) in Fig. 1. Also, (5) showsthat ¢ determinesthe
maximum power at the output of the nonlinearity. Thus,
,_M_0;

= 2 max{ad?} (18)

which indicates how much the nonlinearity impairs the ability of
the adaptive system to provide the necessary cancellation power.

Eqg. (16) has only one solution such that pOR". Evaluating
this solution yields:

At g 1 - () 1
LimE{W(n)}=EE+2ﬁ2—2ﬁ2+ e +2ﬁz+4§"’° 19

Note that for > =n? (perfect estimation), (19) reduces to:

W, I:ll L 1—1gN 20
= - + |1+ °
L=gf-ge o D (20)

which corresponds to the optimum weight vector (minimum of
the MSE surface) determined in [6]. Thus, the new agorithm
leads to an unbiased mean weight vector for perfect estimation of
c.

4. MSE BEHAVIOR

For sufficiently smal p, a simplified model for the MSE
behavior can be obtained from the results derived in [5] for the
MSE surface of the problem in Fig. 1. Generalizing [5,Eq.14] for

correlated signals and considering W(n) = E{W(n)} (small
fluctuations) leads to:
&(n)=E{e*(n)} =W R, W° +0?
- 2 WR, E{w (n)}
\/% E{wW (n}R E{w (n)}+1 (21)
o careen L EW (IRE(W ()

FE(wT (n)}RE{wW (n)}+0”H

where E{W (n)} is obtained from (14).

4.1 M SE Steady-State Behavior

Assuming weight convergence and using W,, = pwW° in (21):

O 2.2
limé (n)=WR,We d-——2P_+ L aegnp P

g Jpnre1 0 opn® +10H
5. SIMULATIONS

This section presents simulations to verify the accuracy of the
analytical modd given by (14), (19), (21) and (22). Consider the
system in Fig. 1 with the following parameters: x(n) with

a2 =1. The eigenvalue spread (A, /A
u=001,
We° =[0.4130 0.4627 04803 04627 0.4130] . The exponential

function in the weight update equation is implemented in the
simulation by a 6-term Taylor expansion [9].

o; (22

) of R, is equa to

min

10.34. 02=107°, WTwe =1, w(0)=0 and

Fig. 2 shows the mean behavior of the third weight for
n®=0.0001, 0.1, 0.3, 0.5 and 2 with respective estimates

A*=0.0002, 0.05, 0.3, 0.4 and 2.4. These cases range from a
nearly linear system to a large degree of nonlinearity. The
estimates f)° present different levels of inaccuracy. The

theoretical curves using (14) (continuous curves) and Monte
Carlo simulations (1000 runs) (ragged curves) show excellent
agreement. The behaviors of the other weights are similar.

Fig. 3 shows the MSE behavior. Again, there is excellent
agreement between theory (Eg. (21)) and simulation results
(averaged over 1000 runs).

In both cases, coefficients and MSE, the errors due to the
exponential function approximation are negligible.
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Fig. 2. Mean behavior of the third coefficient. (a)
n?=0.0001, A4?=00002; (b) n*=0.1, 4*=0.05; (C)

A?=n*=03;(d) n*=05, 7* =04, (e) n* =2, A*=24.
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Fig. 3. Mean sguare error. (a) n?=0.0001, 4°=0.0002;
(o) n?=01, A2=005; (¢) A2=n?=03; (d) n?=05,
A*=04;(8) n*=2, *=24.

Fig. 4 compares steady-state misadjustments achieved by the
LMS (horizontal line) and by the new algorithm (curved line) as

a function of the error in estimating n’. The title of each plot
corresponds to the value of n?. The vertica axes give the
misadjustment and the horizontal axestheratio 42/n?. The LMS
misadjustment as a function of 1> was obtained from [5].
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Fig. 4. Comparisons between the steady-state
misadjustments of the LMS and the proposed algorithm.

The true stochastic gradient implementation occurs for
A?/n? =1. As expected, the new agorithm aways outperforms

LMS for A2/n?=1. It aso outperforms LMS whenever the
curved lineis below the horizontal line. As n? increases, the new

algorithm performs much better than LMS even for quite bad
estimates of n?. The resultsin Fig. 4 reflect the best steady-state
cancellation level achievable by each algorithm with dow
learning and given enough time. A theoretical study comparing
convergence rates and steady-state results as a function of [ is
under way.

6. SUMMARY

A new adaptive algorithm has been proposed for applicationsin
which intrinsic saturation nonlinearities exist at the adaptive
filter output. The new agorithm implements the true stochastic
gradient in its weight update equation. An analytical model has
been derived which is able to predict the mean weight and MSE
behaviors for Gaussian inputs and slow learning. Practical issues
regarding the estimation of the nonlinearity parameter and the
algorithm implementation using dedicated hardware were
addressed. The new agorithm was shown to outperform the
LMS algorithm even for considerable errors in estimating the
nonlinearity.
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