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ABSTRACT
DSPswith dualmemorybanksofferhighmemorybandwidth,
which is requiredfor high-performanceapplications.How-
ever, suchDSP architecturesposeproblemsfor C compil-
ers, which are mostly not capableof partitioning program
variablesbetweenmemorybanks. As a consequence,time-
consumingassemblyprogrammingis requiredfor anefficient
codingof time-criticalalgorithms.This paperpresentsa new
techniquefor automaticvariablepartitioningbetweenmem-
ory banksin compilers,which leadsto a higherutilization of
availablememorybandwidthin thegeneratedmachinecode.
We presentexperimentalresultsobtainedby integrating the
proposedtechniqueinto anexisting C compilerfor theAMS
Gepard,anindustrialDSPcore.

1. INTRODUCTION

It is a well-known problemin embeddedsystemdesignthat
C compilersfor digital signal processors(DSPs)still have
problemswith codequality. Compiler-generatedcodeusually
shows a significantoverheadin termsof performanceand/or
codesize as comparedto manuallywritten assemblycode.
Thishasbeenquantifiedin empiricalstudies[1, 2] for anum-
berof differentDSPs.As a consequence,DSPprogrammers
frequentlyhave to resort to time-consumingassemblypro-
grammingwhenever tight real-timeor codesizeconstraints
haveto bemet.Essentially, thisbottleneckin embeddedsoft-
ware developmentis causedby the distortion betweenthe
machine-independentsourcecodelanguage(suchasC) and
theveryspecializedarchitecturesof DSPs:High-level C data
typesandlanguageconstructsarenoteasilymappedinto ded-
icatedDSPmachineinstructions.

Onemajor problemarisesfor C compilersfor DSPswith
dual memorybanks. SuchDSPs,e.g.the Motorola 56k and
Analog Devices ADSP-210xseries,are equippedwith two
separatememorybanks(frequentlydenotedby X andY) ac-
cessiblein parallel.This is to accommodatethefactthatmany
DSProutines,e.g.FIR filters, requiretheconvolution of two
dataarraysasakerneloperation.

In order to make efficient useof the bandwidthincrease
offeredby dualmemorybanks,theC programvariableshave
to beappropriatelypartitionedbetweenX andY. For instance,
for a typical arrayoperationsuchas

for (i=0;i<N;i++) y += A[i] * B[N-i];

it mustbeensuredthatarrays
�

and � areplacedin mem-
ory banksX andY, respectively, only in which casethe en-
tire loop bodycanbeefficiently mappedto asinglemultiply-
accumulateinstructiononaDSP. Also for scalarvariablesthe

assignmentto eitherX or Y playsan importantrole for code
quality.

Many existing C compilers,e.g.theGNU gccversionsfor
Motorola 56k andADSP-210x,cannotcopewell with dual
memorybanks,but all programvariablesareassignedto just
one bank. It is obvious that this naive strategy implies an
enormousperformanceloss,sincepotentialinstruction-level
parallelismis largelyneglected.

The reasonthat dual memorybanksarepoorly exploited
by compilersis a lack of suitableoptimization techniques.
The variablepartitioning problemitself is difficult, sinceit
requiresa good balancingof the X/Y memory bandwidth
amongan entire program. As variablesmay have multiple
occurrencesin a program,differentcodesegmentsmayshow
contrarydemandson assigninga certainvariableto eitherX
or Y. In addition, the X/Y assignmentof variableshasside
effectson othermodulesof a compiler:Somedatapathinput
registersmight not be availablefor both X andY, which in-
fluencesregisterallocation,andthepotentialparallelismgen-
eratedby a certainvariablepartitioning must eventuallybe
exploitedin a dedicatedschedulingphase.

Thegoalof this paperis to presentanew techniquefor the
variablepartitioning problemfor dual memorybank DSPs,
which resultsin a significantcode quality improvementat
comparatively low computationtimerequirements.Thetech-
nique hasbeenintegratedinto a C compiler for a real-life
DSP. We provide experimentalresultsboth in termsof per-
formanceandcodesizefor a numberof DSProutines.

Thestructureof thepaperis asfollows. In section2 related
work is discussed.Our target architecture,the GepardDSP
coredesignedby AustriaMikrosystemeInternational(AMS).
is describedin section3. Section4 givesanoverview of the
compilerenvironment,which the variablepartitioning tech-
niquehasbeenintegratedinto. Thepartitioningtechniqueis
presentedin section5. Section6 providesexperimentalre-
sultsobtainedwith our GepardC compiler. Finally, conclu-
sionsaregiven.

2. RELATED WORK

An earlyapproachfor exploiting dualmemorybanksin com-
pilers is [3], which dealswith the Motorola 56k DSParchi-
tecture. Here, functionalblocks of a DSPprogramare im-
plementedin ameta-assemblylanguagewith symbolicmem-
ory references.Completeprogramsare composedof these
blocks,whichcanbeinstantiatedfrom alibrary. After apeep-
holeoptimizationof thecomposedprograms,schedulingand
register allocation take place. The assignmentof program
variablesto theX/Y bankstakesplaceusingagreedymethod:
Variablesareassignedto X andY in an alternatingfashion,



Fig. 1. Gepard DSParchitecture, c
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accordingto their accesssequencein theprogramcode.The
efficacy of this simpleapproachstronglyrelieson the hand-
codingof themeta-assemblyblocks,andthegreedypartition-
ing mayproduceinferior resultsfor complex programs.

In [4], a variablepartitioningtechniquefor a hypothetical
VLIW DSParchitectureis presented.Thecentraldatastruc-
ture in that approachis an interferencegraph, whosenodes
representtheprogramvariables,while any edgebetweentwo
nodesrepresentsa potentiallyparallelmemoryaccessto the
correspondingnodes.Eachnodehasto beassignedto either
X or Y in order to find a valid partitioning. The quality of
a certainpartitioning is measuredby the sum of the graph
edges,whosenodeshave beennot beenassignedto differ-
ent banks,which reflectsthe fact, that a potentiallyparallel
accesscannotbeimplementedaccordingto thatpartitioning.
The partitioning itself is performedheuristically. Although
theexperimentalresultsarequitegood,amajorproblemwith
theapproachfrom [4] is thatit is not clearhow thetechnique
performsfor a real-life DSPwith anirregulararchitecturein-
steadof a syntheticVLIW.

A morepracticalpartitioningtechniquehasbeendescribed
in [5], which also dealswith the Motorola 56k DSP. After
a pre-compactionstepof the input program,given as sym-
bolic assemblycode, memorybank allocationand register
allocationtake placein a singlephase.Theseproblemsare
mappedto a constraint graph labeling problem. The con-
straintgraphnodesrepresentvariablesto be mappedto X/Y
memorybanksor registers.The graphedgesareusedto re-
flect both thecostsassociatedwith a certainlabelingandthe
codegenerationconstraintsimposedby the target DSP. The
labelingtakesplacewith a simulatedannealingoptimization
algorithm. For the DSPStonebenchmarks[1], typical code
size reductionsbetween5 and10 % have beenachieved as
comparedto machinecodewithoutexploitationof dualmem-
ory banks.A problemwith thesimulatedannealingapproach
is thehugeruntimerequirement,which mightbein therange
of minutesor evenhours.

3. TARGET DSPARCHITECTURE

The variablepartitioning techniquepresentedin this paper
has beenintegratedinto an existing ANSI C compiler for
the AMS GepardDSP [6, 7], an industrial parameterizable

DSPcorewith dualmemorybanks.The coarsearchitecture
is shown in fig. 1. Therearetwo parallelmemorybanks(X
andY), eachoneequippedwith an addresscalculationunit.
Thedatapathunit shows input registersfor a hardwaremul-
tiplier, an ALU, aswell asan accumulatorfile. The Gepard
instructionsetcomprisesmosttypical DSPinstructions,such
asLOAD, STORE,arithmeticandlogical operations,aswell
asaddressmodifications.

For our purpose,the most interestingfeatureis that up to
two memoryaccessesto X andY canbeissuedin parallelto
any arithmeticinstructionin eachcycle. Two parallelmemory
accessesalwaysmusttake placeon differentmemorybanks.
Therearealsoconstraintson registerallocation: In caseof
two parallel memoryaccesses,the targetsof LOAD opera-
tions arerestrictedto arithmeticregisters. Additionally, ad-
dressmodificationswithin the sameinstruction cycle have
to take placevia index registers,while post-incrementand
decrementarenotavailablein thismode.Undertheserestric-
tions, the goal of our optimizationtechniqueis to partition
programvariablesin suchasway, that themosteffective use
of parallelaccessesto X andY is ensured.

4. SYSTEM OVERVIEW

Ourwork buildsonaC compilerfor theGepardDSPthathas
beenprovidedby a third party. The compileracceptsANSI
C sourcecode, which is first analyzedand translatedinto
a three-addresscode intermediaterepresentation(IR). The
IR is optimized using machine-independentstandardtech-
niquessuchasconstantfolding andloop invariantcodemo-
tion. Then,theGepardbackendtranslatestheIR into assem-
bly code.

The original compiler doesnot include any variablepar-
titioning technique,but simply assignsall variablesto the
X memorybank. Therefore,instruction-level parallelismis
hardlyexploited.In principle,therearetwo pointsin thecom-
pilation flow, at which variablepartitioning can take place:
either as an early partitioning on the IR or as a late par-
titioning on the assemblycode. The first variantshows the
advantage,that the IR is machine-independent,so that early
partitioningcanbe reusedin a numberof differentbackend.
However, the IR providesno exact informationon thesetof
memoryaccessesin thefinalassemblycode,sincenotall vari-
ablesmight beassignedto memory, but somemight be kept
in registers. In addition, the backend can insert additional
memoryaccessesdueto spill code,which is notvisible in the
IR. Therefore,theearlypartitioninginformationpassedto the
backendmaybeeitherincompleteor overconstrained.In con-
trast,whenusinglate partitioning,the exact setof variables
is alreadyknown. However, if all variablesare initially as-
signedto X, thenthelatepartitioning,which reassignsa sub-
setof variablesto theY bank,generallyleadsto violation of
processor-specificconstraintson registerallocation.In order
to meetsuchconstraints,asignificantamountof coderestruc-
turingwould berequired.

In order to overcomethe phase-couplingproblemsasso-
ciatedwith earlyandlatepartitioning,we have extendedthe
compilationflow of theoriginalcompilerby thephasesshown
in the shadedareain fig. 2. An initial run of the backendis
usedto determinethe exact set of memoryaccesses,while
takinginto accountregistervariablesandspill code,andplac-
ing all memoryvaluesinto the X bank. Basedon this in-
formation, the variablepartitioning for maximizing parallel
memoryaccessesis performed,andtheIR is back-annotated
with the X/Y bankassignmentinformationfor all variables.
Then,a secondrunof thebackendtakesinto accountthepar-
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Fig. 2. Compilationphasesin theGepard C compiler

titioning information, and placesvariablesinto either X or
Y, while meetingthe correspondingregisterallocationcon-
straints. Finally, a codecompactionphasepackspairwise
scheduling-independentoperationsinto parallelassemblyin-
structions.Detailsaregivenin thenext section.

5. VARIABLE PARTITIONING

Similar to [4], our partitioningtechniqueis basedon theno-
tion of aninterferencegraph. However, in contrastto [4], this
graphis notconstructedfor basicblocksonly, but globally for
entirefunctions,soasto reflectthepotentiallycontraryvari-
ableassignmentrequirementsof differentblocks.In addition,
we usean exact partitioningapproachinsteadof a heuristic
one.

First, for eachassemblycodefunctiongeneratedin thefirst
runof theGepardcompilerbackend,adatadependency graph
is constructed:

Definition A data dependencygraph (DDG) is a directed,
node-labeledgraph �����	��

��
��	� , whereeachnode �����
representsa memoryaccessin the assemblycode,andeach
edge ����
�������� denotesa schedulingprecedencebetween� and � . A nodelabel �
����� denotesthenameof thevariable
accessedby � .
For a given DDG, the interferencegraph is constructedin
sucha way, that potentialparallelismis reflectedby graph
edges:

Definition For someDDG �����	��

� � , the interference
graph is an undirectedgraph !��"�	� #$
��%#&� with �%#'�(� .
Thereis anedge ����
��)�%�*� # , if andonly if � and � arenot
reachablefrom eachothervia a pathin � .

In orderto reducethe interferencegraphsize,we alsoapply
a folding step: Eachnodeset �,+-
/.0.0.0
��21435� # representing
accessesto thesamevariableis mergedinto a singlenode � ,
andall edgescontaining �,+6
0./.0./
��21 areredirectedto � . Fi-
nally, all edgesin 78�9�$�:

���;�<�%# are assigneda weight

� �$7-� denotingthesumof thetotal numberof accessesto the
variablesrepresentedby � and � in thefunction. Theweight� �$7-� is usedto reflectthegainachievedby assigning� and �
to differentmemorybanks.

Obviously, thebestpartitioningis achieved if the interfer-
encegraphisdividedinto two disjointnodesetsX andY, such
thatthesumof theedgeweightsbetweenX andY is maximal,
sincein this casethehighestnumberof parallelmemoryac-
cessescanbeobtained.For agivenfoldedandedge-weighted
interferencegraph !=�>�	��

�?
 � � , we usean Integer Linear
Programming(ILP) approachto solvethisNP-hardoptimiza-
tion problem.TheILP comprisesthefollowing solutionvari-
ables:

@ �2AB�C�ED FGAH�<I5J 
 if � A is assignedto bankXK 
 if � A is assignedto bankY

@ �2A�
��MLN���ED OGAPL��QI5J 
 if � ASR�T� LK 
 if � A �T� L
@ 7��U�$� A 

� L �V����
 � �$7-�G�4W AXL DZY AXL ��O AXL\[ W AXL

The F A variables account for the X/Y assignmentof
the graphnodes,while the auxiliary variables O APL indicate
whether � A and � L have beenassignedto different banks.
Thesevariablesareusedto computethe implementedweightY;APL of �2A and �ML : In casethat O]AXL*� J , up to W^AXL parallel
accessesto �2A and �ML canbeachieved. Thus,thesumof Y;APL
overall � A and� L needstobemaximizedastheobjectivefunc-
tion.

The settingof the O]AXL_� K in casethat �2A and �ML areas-
signedto the samebank is enforcedby the following con-
straintpairs:

O]AXLa`bF]A�c�FdLO AXLaeTf)g F Ahg F L
TheILP correspondingto agiveninterferencegraphcanbe

solvedwith existingtools.Thesettingof the F]A solutionvari-
ablesaccountsfor theX/Y assignmentof variablesusedin the
secondrun of thecompilerbackend(seefig. 2). It shouldbe
notedthat,althoughtheILP itself is solvedoptimally, thepar-
titioning in generalis only anapproximationof theoptimum,
sinceonly thepotentialparallelismismaximized.Whetheror
not apotentiallyparallelaccesscanactuallybeimplemented,
is only determinedduringcodecompaction.

The codecompactionphasepackspotentiallyparallel in-
structions,soasto minimize theschedulelength. In our ap-
proach,weuseanefficient list schedulingalgorithm[8]. First,
adatadependency graphis built for theassemblycoderesult-
ing from the secondpassof the backend. Theninstructions
arescheduledstep-by-stepin accordancewith thescheduling
constraintsimposedby thetargetprocessor(seesection3).

6. EXPERIMENT AL RESULTS

Thepartitioningandcompactiontechniquesdescribedabove
have beenempiricallyevaluatedby compilingtheDSPStone
C benchmarks[1] into assemblycodefor theGepardDSP. As
a platform,we haveuseda333MHz PentiumII Linux PC.

The exploitation of parallel accessesto the X/Y memory
banksleadsto codequality improvementsboth in termsof
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codesizeandperformance.Codesizeis affected,sincetwo
originally separatememoryaccessesmay be encodedinto a
single instructionfor the GepardDSP. The performancein-
creasenaturally is dueto the betterexploitation of memory
bandwidth.

Fig. 4. Codesizereduction(%)

Fig. 4 shows the percentageof code size reduction for
the compiledbenchmarks,ascomparedto the original, un-
optimized assemblycode. The gain rangesfrom 3.85 %
(real update)to 9.38 % (n complex updates).This is com-
parableto the resultsfor the Motorola 56k reportedin [5].
However, the compilation time is dramaticallylower: The
CPUtimesfor partitioning(includingILP solving)andcode
compactionhave beenwithin 2 secondsfor all benchmarks.
This is dueto thefactthatwe employ a relatively simpleILP
formulation for the corepartitioningproblem,while the re-
mainingcodegenerationtasksaresolved with faststandard
techniquesin the existing compilerframework. The ILP ap-
proachat leastworkswell for small time-criticalDSPkernel
routines.For very largeprograms,theILP partitioningtech-
niquemight needto bereplacedby moreefficient heuristics,
though.

Evenhighercodequality improvementsareobtainedw.r.t.
performance.Fig. 5 givesthepercentageof speedupascom-
paredto theunoptimizedassemblycodewithout exploitation
of parallelmemoryaccesses.Here,thegainsrangebetween
4.11% (real update)and17.12% (matrix1).

7. CONCLUSIONS

We have presenteda new techniquefor variablepartitioning
in C compilersfor DSPswith dualmemorybanks.Thegoal
of this techniqueis to enablecompilersto exploit the avail-
ablememorybandwidthin suchDSPswithout theneedfor C
languageextensionsor assemblyprogramming.Experimen-

Fig. 5. Executiontimespeedup(%)

tal resultsfor the GepardDSPshow that the codequality is
improvedfor realisticDSProutines.Thekey contributionsof
this paperaretwofold: For the DSPStonebenchmarks,sim-
ilar improvementsasreportedin previouswork areobtained
at much lower computationtime requirements.In addition,
we have shown how an existing compiler infrastructurecan
beenhancedby a variablepartitioningtechniquewithout the
needfor anextensivecompilerredesign.

8. REFERENCES

[1] V. Zivojnovic, J.M. Velarde,C. Schl̈ager, H. Meyr: DSPStone– A
DSP-orientedBenchmarkingMethodology, Int. Conf. on SignalPro-
cessingApplicationsandTechnology(ICSPAT), 1994

[2] M. Coors,O. Wahlen,H. Keding,O. Lüthje,H. Meyr: TI C62xPer-
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