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ABSTRACT
This work considers the practical situation where adaptive
systems are subject to a saturation nonlinearity at the output of
the adaptive filter. Such is the case in active control of noise and
vibration. A new adaptive algorithm is proposed which
implements the true stochastic gradient approach to the
nonlinear problem. Deterministic nonlinear recursions are
derived which model the mean weight and mean square error
behaviors. The steady-state behavior is also studied. The
practical aspects of nonlinearity estimation and hardware
implementation are addressed. It is shown that the new
algorithm outperforms the LMS algorithm even for considerable
errors in estimating the nonlinearity parameters.

1. INTRODUCTION
Most adaptive system analyses and designs assume that nonlinear
effects can be neglected. Linearity simplifies the mathematical
problem and often permits detailed system analyses and accurate
designs in practical circumstances. However, when nonlinear
effects are significant in determining system behavior, more
elaborate models and algorithms must be used. Such is the case
when the electrical signal at the adaptive filter output is
converted to a signal of different nature. Then, amplifiers and
transducers are required, which can be driven into a nonlinear
region of operation. Examples of such situation are active noise
control (ANC) and active vibration control (AVC) systems.

Active control of noise and vibration using adaptive filters
has attracted increasing interest from researchers and application
engineers. Active control consists of attenuating pressure (sound)
or vibrational waves in a space region through an artificial
acoustic field or vibration of the same intensity and in anti-phase.
The Least Mean Square (LMS) adaptive algorithm is widely
employed in such systems [1] for its simplicity [2].

ANC and AVC systems present nonlinearities introduced by
power amplifiers and transducers such as loudspeakers and
piezoelectric actuators [3,4]. Thus, their nonlinear nature must be
considered unless they are overdesigned to avoid large signal
amplitudes. Many works have addressed the influence of
nonlinearities on the behavior of adaptive systems [5-8]. Ref. [6]
studied the behavior of an adaptive system with a nonlinearity at

the adaptive filter output. The mean-square error (MSE) surface
properties derived were used to evaluate the performance of the
LMS algorithm under these circumstances (common in ANC
systems). It was shown that the LMS algorithm produces a biased
estimate of the optimum controller. The steady-state weight
vector is a scaled version of the optimum weight vector. The
scaling factor depends on the system’s degree of nonlinearity.
This multiplicative bias occurs because nonlinearity at the
adaptive filter output is not used for estimating the gradient of
the performance surface. The LMS weight update equation is the
same derived for the linear case.

This work proposes a new stochastic gradient algorithm that
incorporates the nonlinearity in estimating the gradient of the
cost function. Implementation issues and the estimation of the
nonlinearity parameters are addressed. Deterministic recursive
equations for the mean weight and mean square error (MSE)
behavior are developed for gaussian inputs and slow adaptation.
Steady-state behavior is derived from these results. Monte Carlo
simulations show excellent agreement with the analytical model.
It is shown that the new algorithm outperforms the LMS
algorithm for realistic error levels in the estimate of the
nonlinearity parameter.

2. ALGORITHM

Consider the system in Fig. 1. 0 1 1
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oW !  is the

unknown impulse response; ( )d n  is the primary signal; ( )z n  is a

stationary, white, gaussian and zero-mean measurement noise
with variance 2

zσ  and uncorrelated with any other signal.

( ) ( ) ( ) ( )0 1 1

T

Nn w n w n w n−=   W !  is the adaptive weight

vector. ( )x n  is stationary, zero-mean and Gaussian.

( ) ( ) ( ) ( )1 1
T

n x n x n x n N= − − +  X !  is the observed data

vector and ( )nε  is the error signal. The nonlinearity ( )g <  is

modeled by the error function [7]:

( )g y e dz

zy

=
−

∫
2

2

0

 2σ (1)



Figure 1. Block diagram of the system analyzed.

The behavior of ( )g y  can be varied between that of a linear

device and that of a hard limiter by changing σ and by using a
suitable multiplicative constant (considered unit here for
simplicity). The error signal is given by:

( ) ( ) ( ) ( ) ( )( )T Tn n z n g n n= + −oW X W Xε (2)

The weight adaptive equation is obtained through:
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where the gradient of the performance surface ( ){ }2E n∇W ε  is

estimated by the stochastic gradient ( )2 n∂ ∂Wε , resulting in:
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where σ̂  is an estimate of the parameter σ .

2.1 Practical Implementation Issues

Eq. (4) is the update equation for the proposed adaptive
algorithm. Since it incorporates a better estimate of the gradient
of the MSE surface, it is expected to perform better than the
LMS algorithm in the system of Fig. 1. However, its practical
applicability depends on two aspects: (i) How can the parameter
σ  be estimated and good must be its estimate σ̂  ? (ii) How can
(4) be implemented on an actual DSP system ?

Regarding the estimation of σ , note that

( ) ˆlim
2 dy

g y
→∞

= =  
πσ σ (5)

Thus, assuming the nonlinearity can be approximated by

( )g y , measuring the maximum output signal ˆ( )d n  in Fig. 1 in a
controlled experiment can provide a reasonable estimate σ̂ . The
effect of the error in this estimate will be addressed in the
following sections.

Regarding a practical implementation, the exponential term
in the weight update equation (4) can be implemented using a
Taylor series expansion for xe  ( 0x ≥ ) [9]. For an m-term
expansion, the additional computational effort relative to the
standard LMS is 2m-1 multiplications, m-1 additions and one
division (to obtain xe− from xe  for better accuracy). Excellent
accuracy can be obtained using 6m = . Thus, N m�  for most
typical applications, and the required computational complexity
is a small price to be paid for the improved cancellation
performance.

3. MEAN WEIGHT BEHAVIOR
Considering the accuracy of the series implementation, the
analysis of the algorithm behavior is based on (4). Note,
however, that the effect of the estimate σ̂  is considered. Taking
the expected value of (4) conditioned on ( )nW  and noting that

( )z n  and ( )x n  are uncorrelated yields:
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Stating: ( ) ( )Ty n n= W X , and ( )
2
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expectation can be evaluated using [7,Eq. A.13]:
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By integration we obtain:
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Substituting (8) and (9) in (7) yields:
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Neglecting the correlation between ( )nW  and ( )nX , the
linear expectations in (10) yields:
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Using (11) in (10) we obtain the solution for the first
expectation in (5). The second expectation in (5) is obtained by
expanding ( )nX  in an orthonormal series about y , in the same

way as (7):
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Using (11) and (13) in (12) results in the solution to the
second expectation of (6). Substituting (10), (11) and (13) in (6)



and assuming µ sufficiently small so that the weights change
slowly, the fluctuations of ( )W n  about ( ){ }E nW  have a

negligible effect on the average behavior of the weights over time
[8]. Thus, the final result for (6) can be approximated by:
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3.1 Mean Weight Steady-State Behavior

Assuming algorithm’s convergence as n → ∞ , and defining

( ){ }lim
n

E n∞ →∞
=W W , (14) yields, after some manipulations:
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where: TT ∞ ∞= xxW R W . Since xxR  is positive semi-definite, (15)

shows that ∞W  is collinear to oW , i.e.: p∞ = ⋅ oW W  with

p +∈� . Substituting p ⋅ oW  for ∞W  in (15) and solving for p
leads to:
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2η  in (17) is defined as the degree of nonlinearity. Thus, 2η̂
is the estimate of 2η  given 2σ̂ . A physical interpretation of 2η
can be obtained by noting that 2T

d=o o
xxW R W σ  is the power of

the signal ( )d n  in Fig. 1. Also, (5) shows that 2σ  determines the

maximum power at the output of the nonlinearity. Thus,
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which indicates how much the nonlinearity impairs the ability of
the adaptive system to provide the necessary cancellation power.

Eq. (16) has only one solution such that p +∈� . Evaluating
this solution yields:
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Note that for 2 2η̂ = η  (perfect estimation), (19) reduces to:
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which corresponds to the optimum weight vector (minimum of
the MSE surface) determined in [6]. Thus, the new algorithm
leads to an unbiased mean weight vector for perfect estimation of
σ .

4. MSE BEHAVIOR
For sufficiently small µ , a simplified model for the MSE
behavior can be obtained from the results derived in [5] for the
MSE surface of the problem in Fig. 1. Generalizing [5,Eq.14] for
correlated signals and considering { }( ) ( )n E n≈W W  (small

fluctuations) leads to:
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where ( ){ }E nW  is obtained from (14).

4.1 MSE Steady-State Behavior

Assuming weight convergence and using p∞ = ⋅ oW W  in (21):
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5. SIMULATIONS

This section presents simulations to verify the accuracy of the
analytical model given by (14), (19), (21) and (22). Consider the
system in Fig. 1 with the following parameters: ( )x n  with

2 1xσ = . The eigenvalue spread ( max minλ λ ) of xxR  is equal to

10.34. σ z
2 610= − , 0.01µ = , 1T =o oW W , ( )0 =W 0  and

[ ]0.4130 0.4627 0.4803 0.4627 0.4130
T=oW . The exponential

function in the weight update equation is implemented in the
simulation by a 6-term Taylor expansion [9].

Fig. 2 shows the mean behavior of the third weight for
2 0.0001η = , 0.1, 0.3, 0.5 and 2 with respective estimates
2ˆ 0.0002η = , 0.05, 0.3, 0.4 and 2.4. These cases range from a

nearly linear system to a large degree of nonlinearity. The
estimates 2η̂  present different levels of inaccuracy. The
theoretical curves using (14) (continuous curves) and Monte
Carlo simulations (1000 runs) (ragged curves) show excellent
agreement. The behaviors of the other weights are similar.

Fig. 3 shows the MSE behavior. Again, there is excellent
agreement between theory (Eq. (21)) and simulation results
(averaged over 1000 runs).

In both cases, coefficients and MSE, the errors due to the
exponential function approximation are negligible.
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Fig. 4 compares steady-state misadjustments achieved by the
LMS (horizontal line) and by the new algorithm (curved line) as
a function of the error in estimating 2η . The title of each plot

corresponds to the value of 2η . The vertical axes give the

misadjustment and the horizontal axes the ratio 2 2η̂ η . The LMS

misadjustment as a function of 2η  was obtained from [5].
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Fig. 4. Comparisons between the steady-state
misadjustments of the LMS and the proposed algorithm.

The true stochastic gradient implementation occurs for
2 2ˆ 1η η = . As expected, the new algorithm always outperforms

LMS for 2 2ˆ 1η η = . It also outperforms LMS whenever the

curved line is below the horizontal line. As 2η  increases, the new

algorithm performs much better than LMS even for quite bad
estimates of 2η . The results in Fig. 4 reflect the best steady-state
cancellation level achievable by each algorithm with slow
learning and given enough time. A theoretical study comparing
convergence rates and steady-state results as a function of µ  is
under way.

6. SUMMARY
A new adaptive algorithm has been proposed for applications in
which intrinsic saturation nonlinearities exist at the adaptive
filter output. The new algorithm implements the true stochastic
gradient in its weight update equation. An analytical model has
been derived which is able to predict the mean weight and MSE
behaviors for Gaussian inputs and slow learning. Practical issues
regarding the estimation of the nonlinearity parameter and the
algorithm implementation using dedicated hardware were
addressed. The new algorithm was shown to outperform the
LMS algorithm even for considerable errors in estimating the
nonlinearity.
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