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ABSTRACT

This paper introduces a new bearing fault detection and
diagnosis scheme based on hidden Markov modeling (HMM) of
vibration signals. First features are extracted from amplitude
demodulated vibration signals obtained from both normal and
faulty bearings. The features are based on the reflection
coefficients of the polynomial transfer function of the auto-
regressive model of the vibration signal. These features are then
used to train HMMs to represent various bearing conditions. The
technique allows for online detection of faults by monitoring the
probabilities of the pre-trained HMM for the normal case. It also
allows for the diagnosis of the fault by the HMM that gives the
highest probability. The new scheme was tested with
experimental data collected from drive end ball bearing of an
induction motor (Reliance Electric 2HP IQPreAlert) driven
mechanical system.

1. INTRODUCTION

Induction motors are widely used in industry due to their
reliability and relatively low cost. However, diagnosis and
isolation of both electrical and mechanical faults of an induction
motor is a challenging problem. According to the Motor
Reliability Working Group (MRWG) and the investigation
carried out by Electric Power Research Institute (EPRI), the most
common failure mode of an induction motor is bearing failure
followed by stator winding failures and rotor bar failures. A
bearing failure increases the rotational friction of the rotor. Thus,
detection and diagnosis of mechanical faults in rolling element
bearings is very crucial for the reliable operation of an induction
motor.
Considerable research has been carried out previously for the
development of various algorithms for bearing fault detection
and diagnosis. These algorithms can be classified into time
domain, frequency domain, time-frequency domain, higher order
spectral analysis, neural-network and model based techniques.
Various time domain statistical parameters have been used as
trend parameters to detect the presence of incipient bearing
damage. Kurtosis and skew values of vibration signals are used
in [1] for detection of bearing faults at early stages in their
development. [2] presents a study on the application of sound
pressure and vibration signals to detect the presence of defects in
a rolling element bearing using a statistical analysis method. The
most important shortcoming of the statistical analysis approach
is its inability to detect bearing defects at later stages. In the
frequency domain approach the major frequency components of
vibration signals and their amplitudes are used for trending
purposes. The frequency characteristics of the vibration for a

defective bearing subject to various load conditions are
investigated in [3]. Envelope analysis, originally known as the
high frequency resonance technique, is the most commonly used
frequency analysis technique for the detection and diagnosis of
bearing faults.  The technique is studied in detail in [4]. One of
the problems with envelope analysis and the other frequency
domain approaches is that, they require the bearing defect
frequencies be known or pre-estimated. The other shortcoming is
the increasing difficulty in analyzing the vibration spectrum
when the signal to noise ratio is low and the vibration spectrum
has a large number of frequency components due to the
complexity of the system. Time-frequency domain techniques
use both time and frequency domain information allowing for
the investigation of transient features such as impacts. A number
of time-frequency domain techniques have been proposed
including Short Time Fourier Transform (STFT), the Wigner-
Ville Distribution (WVD), and the Wavelet Transform (WT)
[5,6]. Bi-coherence spectra are used in [7] to derive features that
relate to the condition of a bearing. The application of bi-spectral
and tri-spectral analysis in condition monitoring is discussed in
[8]. Neural networks are also applied to bearing fault detection
and diagnosis [9,10]. Model based techniques are studied in [3]
and [11].
Hidden Markov modeling (HMM) is known as the state of the
art technique for speech recognition [12]. HMMs are also
successfully applied to machine tool wear monitoring [13,14]. In
this paper we present the theory of hidden Markov models and
apply it to bearing fault detection and diagnosis problem.

2. THEORETICAL BACKGROUND

2.1. Linear Auto Regressive Modeling

A linear auto-regressive model can be used to predict the value
of the next sample of a signal as a linear combination of the
previous samples. The next sample of the signal, ns , is

predicted as the weighted sum of the p previous
samples, pnnn sss −−− ...,,, 21  and can be expressed as,
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The transfer function of the model is given by,
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The residual error, en, is defined as the difference between the
actual and the predicted values of the next sample and can be
expressed as,
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The weights can be calculated by minimizing the mean square
value of the residual errors over an analysis window.

2.2. Hidden Markov Models

Hidden Markov models (HMM) are extensions of Markov
models to include the case where the observations are
probabilistic functions of the states rather than the states
themselves. A HMM is characterized by several parameters. The
first parameter is the transition probability distribution A = {aij},
where aij is the probability of being in state Sj at time t+1
provided that the state at time t is Si, i.e.,
                  NjiSqSqPa itjtij ≤≤=== + ,1),|{ 1             (2.4)

where qt denotes the state at time t and N is the number of states.
The second parameter of a HMM is the observation probability
distribution, B = {bj(k)},
              MkNjSqoPkb jtkj ≤≤≤≤== 1,1),|{)(         (2.5)

where ok is the kth observation and M is the number of distinct
observations. If the observations are continuous, a continuous
probability density function, generally a weighted sum of several
Gaussian distributions, is assigned to each state.
The last parameter is the initial state distribution, π = {πi},
                           NiSqP ii ≤≤== 1},{ 1π                           (2.6)

which is the probability of Si being the initial state.
A compact notation λ = [A, B, π] is used to define a HMM. The
probability of a given observation sequence, O = o1, o2, ..., oT ,
can be calculated as,
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The maximum likelihood (ML) method can be used to re-
estimate the model parameters, λ = [A, B, π], as follows:
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Training of a HMM for a given observation sequence can be
realized by the so-called Baum-Welch Algorithm. Starting with
initial or pre-estimated HMM parameters, the algorithm updates
the parameters, by calculating the ML estimates, step by step
increasing the probability of the observation sequence in each
step. The training procedure along with the other features of
hidden Markov models is explained in detail in [12].

3. PREPROCESSING AND FEATURE EXTRACTION

Vibration signals were amplitude demodulated before the feature
extraction process. Amplitude demodulation provides a
mechanism for effectively extracting out the rolling element fault
frequencies from extraneous noise present in the signal.

Figure 3.1 - Feature Extraction from Vibration Signals

Amplitude demodulation was carried out by band-pass filtering
followed by half-wave rectification. The envelope detection
stage was performed by low-pass filtering the half-wave rectified
signal. The center frequency and the bandwidth for the band-pass
filter were 3 and 2kHz, respectively. The cut-off frequency for
the low pass filter was 2kHz.
Figure 3.1 illustrates the feature extraction process. After
preprocessing, vibration signals were divided into windows of
equal length. A set of features (referred to as a feature vector or a
single observation) was extracted from each window. The
features for a single window were selected to be the reflection
coefficients of the polynomial transfer function of the linear
auto-regressive model for that window. The observation
sequences were later used in the HMM training process. The
effect of the choice of the window length and the order of the
model on the performance of the new scheme will be discussed
in the Results section.

4. HMM BASED FAULT DETECTION AND DIAGNOSIS

4.1. Fault Detection

For the detection of the presence of a fault, it is sufficient to train
a single HMM to represent the normal condition. A HMM is
trained with features obtained from the vibration data collected
from a normal bearing using the Baum-Welch Algorithm. To
determine whether a given vibration signal is from a normal or a
faulty bearing, first the signal is preprocessed. Then the feature
vectors are extracted. Given the set of feature vectors, the
probability of the previously trained HMM for the normal
bearing is calculated. If the probability is above a pre-determined
threshold, then the vibration signal is from a normal bearing. The
vibration is from a faulty bearing, otherwise.

4.2. Fault Diagnosis

For the diagnosis of the fault, it is necessary that a separate
HMM be trained for all the possible fault types in addition to the
HMM for normal condition. To diagnose the condition of a
bearing, vibration signals gathered from the bearing are
preprocessed followed by feature extraction. Then, the
probability of the set of feature vectors is calculated given all the
HMMs in the previously constructed database. The HMM for
which the probability is maximum, determines the condition of
the bearing. The recognition stage of a HMM-based fault
diagnosis scheme is illustrated in Figure 4.1.

        o1     o2    o3                 …               oT-1    oT



Figure 4.1 – HMM based Fault Diagnosis

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

Experimental data were collected from drive end ball bearing of
an induction motor (Reliance Electric 2HP IQPreAlert) driven
mechanical system. The accelerometer was mounted on the
motor housing at the drive end. Data was gathered for four
different conditions: (i) normal (N); (ii) inner race fault (IRF);
(iii) outer race fault (ORF); (iv) ball fault (BF). Faults were
introduced into the drive end bearing by EDM method. For inner
race and ball fault cases, vibration data for three severity levels
(0.007, 0.014 and 0.021 inches) was collected. For outer race
fault case, vibration data for two different severity levels (0.007
and 0.021 inches) was collected. All the experiments were
repeated for four different load conditions (O, 1, 2 and 3HP).
Therefore, experimental data consisted of 4 vibration signals for
normal condition and 12 vibration signals for the inner race and
ball fault conditions. For the outer race faulty case there were 8
vibration signals. The sampling period was 12 kHz and the
duration of each vibration signal was 10 seconds.

5.2. Results

All the vibration signals were divided into ten equal sections
(one second duration each). The first sections were used for
training, and the remaining nine sections along with the first
sections were used to test the performance of the new scheme.
Four states left-to-right continuous density HMMs were used to
model the bearing conditions. Two Gaussian distributions were
used in each state.
Table 5.1 shows the diagnosis accuracies for various model
orders for a fixed window size and for various window sizes for
a fixed model order. The best diagnosis accuracies were
achieved when the window size and model order were 0.25
seconds and 25, respectively. Increasing the model order
increased the diagnosis accuracies. However, changing the
window size as long as it was above 0.05 seconds did not
significantly affect the performance.

N IRF ORF BF
n = 5 100% 89% 76% 78%

n = 10 100% 96% 96% 88%
n = 15 100% 98% 94% 100%
n = 20 100% 98% 98% 100%
n = 25 100% 98% 100% 100%
n = 30 100% 98% 100% 100%

Wn = 0.05 sec 100% 100% 99% 100%
Wn = 0.10 sec 100% 98% 100% 100%
Wn = 0.20 sec 100% 98% 100% 100%
Wn = 0.25 sec 100% 100% 100% 100%

Table 5.1 – Diagnosis Accuracies
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Figure 5.1 – Probabilities of Normal and Faulty Data given the
HMM for Normal Condition

Faults were detected with 100% accuracy. Figure 5.1 shows the
probabilities of the vibration signals for the normal, inner race,
outer race and ball fault conditions given the HMM for the
normal condition. The probabilities of the normal data are clearly
separable from the probabilities of the faulty data by
thresholding. Window size and the model order were 0.25
seconds and 25, respectively.
Figures 5.2, 5.3 and 5.4 show the probabilities of the inner race,
outer race and ball fault data, respectively. P1, P2, P3 and P4
refer to the probabilities given the models for normal, inner race,
outer race and ball fault conditions, respectively. As seen from
the figures, the probability of a given data set is largest given the
HMM that represents the condition of the data.
The results verify that the new scheme is able to detect and
diagnose faults with 100 % accuracy independent of the load
condition, the type and severity of the fault.
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Figure 5.2 – HMM Probabilities for the Inner Race Faulty Data
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Figure 5.3 - HMM Probabilities for the Outer Race Faulty Data
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Figure 5.4 – HMM Probabilities for the Ball Faulty Data
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