VARIABLE PARTITIONING FOR DUAL
MEMOR'Y BANK DSPS

RainerLeupes, Daniel Kotte

Universityof Dortmund
Dept.of ComputerSciencel2
44221Dortmund,Germaly

ABSTRACT

DSPswith dualmemorybanksoffer highmemorybandwidth,
which is requiredfor high-performancepplications. How-
ever, such DSP architecturepose problemsfor C compil-
ers, which are mostly not capableof partitioning program
variablesbetweenmemorybanks. As a consequencejme-
consumingassemblyprogrammings requiredfor anefficient
codingof time-criticalalgorithms.This paperpresent& nev
techniquefor automaticvariablepartitioning betweenmem-
ory banksin compilers,which leadsto a higherutilization of
availablememorybandwidthin the generatednachinecode.
We presentexperimentalresultsobtainedby integrating the
proposedechniqueinto anexisting C compilerfor the AMS
GepardanindustrialDSPcore.

1. INTRODUCTION

It is a well-known problemin embeddedystemdesignthat
C compilersfor digital signal processorgDSPs)still have
problemswith codequality. Compilergenerated¢odeusually
shaws a significantoverheadn termsof performanceand/or
codesize as comparedto manuallywritten assemblycode.
Thishasbeenquantifiedin empiricalstudieq1, 2] for anum-

assilgnmento eitherX orY playsanimportantrole for code
quality.

Many existing C compilers,e.g.the GNU gccversionsfor
Motorola 56k and ADSP-210x,cannotcopewell with dual
memorybanks,but all programvariablesareassignedo just
one bank. It is obvious that this naive stratgy implies an
enormousperformancdoss, sincepotentialinstruction-level
parallelismis largely neglected.

The reasonthat dual memorybanksare poorly exploited
by compilersis a lack of suitable optimizationtechniques.
The variable partitioning problemitself is difficult, sinceit
requiresa good balancingof the X/Y memory bandwidth
amongan entire program. As variablesmay have multiple
occurrence# a program differentcodesegmentsmay shov
contrarydemand®n assigninga certainvariableto either X
or Y. In addition, the X/Y assignmenbf variableshasside
effectson othermodulesof a compiler: Somedatapathinput
registersmight not be availablefor both X andY, which in-
fluencegegisterallocation,andthepotentialparallelismgen-
eratedby a certainvariable partitioning must eventually be
exploitedin a dedicatedschedulingphase.

Thegoalof this paperis to present new techniqudor the
variable partitioning problemfor dual memorybank DSPs,
which resultsin a significantcode quality improvementat

berof differentDSPs.As a consequence) SP programmers comparatiely low computatiortime requirementsThetech-

frequently have to resortto time-consumingassemblypro-

grammingwhenever tight real-timeor codesize constraints
have to be met. Essentiallythis bottleneckin embeddedoft-

ware developmentis causedby the distortion betweenthe

machine-independemsburcecodelanguageg(suchasC) and

thevery specializedarchitecture®f DSPs:High-level C data
typesandlanguageonstructarenoteasilymappednto ded-

icatedDSPmachinenstructions.

Onemajor problemarisesfor C compilersfor DSPswith
dual memorybanks SuchDSPs,e.g.the Motorola 56k and
Analog Devices ADSP-210xseries,are equippedwith two
separatenemorybanks(frequentlydenotecby X andY) ac-
cessiblan parallel. Thisisto accommodatthefactthatmary
DSProutines,e.g.FIR filters, requirethe convolution of two
dataarraysasakerneloperation.

In orderto make efficient use of the bandwidthincrease
offeredby dualmemorybanks the C programvariableshave
to beappropriatelypartitionedbetweenX andY. Forinstance,
for atypical arrayoperationsuchas

for (i=0;i<N;i++) y += Ali] * B[N-i];

it mustbeensuredhatarraysA and B areplacedin mem-
ory banksX andY, respectiely, only in which casethe en-
tire loop body canbe efficiently mappedo a singlemultiply-
accumulaténstructionona DSR Also for scalarvariableghe

nigue has beenintegratedinto a C compiler for a real-life
DSP We provide experimentalresultsboth in termsof per
formanceandcodesizefor anumberof DSProutines.

Thestructureof the paperis asfollows. In section2 related
work is discussed.Our target architecturethe GepardDSP
coredesignedy AustriaMikrosystementernational AMS).
is describedn section3. Section4 givesan overview of the
compiler environment, which the variable partitioning tech-
nigue hasbeenintegratedinto. The partitioningtechniques
presentedn section5. Section6 providesexperimentalre-
sults obtainedwith our GepardC compiler Finally, conclu-
sionsaregiven.

2. RELATED WORK

An earlyapproactor exploiting dualmemorybanksin com-
pilersis [3], which dealswith the Motorola 56k DSP archi-
tecture. Here, functional blocks of a DSP programare im-

plementedn a meta-assemblianguagewvith symbolicmem-
ory references.Completeprogramsare composedf these
blocks,whichcanbeinstantiatedrom alibrary. After apeep-
hole optimizationof the composegrogramsschedulingand
register allocationtake place. The assignmenbf program
variablego theX/Y bankgakesplaceusingagreedymethod:
Variablesareassignedo X andY in analternatingfashion,

acu cntr

program
control

addr
caleul

addr
calcul

32 bit po

index

arithmetic

registers Loop counter

registers

link

registers

x
1

1

]
o
—H

program memory

Fig. 1. Gepad DSP architecture, ©AMS Austria Mikrosys-
temelnternational AG

accordingto their accessequencén the programcode. The
efficagy of this simpleapproactstronglyrelieson the hand-
codingof themeta-assemblglocks,andthegreedypartition-
ing may produceinferior resultsfor complex programs.

In [4], avariablepartitioningtechni%uefor ath)otheticaI
VLIW DSParchitecturas presentedThe centraldatastruc-
turein thatapproachs an interferencegraph, whosenodes
representhe programvariableswhile any edgebetweenwo
nodesrepresents potentially parallelmemoryaccesgo the
correspondingnodes.Eachnodehasto be assignedo either
X orY in orderto find a valid partitioning. The quality of
a certain partitioning is measuredyy the sum of the graph
edges,whosenodeshave beennot beenassignedo differ-
ent banks,which reflectsthe fact, that a potentially parallel
accesgannotbe implementecaccordingto thatpartitioning.
The partitioning itself is performedheuristically Although
theexperimentaresultsarequite good,a majorproblemwith
theapproactrom [4] is thatit is not clearhow thetechnique
performsfor areal-life DSPwith anirregulararchitecturen-
steadof a syntheticVLIW.

A morepracticalpartitioningtechniquehasbeendescribed
in [5], which also dealswith the Motorola 56k DSP. After
a pre-compactiorstepof the input program,given as sym-
bolic assemblycode, memory bank allocation and register
allocationtake placein a single phase. Theseproblemsare
mappedto a constaint graph labeling problem. The con-
straintgraphnodesrepresenvariablesto be mappedo X/Y
memorybanksor registers. The graphedgesare usedto re-
flect boththe costsassociatedvith a certainlabelingandthe
codegenerationconstraintdmposedby the target DSP The
labelingtakesplacewith a simulatedannealingoptimization
algorithm. For the DSPStoneébenchmarkgl], typical code
size reductionsbetween5 and 10 % have beenachiered as
comparedo machinecodewithoutexploitationof dualmem-
ory banks.A problemwith the simulatedannealingapproach
is thehugeruntimerequirementwhich mightbein therange
of minutesor evenhours.

3. TARGET DSPARCHITECTURE

The variable partitioning techniquepresentedn this paper
has beenintegratedinto an existing ANSI C compiler for

DSP corewith dualmemorybanks. The coarsearchitecture
is shavn in fig. 1. Therearetwo parallelmemorybanks(X
andY), eachone equippedwith an addressalculationunit.
The datapathunit shows input registersfor a hardwaremul-
tiplier, an ALU, aswell asanaccumulatofile. The Gepard
instructionsetcomprisesnosttypical DSPinstructions such
asLOAD, STORE,arithmeticandlogical operationsaswell
asaddressnodifications.

For our purpose the mostinterestingfeatureis thatup to
two memoryaccesse® X andY canbeissuedn parallelto
ary arithmeticinstructionin eachcycle. Two parallelmemory
accessealwaysmusttake placeon differentmemorybanks.
Thereare also constraintson registerallocation: In caseof
two parallelmemoryaccessesthe tarmgetsof LOAD opera-
tions arerestrictedto arithmeticregisters. Additionally, ad-
dressmaodificationswithin the sameinstruction cycle have
to take placevia index registers,while post-incrementnd
decremenérenotavailablein this mode.Undertheserestric-
tions, the goal of our optimizationtechniqueis to partition
programvariablesin suchasway, thatthe mosteffective use
of parallelaccesse® X andY is ensured.

4. SYSTEM OVERVIEW

Ourwork builds on a C compilerfor the GepardDSPthathas
beenprovided by a third party. The compileracceptsANSI
C sourcecode, which is first analyzedand translatedinto
a three-addressode intermediaterepresentatior(IR). The
IR is optimized using machine-independergtandardtech-
niguessuchas constantfolding andloop invariantcode mo-
tion. Then,the Gepardbaclendtranslateghe IR into assem-
bly code.

The original compiler doesnot include ary variable par
titioning technique,but simply assignsall variablesto the
X memorybank. Therefore,instruction-level parallelismis
hardlyexploited. In principle,therearetwo pointsin thecom-
pilation flow, at which variable partitioning can take place:
either as an early partitioning on the IR or as a late par-
titioning on the assemblycode. The first variantshows the
adwantagethatthe IR is machine-independengp that early
partitioningcanbe reusedn a numberof differentbaclend.
However, the IR providesno exactinformationon the setof
memoryaccesseis thefinalassemblygode sincenotall vari-
ablesmight be assignedo memory but somemight be kept
in registers. In addition, the baclend can insert additional
memoryaccessedueto spill code,whichis notvisiblein the
IR. Thereforetheearlypartitioninginformationpassedo the
baclendmaybeeitherincompleteor overconstrainedn con-
trast,whenusing late partitioning, the exact setof variables
is alreadyknown. However, if all variablesareinitially as-
signedto X, thenthelate partitioning,which reassigng sub-
setof variablesto the Y bank,generallyleadsto violation of
processosﬂecificconstraintson registerallocation. In order
to meetsuchconstraintsasignificantamountof coderestruc-
turing would berequired.

In orderto overcomethe phase-couplingoroblemsasso-
ciatedwith early andlate partitioning, we have extendedthe
compilationflow of theoriginalcompilerby thephaseshavn
in the shadedareain fig. 2. An initial run of the baclendis
usedto determinethe exact set of memoryaccessesyhile
takinginto accountegistervariablesandspill code,andplac-
ing all memoryvaluesinto the X bank. Basedon this in-
formation, the variable partitioning for maximizing parallel
memoryaccesses performedandthe IR is back-annotated
with the X/Y bankassignmeninformationfor all variables.

the AMS GepardDSP [6, 7], an industrial parameterizable Then,a secondun of thebaclendtakesinto accounthe par

IR generation and
optimization

intermediate
representation

assembly code

Fig. 2. Compilationphasesn the Gepad C compiler

titioning information, and placesvariablesinto either X or
Y, while meetingthe correspondingegister allocationcon-
straints. Finalcljy, a codecompactionphaserpackspairwise
scheduling-independenperationsnto parallelassemblyin-
structions Detailsaregivenin thenext section.

5. VARIABLE PARTITIONING

Similar to [4], our partitioningtechniqueis basedon the no-
tion of aninterferencegraph However, in contrasto [4], this
graphis notconstructedor basicblocksonly, but globally for
entirefunctions,so asto reflectthe potentiallycontraryvari-
ableassignmentequirementsf differentblocks.In addition,
we usean exact partitioning approachinsteadof a heuristic
one.

First,for eachassemblycodefunctiongeneratedh thefirst
runof the Geparccompilerbaclkend,adatadependenggraph
is constructed:

Definition A data dependencyraph (DDG) is a directed,
node-labeledyraphG = (V, E, 1), whereeachnodev € V
represent® memoryaccessn the assemblycode,andeach
edge(v,w) € E denotesa schedulingprecedencdetween

v andw. A nodelabell(v) denoteghe nameof the variable
accesseby v.

For a given DDG, the interferencegraphis constructedn
sucha way, that potential parallelismis reflectedby graph
edges:

Definition For someDDG G = (V, E), the interference
graphis an undirectedgraphl = (V',E") with V' = V.
Thereis anedge(v,w) € E', if andonly if v andw arenot
reachabldrom eachothervia apathin G.

In orderto reducethe interferencegraphsize,we alsoapply

A(e) denotingthe sumof the total numberof accesse® the
variablesrepresentetty v andw in the function. Theweight
A(e) is usedto reflectthe gainachievedby assigning andw
to differentmemorybanks.

Obviously, the bestpartitioningis achieedif theinterfer
encegraphis dividedinto two disjointnodesetsxX andY, such
thatthesumof theedgeweightsbetweerX andY is maximal,
sincein this casethe highestnumberof parallelmemoryac-
cessesanbeobtained For agivenfoldedandedge-weighted
interferencegraph! = (V, E, A), we usean Integer Linear
Programming(ILP) approacho solve this NP-hardoptimiza-
tig? problem.ThelLP compriseghe following solutionvari-
ables:

. (1, if w; isassignedobankX
Vi €V Zi= { 0, if wv; isassignedobankyY
1, if v #v;
W €V Uy={ 0 i v,-iuj-
Ve = (vi,v;) € E, A(e) = gij : Wij =Us; - gij

The Z; variables account for the X/Y assignmentof
the graph nodes,while the auxiliary variablesU;; indicate
whetherv; andv; have beenassignedio different banks.
Thesevariablesareusedto computethe implementedveight
W;; of v; andw;: In casethatU;; = 1, up to g;; parallel
accesse® v; andv; canbe achieved. Thus,the sumof W;;
overall v; andv; needgo bemaximizedastheobjectivefunc-
tion.

The settingof the U;; = 0 in casethatv; andv; areas-
signedto the samebankis enforcedby the following con-
straintpairs:

UijSZi-i-Zj
Uij22—Zi—Zj

ThelLP correspondingo agiveninterferencegraphcanbe
solvedwith existingtools. Thesettingof the Z; solutionvari-
ablesaccountsor the X/Y assignmentf variablesusedn the
secondun of the compilerbaclend(seefig. 2). It shouldbe
notedthat,althoughtheILP itself is solvedoptimally, the par
titioning in generais only anapproximatiorof the optimum,
sinceonly thepotentialparallelismis maximized.Whetheror
not a potentiallyparallelaccessanactuallybeimplemented,
is only determinediuringcodecompaction.

The code compactionphasepackspotentially parallelin-
structions,so asto minimize the scheduldength. In our ap-
proachwe useanefficientlist schedulingalgorithm[8]. First,
adatadependenggraphis built for theassemblycoderesult-
ing from the secondpassof the baclkend. Theninstructions
arescheduledtep-by-stefin accordancevith the scheduling
constraintsmposedby thetargetprocessofseesection3).

6. EXPERIMENT AL RESULTS

The partitioningand compactiontechniqueslescribedcabove
have beenempirically evaluatedoy compilingthe DSPStone

a folding step: Eachnodesetv, ..., v, C V' representing C benchmark$l] into assemblycodefor the GepardDSP As

accesset the samevariableis memgedinto a singlenodev,
andall edgescontainingvy, .. .,v, areredirectedto v. Fi-
nally, all edgesin e = (v,w) € E' areassigneda weight

aplatform,we have useda 333MHz Pentiumll Linux PC.
The exploitation of parallelaccesse$o the X/Y memory
banksleadsto code quality improvementsboth in terms of

Fig. 3. Graphmodeldfor variable partitioning: a) Exampledatadependencygraph,b) correspondingnterferencegraph,c)
optimumpartitioninginto two sets{ 4, C, E'} and{B, D}. All edge weightsare onein this simpleexample

codesizeandperformance.Codesizeis affected,sincetwo
originally separatanemoryaccessemay be encodednto a
singleinstructionfor the GepardDSP The performancen-
creasenaturallyis dueto the betterexploitation of memory
bandwidth.

10,00
9,00
8,00
7,00
6,00
5,00
4,00
3,00
2,00
1,00
0,00

Fig. 4. Codesizereduction(%)

Fig. 4 shows the percentageof code size reduction for
the compiledbenchmarksas comparedto the original, un-
optimized assemblycode. The gain rangesfrom 3.85 %
(realupdate)to 9.38 % (n_complex_updates). This is com-
parableto the resultsfor the Motorola 56k reportedin [5].
However, the compilationtime is dramaticallylower: The
CPUtimesfor partitioning(including ILP solving) andcode

compactionhave beenwithin 2 seconddor all benchmarks.

Thisis dueto thefactthatwe employ arelatively simplelLP
formulationfor the core partitioning problem, while the re-
maining codegenerationasksare solved with faststandard
techniquesn the existing compilerframework. TheILP ap-
proachat leastworkswell for smalltime-critical DSPkernel
routines. For very large programsthe ILP partitioningtech-
nriqueﬂwight needto bereplacedoy moreefficient heuristics,
though.

Evenhighercodequality improvementsare obtainedw.r.t.
performanceFig. 5 givesthe percentag®ef speedumscom-
paredto the unoptimizedassemblycodewithout exploitation
of parallelmemoryaccessesHere,the gainsrangebetween
4.11% (realupdate)and17.12% (matrix1).

7. CONCLUSIONS

We have presentedh new techniquefor variablepartitioning
in C compilersfor DSPswith dual memorybanks. The goal
of this techniqueis to enablecompilersto exploit the avail-
ablememorybandwidthin suchDSPswithouttheneedfor C
languageextensionsor assemblyprogramming.Experimen-

Fig. 5. Executiontime speedug%o)

tal resultsfor the GepardDSP shav thatthe codequality is
improvedfor realisticDSProutines.Thekey contributionsof
this paperaretwofold: For the DSPStonébenchmarkssim-
ilar improvementsasreportedin previouswork areobtained
at much lower computationtime requirements.In addition,
we have shavn how an existing compilerinfrastructurecan
be enhancedy a variablepartitioningtechniquewithout the
needfor anextensive compilerredesign.

8. REFERENCES
[1] V. Zivojnovic, J.M. Velarde,C. Schh?er H. Meyr: DSPStone- A
DSP-orientedBentimarkingMethodolgy, Int. Conf. on Signal Pro-
cessingApplicationsand Technology(ICSFAT), 1994
[2] M. Coors,O. Wahlen,H. Keding, O. Luthje,H. Meyr: TI C62xPer-
formanceCodeOptimization DSPGermary, 2000
[3] D.B. Pawell, E.A. Lee, W.C. Newman: Direct Synthesisof Opti-
mizedDSP AssemblyCodefrom Signal Flow Blodk Diagrams Proc.
ICASSR 1992
[4] M. Saghir P. Chow, C. Lee: Exploiting Dual Data-MemoryBanks
in Digital SignalProcessas, 7th InternationalConferenceon Archi-
tecturalSupportfor Programmind-anguagesndOperatingSystems,
1996

ol

] A. Sudarsanan§.Malik: SimultaneoufefeenceAllocationin Code
Geneation for Dual Data MemoryBankASIPs ACM TODAES, vol.
5,n0.2,2000

[6] A. Gierlinger R. ForsythandE. Ofner: Gepad — A Parameterisable

DSPCorefor ASICs Proc.ICSFAT, 1997

[7] AustriaMikro Systemednternational:

asic.amsint.com/databooks/digital/gepard.html, 2000

S. Davidson, D. Landslov, B.D. Shriver, PW. Mallett: SomeEx-
perimentsin Local MicrocodeCompactionfor Horizontal Machines
IEEE Trans.on ComputersyVol. 30,No. 7,1981

