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ABSTRACT y
Starting with a randomly distributed sensor array with unknown Reference Orientation
sensor orientations, array calibration is needed before target local- (arbitrary)

ization and tracking can be performed using classical triangulation

methods. In this paper, we assume that the sensors are only ca-
pable of accurate direction of arrival (DOA) estimation. The cali- . r . Target path
bration problem cannot be completely solved given the DOA esti- ¥
mates alone, since the problem is not only rotationally symmetric t
but also includes a range ambiguity. Our approach to calibration

is based on tracking a single target moving at a constant veloc- v, Target velocity vector
ity. In this case, the sensor array can be calibrated from target ) relative to the sensor motion.
tracks generated by an extended Kalman filter (EKF) at each sen- ) "
g . . ! .. r: Target position vector
sor. A simple algorithm based on geometrical matching of similar relative to the sensor position.

triangles will align the seperate tracks and determine the sensor B
positions and orientations relative to a reference sensor. Computer |~
simulations show that the algorithm performs well even with noisy Sensor

DOA estimates at the sensors. X

B: DOA estimate.

Figure 1: Geometrical configuration of the two dimensional track-
ing problem, where sensor and target are assumed to lie in the same
plane. The target track is assumed to be parallel ta:ttgection,

and the sensor reference orientation is arbitrarily chosen to be the
) y-direction. Note that the sensor is situated at the origin.

1. INTRODUCTION

The problem of localization and tracking by passive sensor arrays
arises in numerous practical applications [1]-[4], [6]-[9]. Like-
wise, two-dimensional bearings-only target motion analysis (TMA
has been studied extensively [1]-[6]. One of the most familiar sit-

uations is tracking by a single moving observer, which monitors

the bearing angle of an acoustic source (target) that is assumed tambiguity is more evident since adding or subtracting the same
be moving with constant velocity. Figure 1 depicts the geometri- constant to all of the reference angles would not have any effect.
cal configuration of the problem in 2D, where the sensor motion These ambiguities necessitate a criterion for the observability of
is unconstrained in the-y plane. Even though the configuration the target, which was studied by Nardone and Aidala [5].

appears to be intuitively simple, the tracking problem is not easy |y this paper, an extended Kalman filter is used to calibrate

to solve, because the problem is intrinsically nonlinear. _ the sensor array for a target moving with a constant velocity. The
_Sensor array calibration is a generalization of this problem in yetinent filter equations of state and measurement are shown. The
which the sensor positions as well as the target track have t0 begytended Kalman filter equations are formulated in the so-called
determined. In thls_ broa_der problem, the target is not constral_nedmodified polar coordinates (MPC) for 2D, or modified spherical
to move on a straight I|r_1e anq can assume a complex motion. qordinates (MSC) for 3D [1]-[4],[12]-[13], which decouples the
This estimation problem is again nonlinear and unfortunately not ypservable and unobservable variables in the state vector [2]. This
amenable to linear analysis techniques. Moreover, if the sensorgyecoupling prevents the possibility of an ill-conditioned covari-
have random orientation references, calibration requires not only 5,ce matrix and hence provides stability to the filter. The MPC
localizing the sensors but also identifying their orientation angles. (or MSC) extended Kalman filter is favored over a Cartesian co-
Estimation is performed using only the noisy DOA (direction of  ginate formulation and some other pseudo-linear solutions since
arrival) estimates and hence the tracking part of the problem in-jis estimates are asymptotically unbiased [10, 11]. Moreover, as
herently includes range and rotational ambiguities. The range am-yj| pe shown later, the extended Kalman filter can determine the

biguity problem is illustrated in Fig. 2, where it is shown that two  gensor positions and orientations accurately for a target moving
different targets may have the same DOAs at all times. Rotational ith constant velocity, by exploiting the inherent range and ro-

Prepared through collaborative participation in the Advanced Sensors tational ambiguities. The constant velocity assumption simplifies
Consortium sponsored by the U.S. Army Research Laboratory under Co-the problem considerably, and might be feasible in the calibration
operative Agreement DAAL01-96-2-0001. stage if it were possible to drive a known calibration target through
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Figure 2: Two different targets may have the same DOA at all
times. Itis impossible to distinguish target #1 from target #2 given

the DOA measurements alone.

the sensor field to generate data for the EKF calibration algorithm.

depict the relative target range and bearing angle, respectively.
n(t) denotes the additive Gaussian noise to the bearing measure-
ments. Development of the EKF filter equations can be found at

[1]-[2],[4] and hence are not reproduced here.

The extended Kalman filter requires four inputs in order to
produce its desired output, which is the tracked position of the
target. These inputs are the noisy bearings angle measurement
vector, the initial state vector, the initial error covariance matrix,
and a relative acceleration vector. The relative acceleration vector
is setto zero since the target is assumed to be moving with constant
velocity. The angle measurement vector is generated by Eq. (2)
and when the sensor is stationary it can be written as (refer to the
configuration in Fig. 1)

Ut
tan(B(t)) = —t = ot (3)
Ty
The initial state vector and covariance matrix, on the other hand,
are initialized as follows

y(00) = [(6(2) = B()/T 0 B(2) 1/R]" (4

202()/T* 0 0 0
0 0 0
0 0 0 0

The extended Kalman MPC state vector consists of four vari- where T is the sampling perio®, is our initial distance estimate
ables: bearing rate, range rate divided by the range, bearing, ando the targeto?(n) is the time varying variance of the additive

reciprocal of the range as compared to its Cartesian counterpartGaussian angle measurement noise, sl a free parameter of
whose state vector has velocity and range as state variables [2]our choice.

With the MPC state variables, it will be demonstrated with com-

An important feature of the extended Kalman filter is that if

puter simulations that the extended Kalman filter scales the targetour initial target range estimat&,, is not specified correctly, the
track when the initial range information is not available. Basic ro- filter generates a scaled target track (Fig. 3). It is easy to prove
tations to align the target tracks from multiple sensors will resultin this property by looking at Eq. (3). H, is not specified correctly,
sensor orientations whereas simple geometrical triangle similarity since o only depends on the DOA estimates, will be scaled

arguments will culminate in the scaled relative sensor posttions

accordingly. As mentioned above, it is not possible to overcome

In Section 2, the filter properties are given and our approach the range ambiguity without having an absolute distance measure.
to the solution is revealed. Section 3 accounts for the details of However, this property of the extended Kalman filter enables us to
the sensor calibration scheme and offers an alternative method foluse any value oR, without losing the track information.

calibration. Section 3 also provides simulations demonstrating the

In the simulation of Fig. 3, a sampling period Bf= 0.002s

efficacy of our approach. Section 4 extends the solution to 3D was used for illustrative purposes. In a more realistic situation
using the modified spherical coordinates. Conclusions are given inthat imposes low power constraints on the sensors, high sampling

the last section.

2. THE EKF FILTER PROPERTIES

The MP state vector is given by

e <€§t<>
a | Y2 | () /r(t
YOS 1w | =] A
ya(t) 1/r(t)
where
r(t) = ()] = \/r2(t) +r2(t)

(0 = an~" | =0 | 4 e

rates are not desirable. The extended Kalman filter has also been
tested for low sampling rates. Figure 4 shows that it still performs
reasonably well in tracking the target even though that sampling
period wasl" = 1s and the DOA measurements were disturbed by
additive Gaussian noise with standard deviati@l;;gle =1°.

3. SENSOR ARRAY CALIBRATION USING EXTENDED
KALMAN FILTER

In this section, the sensor array will be calibrated using the tracks
generated by the extended Kalman filter along with a simple geo-
metrical procedure. Figure 5 illustrates the approach used in deter-
mining the sensor positions where By and A; By are the track
estimates of the reference sensor and sensor 1, respectively. Since
the trackR; and AB; are known, the angleg; and «; can be
determined. Then, on the reference trdtik we can find triangu-

late the sensor positiofs1, ys1) by intersecting two lines from

1 should be noted that the range ambiguity can not be circumvented Ao (AoA1) and By (BoB1) using the angles, anda;, respec-
given DOA measurements alone. It will be required to have one true range tively. In order to find the reference angle for senso\}o A, By

to reach the absolute localization of the sensor array.

is shifted without any rotation ofws1,ys1) so thatOo coincides



Figure 3: If R, was larger tharR;,..., the estimated target track
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Figure 5: TriangleAOg A1 By is similar toAO, Ao By by the scal-

ing property of the extended Kalman filter. Since the reference
track Ao Bo and the track4; B; estimated by sensor 1 are known,
(zs1,ys1) can be determined geometrically. Once the sensor po-
sition is determined, sensor orientation is found by simply finding

would form a bigger triangle that is again similar to the triangle ¢ rotation angle that aligns the estimated track and the reference
formed by the true track. Note that the sensor is situated at theyack in the configuration shown.

origin andy = 1.

Y (m)

Figure 4: Target is moving withh, =10m/s andv, =10m/s.
N = 40 samples are taken during 40s, corresponding to a sam-
pling period T=1sy = 10~ * gave the best track for this case.
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with the point axs1, ys1). Then, the rotation angle that will align
the triangleAOg A1 By and the triangle\ O, A, B, is sought.

In finding the sensor position, it is not assumed that the refer-
ence track is the true track of the target. Hence, the range ambigu-
ity is still present in the problem. However, once given a true range
like the distance between two sensors or target track length, one
can determine the absolute positions of the sensors with respect
to some chosen reference sensor whose absolute position could be
determined by some other means (e.g., GPS.) Another interesting
feature is that the reference sensor angles can be determined by the
DOA estimates alone without any range information.

In Fig. 6, the result of our approach is illustrated. A sampling
period of " = 0.5s is used an@00 DOA samples are taken from
a target moving on a straight line corresponding to a total observa-
tion time of 100s. The target track is disturbed to prevent perfect
linearity and hence better accounts for realistic situations. The cal-
ibration is satisfactory considering the fact that only 200 samples
are used. It should be noted that increasing the number of samples
and the sampling frequency at the same time results in better esti-
mates of the sensor positions if more accuracy is required. If more
calibrating targets are available, averaging the resulting position
estimates will increase the accuracy.

4. EXTENSION TO THE 3D CASE

Filter equations for the 3D case are more complex than the equa-
tions for the 2D case but they follow the same structure. It can be
shown that introducing the elevation angle also introduces a bias
in the last state variable, which is the inverse range [1]. This bias
may be removed, but the array calibration can be still achieved
even in the presence of this bfast should be noted that the filter

2Biased track and the original target track also form a similar triangle.



T of the range and rotational ambiguities of the tracking problem,
Estimated target tracks ey one absolute range measure and a reference orientation must be
R given. This approach is simple and efficient as well as accurate as
demonstrated by the simulations.
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The extended Kalman filter is used to train a sensor array with
unknown position and orientations assuming one target with con-
stant velocity. When the constant velocity assumption is imposed
on the target, properties of the extended Kalman filter can be ex-
ploited to find the scaled relative sensor positions and relative ori-
entations given the DOA measurements alone. In order to get rid



