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ABSTRACT

In array processors, complex data reordering is often needed to
realize the interconnection topologies between the computational
nodes in algorithms. Several important algorithms, e.g., discrete
trigonometric transforms and Viterbi decoding, can be represented
in a radix-R form where the principal topology is stride by R per-
mutation. In this paper, a general factorialization of stride permu-
tations is derived, which can be mapped onto register-based struc-
tures for constructing area-efficient multi-port interconnection net-
works. The networks can be modified to support several stride
permutations and sequence sizes.

1. INTRODUCTION

Several high-speed architectures for digital signal processing al-
gorithms are based on array processor concept and, in particu-
lar, pipelined architectures have gained popularity. E.g., Cooley-
Tukey radix-2r fast Fourier transform (FFT) algorithms have been
realized with cascaded processing elements computing radix-2r

butterfly operation. In such a parallel architecture, reordering of
data sequences between the processing elements, due to the data-
dependencies in the algorithm, is essential. In the derivation of
Cooley-Tukey 2k-point radix-2 decimation-in-frequency FFT al-
gorithms, the principal method is to interleave results of two 2k−1-
point FFTs, i.e., the elements of the output vector (a0, a1, . . . ,
a2k−1 , b0, b1, . . . , b2k−1)T are reordered to obtain the input vector
(a0, b0, a1, b1, . . . , a2k−1 , b2k−1)T . This permutation is known as
perfect shuffle permutation. In general, interconnection topologies
in Cooley-Tukey radix-2r FFT algorithms are based on stride by
2r permutations [1]. Stride by R permutation of a K-point se-
quence reorders the elements of a vector X = (x0, x1, . . . , xK−1)
as Y = (x0, xR, x2R, . . . , xK−R+1, x1, xR+1 . . . , xK−1)

T .
Therefore, perfect shuffle is a special case of stride permutations,
i.e., stride by K/2 of a K-point sequence. Such interconnection
topologies can also be found in some fast algorithms for other dis-
crete trigonometric transforms, e.g., for discrete cosine, sine, and
Hartley transforms [2, 3, 4]. The same topology is also present in
trellis diagrams in k/n-code rate convolutional encoders [5]. Fur-
thermore, the stride permutation according to the definition in [1]
can be used in matrix transposition, i.e., transposition of a K×K-
matrix is stride by K permutation of a sequence where the columns
of the matrix are arranged in a vector form.

In radix-2r algorithms, the computation of basic operational
node requires 2r operands implying need for a multi-port reorder-
ing unit. Such an unit can be realized with multi-port memories
where the results of the previous node are written through the first
port at the same time as the operands for the next node are read

through the second port. However, the parallel access introduces
resource conflicts and, therefore, memory-based reordering units
are realized with parallel memory modules. Such an realization
is proposed in [6] for radix-2 FFT allowing conflict-free access of
two input and output operands. In this scheme, a specialized ad-
dress generator provides separate addresses for read and write op-
erations for two dual-port memory modules. The principal prob-
lem of memory-based reordering units is the need for expensive
multi-port memories for supporting simultaneous read and write
operations. The additional complexity due to specialized address
generation and multiple ports is a disadvantage especially when
the sequence sizes are small.

Area-efficient reordering units can be realized with register-
based structures, especially for smaller sequence sizes. The tradi-
tional approach used in cascaded FFT architectures is a multi-port
commutator, which consists of skewed delay lines and a multi-port
switch performing complex periodic switching patterns. Such an
approach is used, e.g., in the FFT architecture proposed in [7].
The drawback of this approach is the complexity of the switching
element. In [8], a Viterbi decoder architecture is described where
stride permutations are realized with the aid of parallel tapped first-
in, first-out (FIFO) buffers; several data elements are written into
consecutive FIFO locations, shift of several elements is performed,
and data elements are read from tapped outputs. Such an approach
requires complex write, shift, and read schemes and the FIFOs
need to operate at higher frequency than the sample clock.

In this paper, a factorialization of stride permutations, based
on the results described earlier in [9], is derived. The factorial-
izations can be efficiently mapped onto register-based structures,
which can be used to construct interconnection networks for array
processors supporting different strides and sequence sizes.

2. PRELIMINARIES

In this paper, left evaluation is used for ordinary products, i.e.,

n∏
i=0

ai = a0 · a1 · a2 · . . . · an (1)

The formulation used here is based on tensor products; tensor
product (or Kronecker product) and direct sum are denoted by ⊗
and ⊕, respectively. The stride by R permutation matrix of order
K is a square matrix PK,R where the elements of the matrix are
defined as

PK,R(m, n) =

{
1, iff n = (mR mod K) + �mR/K�
0, otherwise

(2)

where mod is the modulus operation and �·� is the floor function.
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Fig. 1. Basic switching units: (a) delay-switch-delay unit and (b)
shift-exchange unit. D: Delay register. clk: Sample clock signal.
c: Control signal. S: 2-to-2 switch.

In the following, some theorems on stride permutations are
given. The proofs for the theorems can be found, e.g., from [1, 10].

Theorem 1 Factorializations of stride permutations:

Pa,bc = Pa,bPa,c (3)

Pabc,c = (Pac,c ⊗ Ib) (Ia ⊗ Pbc,c) (4)

where IK denotes the identity matrix of order K.

Theorem 2 Relationship between tensor product and stride per-
mutation. If Aa and Bb are matrices of order a and b, respectively,
then,

Aa ⊗ Bb = Pab,a (Bb ⊗ Aa) Pab,b (5)

Corollary 1 Stride by two permutation of a 2k-point sequence
can be decomposed as consecutive P4,2 permutations as

P2k,2 =

k−2∏
i=0

I2i ⊗ P4,2 ⊗ I2k−i−2 (6)

Proof. According to (4) stride by 2 permutation can be decom-
posed as

PK,2 =
(
PK/2,2 ⊗ I2

) (
IK/4 ⊗ P4,2

)
=

(
PK/4,2 ⊗ I4

) (
IK/8 ⊗ P4,2 ⊗ I2

) (
IK/4 ⊗ P4,2

)
=

(
P4,2 ⊗ IK/4

)
. . .

(
IK/16 ⊗ P4,2 ⊗ I4

) ·(
IK/8 ⊗ P4,2 ⊗ I2

) (
IK/4 ⊗ P4,2

)
Finally, a special permutation matrix JK of order K is defined:

J
K

=
(
I2 ⊗ P

K/2,K/4

)
PK,2 (7)

This permutation exchanges the odd elements in the first half of a
vector with the even elements of the last half of the vector.

3. BASIC SWITCHING UNITS

The basic switching units used in this paper, the 2-port delay-
switch-delay unit of size N (DSDN ) and 1-port shift-exchange
unit [11] of size N (SEUN ), are illustrated in Fig. 1. In [9], we
showed that a Q-port network consisting of Q/2 DSDN units in
parallel performs the reordering defined by JQN , Q = 2q, N =
2n. In addition, all the reorderings of type (IM ⊗ JQN ) can be
mapped onto the same Q-port structure independent on M , M =
2m. As an example, a 2-port realization of J16 permutation with
the corresponding timing diagram is illustrated in Fig. 2(a).

In principle, SEUN can exchange data elements N apart in a
sequential data stream. This unit can be used to construct a Q-port
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Fig. 2. Block and timing diagrams of 2-port structures performing:
(a) J16 and (b) (P4,2 ⊗ I4). Clock signals are omitted for clarity.

unit to perform reorderings of type (IM ⊗ P4,2 ⊗ IQN ). E.g., a
Q-port network constructed with Q parallel SEU1 units can per-
form (P4,2 ⊗ IQ) since the 4Q-point input sequence is divided
into four Q-point subsequences entering the reordering unit at con-
secutive cycles and the permutation is performed by exchanging
the middle subsequences. In the same manner, (P4,2 ⊗ IQN ) over
Q ports can be performed with a network where Q SEUN units op-
erate in parallel, i.e., Q-point subsequences to be exchanged are N
cycles apart. Permutations of type (IM ⊗ P4,2 ⊗ IQN ) can also
be mapped onto the same Q-port structure. As an example, a 2-
port realization of (P4,2 ⊗ I4) with corresponding timing diagram
is illustrated in Fig. 2(b). The latency of the basic switching units
is the same depending on the number of delay registers connected
to a port; the latency of DSDK and SEUK is K cycles.

4. FACTORIALIZATION OF STRIDE PERMUTATIONS

In general, the reordering units for radix-2r algorithms based on
stride by 2r permutation contain 2r ports. This reflects the natu-
ral number of operations of the basic operation node, e.g., radix-
2r butterfly in Cooley-Tukey FFT. For such cases, in [9] we have
shown a simple factorialization for the stride permutations:

PK,R = (I2 ⊗ P
K/2,R

)JK (I
K/R

⊗ P
R,R/2) (8)

where R = 2r , K = 2k, and JK is defined in (7). By recursively
applying this factorialization, the stride by 2r permutation of order
2k as a function of the number of ports 2q can be defined as (r ≤ q)

P2k,2r (2q) = I2k−q ⊗ P2q,2r ·[
k−q−1∏

i=0

(I2k−q−i−1 ⊗ J2q+i+1)(I2k−r ⊗ P2r,2r−1)

]
(9)

This factorialization can be used to design simple register-based
interconnection networks or reordering units for the the previous
case; radix-2r operation nodes connected to 2r-port reordering
units. However, the operation node can be mapped onto reduced
number of computational resources, thus there is need to support
stride by 2r permutation over less number of ports, 2q, q < r.

In order to efficiently realize permutations with higher stride,
we need to derive a factorialization where the order of the stride is
decreased. According to (3) and (4), the stride permutations can
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Fig. 3. General block diagram of 2q-port stride by 2r permutation network for 2k-point sequences. Blocks labeled by P2q,2q−1 are
hard-wired perfect shuffle permutations.

be factorialized as, K = 2k, R = 2r ,

PK,R = PK,2P
K,R/2 (10)

P
K,R/2 = (P

K/2,R/2 ⊗ I2)(IK/R
⊗ P

R,R/2) (11)

By combining the previous equations and utilizing the fact that
P

K,K/2PK,2 = IK , we may formulate factorialization of stride by
R permutation of order K as

PK,R = (I2 ⊗ P
K/2,R/2)PK,2(IK/R

⊗ P
R,R/2) (12)

By applying the relation in (4) to the term PK,2, we may rewrite
the permutation as

PK,R =
(
I2 ⊗ PK/2,R/2

) (
P2K/R,2 ⊗ IR/2

) ·(
IK/R ⊗ PR,2

) (
IK/R ⊗ PR,R/2

)
(13)

By noting that
(
IK/R ⊗ PR,2

) (
IK/R ⊗ PR,R/2

)
= IK , we ob-

tain a new factorialization as

PK,R =
(
I2 ⊗ PK/2,R/2

) (
P2K/R,2 ⊗ IR/2

)
(14)

This factorialization can be recursively applied to the leftmost term
in (14), which results in a structure with reduced order of stride.
This implies that the recursion can be continued until the stride
of the permutation matches the required number of ports. There-
fore, the stride by 2r permutation of order 2k as a function of the
number of ports 2q can be defined as (r > q)

P2k,2r (2q) = I2r−q ⊗ P2k+q−r,2q ·
r−q−1∏

i=0

I2r−q−1−i ⊗ P2k−r+1,2 ⊗ I2i+q (15)

By applying the corollary I, (15) can be rewritten as

P2k,2r (2q) = I2r−q ⊗ P2k+q−r,2q ·
r−q−1∏

i=0

I2r−q−i−1 ⊗
[

k−r−1∏
j=0

I2j ⊗ P4,2 ⊗ I2k−r+q+i−j−1

]

(16)

5. REALIZATION

Based on the previous discussion, we may derive interconnection
network structures in two different cases depending on the relation
of the stride R and the required number of ports of the network Q.

Case I: R ≤ Q. In this case, the factorialization in (9) can ef-
ficiently be mapped onto a network structure containing only DSD
units as described in [9]. Latency of a 2q-port network perform-
ing stride permutation of a 2k-point sequence is 2k−q − 1, while
the number of subsequences entering the network over 2q ports is
2k−q . Therefore, the latency is less than the total number of subse-
quences implying high utilization of the resources and efficiency,
i.e., permutation is performed with less number of delay registers
than actual data elements in the sequence.

As an example, we may consider a 16-point stride by 2 per-
mutation over two ports, q = 1, r = 1, k = 4. By noting that
P2,2 = P2,1 = I2, the following decomposition is obtained

P16,2 = (I4 ⊗ J4) (I2 ⊗ J8) J16 (17)

This can be realized with a cascade of DSD4 for J16, DSD2 for
J8, and DSD1 for J4.

Case II: R > Q. In this case, the factorialization in (16) is
needed to decrease the stride. For the first term in (16), (I2r−q ⊗
P2k+q−r,2q ), we can apply the factorialization in (9) since the
stride is the same as the number of ports, and obtain a network
consisting of DSD units. The remaining terms describe parallel
P4,2 permutations of data in blocks, which have larger size than the
number of ports. Such permutations can be realized with cascades
of parallel SEU units as discussed earlier. The general block dia-
gram of the resulting interconnection network is depicted in Fig. 3.
It should be noted that the last k−r DSD stages are due to the fac-
torialization in (9). The latency of a 2q-port network performing
stride by 2r permutation on a 2k-point sequence is (2k−q −2r−q),
which is again less than the number of subsequences entering the
network, 2k−q .

As an example, we may consider the factorialization of P32,4

over two ports, which according to (16) is

P32,4 = (I2 ⊗P16,2)(P4,2 ⊗ I8)(I2 ⊗P4,2 ⊗ I4)(I4 ⊗P4,2 ⊗ I2)

where the first term can be factorialized as shown in (17). The
resulting signal flow graph and corresponding implementation is
illustrated in Fig. 4(a). The same permutation over four ports is
depicted in Fig. 4(b).

In some cases, there may be a need to support permutations
with different strides, e.g., computation of a 2-D transform with
the row-column decomposition requiring matrix transposition. In
such a case, the reordering unit needs to support stride by 2r per-
mutation for interconnections in 1-D transform and stride by 2k

permutation for performing the 2k×2k matrix transposition. Such
networks can be designed by developing network structures for
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Fig. 4. Factorialization of 32-point stride permutations with corre-
sponding implementations: (a) stride by 4 over two ports and (b)
stride by 8 over four ports. ti: ith time instant.

each stride and then mapping these onto a unified network, where
additional paths are arranged with the aid of multiplexers.

As an example, let us consider a unified 4-port network for
stride by 4 and 8 permutations for 32-point sequences. P32,4 can
be realized directly by utilizing the factorialization in (9) since the
stride equals to the number of ports. The resulting network is illus-
trated in Fig. 5(a). For P32,8 we need to apply (16), which results
in the network in Fig. 5(b). By comparing the networks, we find
that they contain several similarities, only the first switching stages
are different. These can be unified by connecting the SEU stages
as skewed delay registers in the DSD unit. However, the SEU units
in a single port contain only three registers, thus an additional de-
lay register for two ports is required to realize the DSD4 unit. In
addition, a single 2-to-2 switch is needed to realize the P4,2 per-
mutation needed in front of DSD4 units in Fig. 5(a). The unified
network is illustrated in Fig. 5(c).

6. SUMMARY

The general factorializations of stride by 2r permutations, shown
in this paper, allow mapping of stride permutations onto simple
register-based structures. The resulting multi-port networks con-
tain less registers than data elements in the sequence implying
area-efficiency. The described networks can be used as reorder-
ing units in array processor architectures, e.g., pipeline, cascade,
or partial column architectures, for realizing radix-2r algorithms
where the interconnection topologies are based on stride by 2r per-
mutations. Such algorithms exist, e.g., for discrete Fourier, sine,
cosine, and Hartley transforms. The same topologies are found
in Viterbi algorithm and matrix transposition. The proposed net-
works can be modified to support several stride permutations. In
addition, support for several sequence sizes is possible with the aid
of additional routing multiplexers as described in [9].
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[8] M. Bóo, F. Argüello, J. Bruguera, R. Doallo, and E. Zapata,
“Mapping of trellises associated with general encoders onto
high-performance VLSI architectures,” J. VLSI Signal Pro-
cessing, vol. 17, no. 1, pp. 57–73, Sept. 1997.

[9] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Scalable
interconnection networks for partial column array processor
architectures,” in Proc. IEEE ISCAS, Geneva, Switzerland,
May 28–31 2000, vol. IV, pp. 513–516.

[10] M. Davio, “Kronecker products and shuffle algebra,” IEEE
Trans. Comput., vol. 30, no. 2, pp. 116–125, Feb. 1981.

[11] C. B. Shung, H.-D. Lin, R. Cypher, P. H. Siegel, and H. K.
Thapar, “Area-efficient architectures for the Viterbi algo-
rithm I. Theory,” IEEE Trans. Commun., vol. 41, no. 4, pp.
636–644, Apr. 1993.


